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ABSTRACT. The present paper deals with continuous extreme-like selections
for the Vietoris hyperspace of countably compact spaces. Several new results
and applications are established, along with some known results which are ob-
tained under minimal hypotheses. The paper contains also a number of examples
clarifying the role of countable compactness.
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1. Introduction

Throughout this paper, all spaces are assumed to be Hausdorff. For a space
X, let F (X) be the set of all nonempty closed subsets of X, and let τV be the
Vietoris topology on F (X). We refer to (F (X), τV ) as the Vietoris hyperspace.
Recall that τV is generated by all collections of the form

〈V 〉 =
{
S ∈ F (X) : S ⊂ ⋃

V and S ∩ V �= ∅, whenever V ∈ V
}
,

where V runs over the finite families of open subsets of X.
A map f : D → X is a selection for D ⊂ F (X) if f(S) ∈ S for every S ∈ D .

A selection f : D → X is continuous, called also Vietoris continuous, if it is
continuous with respect to the relative Vietoris topology τV on D , and se�[D ] is
used to denote the set of all continuous selections for D . Given p ∈ X, a selection
f : F (X) → X is p-maximal [6, 13] if f(S) = p whenever p ∈ S ∈ F (X); and
f is called p-minimal [6] if f(S) �= p for every S ∈ F (X) with S �= {p}. A
point p ∈ X is selection maximal (selection minimal) if F (X) has a continuous
p-maximal (respectively, p-minimal) selection.

A point p of a connected spaceX is a cut point ofX ifX\{p} is not connected.
In this case, X \ {p} = U ∪ V for some nonempty disjoint open sets U, V ⊂ X.
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Since X is connected, we also have that U ∩ V = {p} which can be used as
an extra condition to define such points in spaces which are not necessarily
connected. Namely, for an arbitrary space X, we shall say that p ∈ X is a cut
point of X (see, [15]) if X \ {p} = U ∪ V where U and V are disjoint subsets of
X such that U ∩ V = {p}. Note that such sets U and V must be open because
U = X \ V and V = X \ U . A concept similar to this played an important role
for first countability of spaces X with se�[F (X)] �= ∅, see [8,14].

Points which are both selection maximal and cut are a useful tool in classifying
local properties of spaces, the following theorem illustrates some of the results
obtained in [15]. In this theorem, and in what follows, a space X is zero-
dimensional (at p ∈ X) if it has a base of clopen sets (at the point p); and X is
selection pointwise-maximal if each point of X is selection maximal [15].

������� 1.1� ([15]) For a space X with se�[F (X)] �= ∅, the following holds:

(a) If p ∈ X is a non-isolated point, then X is zero-dimensional and first
countable at p if and only if p is a selection maximal cut point.

(b) If X is a selection pointwise-maximal space, then it is zero-dimensional
and the set {p ∈ X : X is first countable at p} is dense in X.

Selection minimal points behave differently with respect to local properties of
spaces, see Example 2.1. In contrast to Theorem 1.1, they were used for exten-
sion of continuous selections to one-point compactifications of locally compact
spaces ([14: Theorem 3.1]), also for constructing new continuous selections from
given ones ([6: Lemma 6.4]).

Selection minimal and maximal points have also some common properties.
Turning to this, let F2(X)=

{
S ⊂ X : 1 ≤ |S| ≤ 2

}
. A selection f : F2(X)→X

is called a weak selection for X. Every weak selection f forX generates an order-
like relation 
f on X [21: Definition 7.1] defined by x 
f y if f({x, y}) = x.
The relation 
f is both total and antisymmetric, but not necessarily transi-
tive. Weak selections exist in pairs, namely to every selection f : F2(X) → X
one can associate another one fc : F2(X) → X defined by S = {f(S), f c(S)},
S ∈ F2(X). Then, f is continuous if and only if so is f c (see, for instance,
[12: Theorem 3.5]), while the 
fc -relation is reverse to the 
f -one. Motivated
by this, we shall say that a point p ∈ X is weakly extreme if X has a continuous
weak selection f such that p 
f x for every x ∈ X (or, equivalently, x 
f p
for every x ∈ X). Clearly, every selection maximal or selection minimal point is
weakly extreme.

We are also ready to state the main purpose of this paper. In the next section
we demonstrate that, in the setting of arbitrary spaces, there are many examples
of mutually excluding local properties of spaces which possess the same extreme-
like selections, see, for instance, Examples 2.1, 2.4, 2.5 and 2.7. However, the
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situation is quite favourable in the realm of countably compact spaces. In Sec-
tion 3 we introduce the greatest lower bound property for order-like relations
generated by weak selections, and show that it holds for countable subsets of
countably compact spaces, see Theorem 3.4. As a consequence, we generalise
a result of Eric van Douwen [24] that every countably compact space with a
continuous weak selection is sequentially compact, see Corollary 3.7. In Sec-
tion 4 we deal with weakly extreme cut points of countably compact spaces, see
Theorem 4.1. The last Sections 5 and 6 are devoted to some further results and
applications about special points in countably compact spaces defined by means
of extreme-like selections, see Lemma 5.1 and Theorem 6.1, also Corollaries 5.4
and 6.5.

2. Totally disconnected spaces
and weakly extreme points

Every continuous weak selection f for X can be considered as a continuous
map f : X ×X → X such that f(x, y) = f(y, x) and f(x, y) ∈ {x, y} for every
x, y ∈ X, see [1]. Another way is to look at f as the relation 
f on X which
is both total and antisymmetric, i.e. a selection relation in the terminology of
[16]. According to [11: Proposition 2.1], the continuity of f is equivalent to 
f

being closed in X × X. This implies immediately that f remains continuous
with respect to any other topology on X which is finer than the original one.
The interested reader is referred to [18] for other alternative characterisations of
continuity of weak selections.

In the sequel, we will often write 
s for a selection relation on X, and x≺s y
to express that x
s y and x �= y. Whenever x ∈ X, let

(←, x]�s
= {y ∈ X : y
s x} and [x,→)�s

= {y ∈ X : x
s y}.
We will refer to these sets as 
s-closed intervals. Similarly, we consider the
corresponding 
s-open intervals :

(←, x)�s
= {y ∈ X : y≺s x} and (x,→)�s

= {y ∈ X : x≺s y}.
Finally, for points x, y ∈ X, we have the following composite intervals:

(x, y)�s
= (x,→)�s

∩ (←, y)�s
,

[x, y]�s
= [x,→)�s

∩ (←, y]�s
,

(x, y]�s
= (x,→)�s

∩ (←, y]�s
,

[x, y)�s
= [x,→)�s

∩ (←, y)�s
.

Since a selection relation 
s is not necessarily transitive, both intervals (x, y)�s

and (y, x)�s
could be nonempty. Let us also remark that if 
s is closed inX ×X

(i.e., corresponding to a continuous weak selection for X), then all 
s-open
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intervals are open in X [21] (see, also, [18: Corollary 4.2]); the converse is not
necessarily true [12: Example 3.6] (see, also, [18: Example 4.3]).

In this section we show that, in the setting of arbitrary spaces, there are
many examples of spaces possessing weakly extreme cut points with mutually
excluding local properties in them. To this end, we first furnish the following
example showing that, in contrast to selection maximal points, selection minimal
points behave differently with respect to local properties (see, Theorem 1.1).

Example 2.1. There is a space X with se�[F (X)] �= ∅, and a selection minimal
point p ∈ X which is a cut point of X but X is not zero-dimensional at p.

P r o o f. Let C be the Cantor set in the interval [0, 1], p = 1 ∈ C, ≤ be the linear
ordering on C as a subset of [0, 1], and let D = {dn : n < ω} ⊂ C be a strictly
increasing sequence convergent to p. Define another topology on C in which a set
U ⊂ C is open if p ∈ U and U = V \D for some open set V in C, or p /∈ U and U
is open in C. Call the resulting topological space as X. In fact, the topology of
X is obtained from the topology of C by making D to be a closed discrete subset
of X. As shown in [17: Example 4.4], the space X is not regular at p, hence it
also fails to be zero-dimensional at p. However, g(S) = min

≤
S, S ∈ F (X), is a

continuous selection for F (X) such that g(S) = p iff S = {p}. To show finally
that p is a cut point of X, let {Wn : n < ω} be a strictly decreasing clopen
base at p in C such that W0 = C and dn ∈ Sn = Wn \Wn+1, n < ω. Then,
U =

⋃{S2n : n < ω} and V =
⋃{S2n+1 : n < ω} are disjoint open subsets of

X such that U ∪ V = X \ {p} and U ∩ V = {p}. �

The situation with weakly extreme points is very similar to that of selection
minimal points.

�����	
�
�� 2.2� Let X be a space with se�[F2(X)] �= ∅, and let p ∈ X be a
non-isolated point such that {p} is a countable intersection of clopen sets. Then,
p is weakly extreme. Moreover, if X is first countable and zero-dimensional at
p, then p is also a cut point of X.

P r o o f. The first part of this statement follows by [16: Theorem 3.1]. The fact
that p is a cut point provided X is first countable and zero-dimensional at p was
actually established in [15: Corollary 3.2]. �

�����	
�
�� 2.3� Let X be a space with se�[F2(X)] �= ∅, and let p ∈ X be a
weakly extreme cut point. Then, X is totally disconnected at p.

P r o o f. By hypothesis, X \ {p} = U ∪ V for some disjoint sets U, V ⊂ X such
that U ∩ V = {p}. Since p is weakly extreme, there exists g ∈ se�[F2(X)]
such that p 
g x for every x ∈ X. Take a point q ∈ U . Then, (←, q)�g

is a

neighbourhood of p ∈ U ∩ V ⊂ V and, therefore, there exists z ∈ (←, q)�g
∩ V .
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It remains to observe that G = (z,→)�g
∩ U is clopen in X because G =

[z,→)�g
∩ U (indeed, z /∈ U), and it contains q because z ≺g q and q ∈ U .

However, p /∈ G because p ≺g z. The proof is completed. �

We now proceed with several examples showing that, in general, Proposi-
tions 2.2 and 2.3 cannot be improved in the setting of arbitrary spaces.

Example 2.4. There is a space X which has a continuous weak selection and
each point p ∈ X is a weakly extreme cut point with {p} being also a countable
intersection of clopen sets, but X is not first countable at any of its points.

P r o o f. Let P = R \Q be the irrational numbers with the usual topology. Then,
the family of all sets of the form U \S, where U is open in P and S is countable,
is a base for a non-regular topology on P. The resulting space X is as required.
Since P is uncountable, X is not first countable at any of its points. Since the
topology of X is finer than that of P, X has a continuous weak selection (because
so does P) and each point of X is a countable intersection of clopen sets. By
Proposition 2.2, each point of X is weakly extreme. According to the definition
of the topology, each point of X is also a cut point. �

Example 2.5. There is a Lindelöf space X (hence, paracompact as well) which
has a continuous weak selection and a weakly extreme point p ∈ X such that X
is zero-dimensional at p and {p} is a countable intersection of clopen sets, but p
is not a cut point of X.

P r o o f. Let A be a free ultrafilter on ω. The important properties for us are
that each A ∈ A is infinite and S ⊂ ω implies that S ∈ A or ω \ S ∈ A .
Whenever n < ω, let ∆n =

(
2−(n+1), 2−n

)
, and let

Y = {0} ∪
(⋃{∆n : n < ω}

)
= [0, 1] \ {2−n : n < ω} .

Then, Y is zero-dimensional at p = 0 (as a subspace of R). Let X be the space
obtained from Y by promoting all sets of the form

OA = {0} ∪
(⋃{∆n : n ∈ A}

)
, A ∈ A ,

to be open. Since the topology of X is finer than that of Y , {p} remains a
countable intersection of clopen subsets of X, and X itself has a continuous
weak selection. Thus, by Proposition 2.2, p is a weakly extreme point of X. If
U is a neighbourhood of p in X, then OA ⊂ U for some A ∈ A . However, the
set OA is closed in X because X \ OA =

⋃{∆n : n ∈ ω \ A}. Hence X is
zero-dimensional at p and, in particular, a regular space. By the same reason,
X is Lindelöf because X \OA is a countable union of Lindelöf spaces.

We finally show that p is not a cut point of X. Contrary to this, suppose that
X \ {p} = U ∪ V for some disjoint open sets such that U ∩ V = {p}. Since all
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intervals ∆n, n < ω, are connected and U and V are clopen in X \ {p}, we get
that ∆n ⊂ U or ∆n ⊂ V for every n < ω. Hence, S = {n < ω : ∆n ⊂ U} and
T = {n < ω : ∆n ⊂ V } define a partition of ω. However A is an ultrafilter,
and we now have that S ∈ A or T ∈ A , say S ∈ A . Then, OS is a clopen
neighbourhood of p and OS ⊂ U , so V ⊂ X \ OS because V ⊂ X \ OS . That
is, p /∈ V which is a contradiction! Thus, p is not a cut point of X and, by
Proposition 2.2, X is not first countable at p. �

In order to prepare for our last example in this section, we need the following
simple observation.

�����	
�
�� 2.6� Let X be a space which has a continuous weak selection, and
let p ∈ X be such that there exists a countable set A ⊂ X \{p} with p ∈ A. Then,
p is a Gδ-point of X provided it is weakly extreme.

P r o o f. Suppose that X has a continuous weak selection g such that p 
g x for

every x ∈ X. By hypothesis, p ∈ A for some countable A ⊂ X \ {p}. Hence, by
[6: Theorem 4.1], p should be a Gδ-point of X = [p,→)�g

. �

Following Fujii and Nogura [5], for infinite ordinal numbers ξ and η we will
use L(ξ, η) to denote the quotient space obtained from the disjoint union of the
ordinal spaces ξ + 1 and η + 1 by identifying the points ξ and η into a single
point ∞. Note that L(ξ, η) is linearly ordered by considering ξ + 1 in its usual
order and η + 1 — in the reverse one. With respect to this order, L(ξ, η) is a
compact orderable space, hence it has a continuous (weak) selection.

Example 2.7. There is an orderable space X which is zero-dimensional, each of
its points is a cut point, but X has no weakly extreme points.

P r o o f. Our construction is based on [2: Example 5.4] that there exists a sub-
orderable space which is not first countable at any point. Let Y = L(ω1, ω), and
let Y ω be the lexicographical product of ω-copies of Y . For convenience, for any
pair of distinct elements f, g ∈ Y ω, set

f�g = min
{
n < ω : f(n) �= g(n)

}
.

Define X as the subset of Y ω consisting of all f ∈ Y ω such that for some n < ω,
f(k) �=∞ for every k ≤ n and f(k) =∞ for every k > n. Whenever f ∈ X, let

i(f) = min
{
n < ω : f(n) =∞}

,

and note that i(f) > 0. In these terms, f(k) �=∞ for k < i(f) and f(k) =∞ for
every k ≥ i(f). Also, for f, g ∈ X, we have that f ≺ g if and only if f(k) = g(k)
for k < f�g and f(f�g) < g(f�g).

Now, endow X with the open interval topology with respect to this order.
Thus, we get an orderable space which is zero-dimensional. To show the latter,
suppose that f ≺ g. Then, f(f�g) < g(f�g) which implies that f(f�g) �= ∞
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or g(f�g) �= ∞, and, therefore, f�g ≤ i(g) because f(k) = g(k) �= ∞ for
every k < f�g. If f�g < i(g), take an arbitrary α < ∞ = ω1. Otherwise, if
f�g = i(g), we have that f(i(g)) < g(i(g)) =∞, so there exists an α < ω1 =∞
with f(i(g)) < α < g(i(g)). Either way, we may define h ∈ Y ω by h(k) = g(k)
for k < i(g) and h(k) = α for k ≥ i(g). By the choice of α, we have f ≺ h ≺ g,
while h ∈ Y ω \ X because h(k) �= ∞ for every k < ω. This implies that
U = (h,→)� ∩X is a clopen subset of X which contains g and does not contain
f . Note that (h,→)�∩X = [h,→)�∩X and hence U is clopen inX with respect
to the subspace topology on X (i.e., when X is considered as a suborderable
space), but we consider X as an orderable space. So, some explicit arguments
are required.

In order to show that U is open in X, take u ∈ (h,→)� ∩ X. Since h ≺ u
and h(k) �= ∞ for every k < ω, we have that h�u ≤ i(u). If h�u = i(u), then
h(i(u)) < u(i(u)) = ∞, so there is β < ω1 = ∞ with h(i(u)) < β < u(i(u)).
If h�u < i(u), take an arbitrary β < ω1. Next, define v ∈ Y ω by v(k) = u(k)
provided k �= i(u) and v(i (u)) = β. Thus, v ∈ X and h ≺ v ≺ u, which
implies that U is open in X. The verification that U is also closed in X is
similar. Namely, take � ∈ (←, h)� ∩X. Again, we have that ��h ≤ i(�) because
h(k) �= ∞ for every k < ω. If ��h = i(�), then �(i(�)) = ∞ < m < h(i(�))
for some m < ω. If ��h < i(�), take an arbitrary m < ω. Define w ∈ Y ω by
w(k) = �(k) if k �= i(�) and w(i (�)) = m. Then, w ∈ X and � ≺ w ≺ h which
shows that X \ U = (←, h)� ∩X is open in X.

To show finally that X is as required, let f ∈ X and, for each α ∈ Y =
L(ω1, ω), define fα ∈ X by

fα(k) =

{
f(k) if k �= i(f),

α if k = i(f).

Next, let Lf = {fα : α ≤ ∞} and Rf = {fn : ∞ ≤ n}. In this way, we get that

fα ≺ f∞ = f ≺ fn, for every α <∞ < n.

First, let us observe that f is not isolated in Lf . Indeed, let g ≺ f for some
g ∈ X. Then, as it was already shown, g�f ≤ i(f). If g�f < i(f), then g ≺ fα
for every α < ∞. If g�f = i(f), then g(i(f)) < α < f(i(f)) = ∞ for some
α <∞, so g ≺ fα for this particular α. Since {α ∈ Y : α <∞} = ω1, this also
implies that f is not a Gδ-point of (←, f ]�. Concerning how f is situated in Rf ,
let g ∈ X with f ≺ g. Again, f�g ≤ i(f) because f(k) = g(k) �= ∞ for every
k < f�g. If f�g < i(f), then fn ≺ g for every n > ∞ because fn(k) = f(k)
for k < i(f). If f�g = i(f), then f(i(f)) = ∞ < n < g(i(f)) for some n < ω.
Consequently, f ≺ fn ≺ g for this particular n. That is, f is not isolated in
Rf , and clearly f is a Gδ-point of Rf because Rf is countable. In particular,
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f ∈ A for some countable A ⊂ X \ {f}. According to Proposition 2.6, f cannot
be a weakly extreme point of X because it is not a Gδ-point of (←, f ]�. The
proof is completed. �

3. Selection relations and
the greatest lower bound property

Let X be a set, 
s be a selection relation on X, and let S ⊂ X. The
following terminology is standard for linear orders, it is just adapted for the case
of selection relations. An element p ∈ X is a lower 
s-bound (respectively, an
upper 
s-bound) for S if p
s x (respectively, x
s p) for every x ∈ S. In this
case, we shall say that S is 
s-bounded below (respectively, 
s-bounded above).
A lower 
s-bound p for S is the greatest lower 
s-bound, or the 
s-infimum of
S, written p = inf

�s

S, if y
s p for any other lower 
s-bound y for S. Similarly,

an upper 
s-bound p for S is the least upper 
s-bound, or the 
s-supremum of
S, written p = sup

�s

S, if p
s y for any other upper 
s-bound y for S. In the

sequel, we will consider only lower 
s-bounds, and 
s-infimums. The other case
is completely analogous by considering the reverse relation.

First of all, let us explicitly mention that the lack of transitivity of a selection
relation 
s may lead to examples of 
s-bounded below sets S ⊂ X which have
finitely many lower 
s-bounds but have no 
s-infimum.

Example 3.1. Let X = {0, 1, 2} ∪ (3,+∞) ⊂ R. Define a selection relation 
s

on X by

(a) x≺s y for every x ∈ {0, 1, 2} and y ∈ (3,+∞),

(b) 0≺s 1≺s 2≺s 0,

(c) 
s on (3,+∞) coincides with the usual linear order on (3,+∞).

Then, 
s is a closed selection relation onX such that S = (3,+∞) is 
s-bounded
below, but it has no 
s-infimum.

Here is a very simple observation dealing with the infimum of 
s-bounded
below sets. Its verification is left to the reader.

�����	
�
�� 3.2� Let X be a set, 
s be a selection relation on X, S ⊂ X be
a nonempty set which is 
s-bounded below, and let p ∈ X be a lower 
s-bound
of S. Then, p = inf

�s

S if and only if {p} = ⋂ {[p, s]�s
: s ∈ S}.

Let X be a set, and 
s be a selection relation on X. We shall say that
a sequence {xn ∈ X : n < ω} is strictly 
s-decreasing (respectively, strictly

s-increasing) if xn+1≺s xk (respectively, xk ≺s xn+1) for every k ≤ n and
n < ω, or in other words if the sequence is linearly ordered by 
s and is strictly
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decreasing (respectively, strictly increasing) with respect to this order. Finally,
we shall say that a sequence {xn : n < ω} is strictly 
s-monotone if it is either
strictly 
s-decreasing or strictly 
s-increasing.

�����	
�
�� 3.3� Let 
s be a selection relation on X and {xn ∈ X : n < ω}
be a sequence of distinct points of X. Then, {xn : n < ω} has a strictly

s-monotone subsequence.

P r o o f. We follow an idea of Eric van Douwen [24]. Namely, we are going
to apply Ramsey’s Lemma [23] (see, also, [20]) that if {P0, P1} is a partition
of [ω]2 =

{
S ⊂ ω : |S| = 2

}
, then there is an infinite set H ⊂ ω which is

homogeneous for this partition, i.e. such that either [H]2 ⊂ P0 or [H]2 ⊂ P1. To
this end, as in the proof of [24: Theorem 2], consider the partition {P0, P1} of
[ω]2 defined by

P0 =
{{n,m} ∈ [ω]2 : xmin{n,m} = min�s

{xn, xm}
}
,

P1 =
{{n,m} ∈ [ω]2 : xmin{n,m} = max�s

{xn, xm}
}
.

If H is homogeneous for the partition {P0, P1}, then {xk : k ∈ H} is a strictly

s-monotone subsequence of {xn : n < ω}. �

In what follows, we will mostly deal with strictly 
s-decreasing sequences, but
clearly our considerations remain valid also for strictly 
s-increasing sequences
by considering the reverse relation.

Given a selection relation 
s on X, the family

S�s
=

{
(←, x)�s

, (x,→)�s
: x ∈ X

}
is a subbase for a natural “
s-open” interval topology T�s

on X, called a selec-
tion topology [12]. In fact, T�s

is the usual open interval topology provided 
s

is a linear ordering on X. If X is a space with a topology T and 
s is a closed
selection relation, then T�s

⊂ T . The inclusion T�s
⊂ T is actually equivalent

to (←, x)�s
, (x,→)�s

∈ T , x ∈ X, [21] (see, also, [18: Corollary 4.2]). However,
there are selection relations 
s which are not closed but all 
s-open intervals
are open sets [12: Example 3.6] (see, also, [18: Example 4.3]). Motivated by
this, a weak selection f for a space (X,T ) is called separately continuous [18] if
T�f

⊂ T . In order to express this property in terms of selection relations, we
will say that a selection relation 
s on a space (X,T ) is admissible if T�s

⊂ T .

������� 3.4� Let X be a countably compact space, 
s be an admissible se-
lection relation on X, and let S = {xn : n < ω} be a strictly 
s-decreasing
sequence. Then, S \ S is a singleton and S \ S≺s xn for every n < ω. In
particular, there exists inf

�s

S and inf
�s

S ∈ S \ S.
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P r o o f. First of all, let us show that S \ S �= ∅. To this end, suppose that
S\S = ∅, i.e. that S is closed inX. Next, for every n < ω, let Sn = {xk : k ≥ n}
which is also closed in X because Sn = S \ (xn,→)�s

. Thus, we get a decreasing
family {Sn : n < ω} of nonempty closed subsets of X. Since X is countably
compact, we have that Sω =

⋂{Sn : n < ω} �= ∅. However, Sω ⊂ S because
Sn ⊂ S for every n < ω, while xn /∈ Sω for every n < ω. A contradiction! Thus,
S \ S �= ∅.

Take a point p ∈ S \S. Then, p �= xn for every n < ω, and we must have that
p≺s xn for every n < ω. Indeed, suppose that xn
s p for some n < ω. Then,
xn≺s p while xk /∈ (xn,→)�s

for every k ≥ n. So, U = (xn,→)�s
\{xk : k < n}

is a neighbourhood of p such that U ∩S = ∅, but p ∈ S. A contradiction! Thus,
p≺s xn for every n < ω. We are also ready to show that S \ S is a singleton.
On the contrary, suppose that p, q ∈ S \ S are two distinct points, say q≺s p.
Then, V = (←, p)�s

is a neighbourhood of q such that xn /∈ V , n < ω, because
p≺s xn, n < ω. Consequently, V ∩S = ∅. However, we also have that V ∩S �= ∅

because q ∈ S. A contradiction! So, S \ S is a singleton.

We complete the proof by showing that there exists inf
�s

S and inf
�s

S ∈ S\S. Let
p ∈ S \S, and let y ∈ X be a lower 
s-bound for S. Suppose that p≺s y. Then,
(←, y)�s

is a neighbourhood of p, hence (←, y)�s
∩S �= ∅. However, y
s xn for

every n < ω. A contradiction! Thus, y
s p and the proof is completed. �

The following observation is an immediate consequence of Proposition 3.2 and
Theorem 3.4.


�������� 3.5� Let X be a countably compact space, 
s be an admissible
selection relation on X, and let S = {xn : n < ω} be a strictly 
s-decreasing
sequence. Then, p = inf

�s

S is a Gδ-point of [p,→)�s
in the selection topology T�s

.

In fact, in this case, every strictly 
s-decreasing sequence is also convergent.


�������� 3.6� Let X be a countably compact space, 
s be an admissible
selection relation on X, S = {xn : n < ω} be a strictly 
s-decreasing sequence,
p = inf

�s

S, and let Tn =
⋂{

[p, xk]�s
: k ≤ n

}
, n < ω. Then, for every open

U ⊂ X containing p, there is an n < ω such that Tn ⊂ U . In particular, S is
convergent to p.

P r o o f. Let U ⊂ X be an open set containing p, and contrary to our claim
suppose that Fn = Tn \ U �= ∅ for every n < ω. Then, {Fn : n < ω} is a
decreasing sequence of nonempty closed sets inX. SinceX is countably compact,
there is a point q ∈ ⋂{Fn : n < ω}. Since p = inf

�s

S, by Proposition 3.2,
p = q /∈ U . A contradiction! �

According to Proposition 3.3, this implies the following further consequence.
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�������� 3.7� Every countably compact space which has a separately contin-
uous weak selection is sequentially compact.

The fact the every countably compact space with a continuous weak selection
is sequentially compact was established by Eric van Douwen, [24: Theorem 2].
In this regard, let us also mention the following result which is credited to a list
of authors.

������� 3.8� ([1,7,22,24]) Every pseudocompact space X which has a contin-
uous weak selection is suborderable. In particular, for a Tychonoff space X with
se�[F2(X)] �= ∅, the following are equivalent :

(a) X is countably compact.

(b) X is pseudocompact.

(c) X is sequentially compact.

According to Corollary 3.7, countable compactness and sequential compact-
ness are equivalent in the realm of spaces X which have separately continuous
weak selections. On the other hand, there are non-regular countably compact
spaces which have continuous weak selections.

Example 3.9. Let X be the space obtained from the ordinal space ω1 + 1 by
making the set of all countable limit ordinals closed in X, see [4: 3.10.B]. Since
the topology of X is finer than that of ω1+1, X has a continuous weak selection
but is not regular.

Motivated by this, we have the following natural question.

���	�
�� 1� Let X be a countably compact space which has a (separately)
continuous weak selection. Then, is it true that X is weakly orderable? What
about if X is regular?

Let us remark that a countably compact space with a continuous weak selec-
tion is not necessarily suborderable which was illustrated by Example 3.9. For
some related results, we refer the interested reader to the last Section 5 of the
paper.

4. Countable compactness
and weakly extreme cut points

In this section, we prove the following theorem which is a partial generalisation
of Theorem 1.1.

������� 4.1� Let X be a countably compact space with se�[F2(X)] �= ∅,
and let p ∈ X be a non-isolated point. Then, X is zero-dimensional and first
countable at p if and only if p is a weakly extreme cut point.
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P r o o f. If X is first countable and zero-dimensional at p, then the statement
follows by Proposition 2.2. To show the converse, suppose that X \ {p} =
U ∪ V for some disjoint (open) sets U, V ⊂ X with U ∩ V = {p}, and let
g ∈ se�[F2(X)] be such that p 
g x for every x ∈ X. Take a point x0 ∈ U .
Then, (←, x0)�g

is a neighbourhood of p and there exists x1 ∈ (←, x0)�g
∩ V .

In an obvious manner, proceeding by induction, we get a strictly 
g-decreasing
sequence S = {xn : n < ω} such that x2n ∈ U and x2n+1 ∈ V for every n < ω.
According to Corollary 3.6, S is convergent to a point q ∈ X. Then, q ∈ U
because {x2n : n < ω} ⊂ U , and q ∈ V because {x2n+1 : n < ω} ⊂ V .
Hence, q = p. By Corollary 3.5, p is a Gδ-point of X = [p,→)�g

with respect to
the selection topology T�g

. On the other hand, by Proposition 2.3, X is totally
disconnected at p. Hence, by [18: Proposition 5.6], {p} is a countable intersection
of clopen subsets of X. Since X is countably compact, it finally implies that X
is first countable and zero-dimensional at p. The proof is completed. �

Related to Theorem 4.1, let us explicitly mention that countable compactness
is substantial to derive that X is first countable at p, see Example 5.3 in the
next section. We proceed with some applications of Theorem 4.1 the first of
which is based on [5: Theorem 3].


�������� 4.2� For infinite cardinals ξ and η, the following are equivalent :

(a) ∞ is weakly extreme in L(ξ, η).

(b) Both ξ and η have countable cofinality.

(c) The space L(ξ, η) is homeomorphic to an ordinal space the last element of
which is ∞.

In particular, ∞ is a cut point of L(ω1, ω1) but it is not weakly extreme.

P r o o f. Since ξ and η are limit ordinals, ∞ is always a cut point of L(ξ, η).
Then, (a) =⇒ (b) is an immediate consequence of Theorem 4.1 because, in this
case, L(ξ, η) will be first countable at ∞. The implication (b) =⇒ (c) follows
by [5: Theorem 3], while (c) =⇒ (a) is obvious. �

Another immediate consequence of Theorem 4.1 is the following characteri-
sation of first countable zero-dimensional countably compact spaces.


�������� 4.3� Let X be a countably compact space with se�[F2(X)] �= ∅.
Then, X is zero-dimensional and first countable if and only if each non-isolated
point of X is a weakly extreme cut point.

Let us remark that each isolated point of X is always weakly extreme. Conse-
quently, one of the conditions in Corollary 4.3 is that each point of X is weakly
extreme. This condition implies total disconnectedness of X without any ex-
tra hypothesis. To prepare for this, we will use C [x] to denote the connected
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component of the point x ∈ X. Recall that

C [x] =
⋃
{C ⊂ X : x ∈ C and C is connected}.

�����	
�
�� 4.4� Let X be a space with se�[F2(X)] �= ∅. If the set of all
weakly extreme points of X is dense in X, then X is totally disconnected.

P r o o f. Let p, q ∈ X be distinct points, say p ≺g q for some g ∈ se�[F2(X)].
According to [13: Theorem 4.1] (see, also, [18: Theorem 6.1]) it suffices to show
that the connected component C [p] of p in X is not equal to the connected
component C [q] of q. To the contrary, assume that C [p] = C [q]. Then, by [10:
Lemma 2.5], ∅ �= (p, q)�g

⊂ C [p]. Hence, there exists a weakly extreme point
z ∈ (p, q)�g

. That is, there exists f ∈ se�[F2(X)] such that z 
f x for every
x ∈ X. Since C [p] is connected, by a result of Eilenberg [3], C [q] has exactly
two continuous weak selections, namely f �F2(C [q]) and the one generated by
the selection relation reverse to 
f . Hence, either z ≺g x for every x ∈ {p, q},
or x ≺g z for every x ∈ {p, q}. However, p ≺g z ≺g q. A contradiction! �

5. Countable compactness and first countability

Let us recall that, for a non-isolated point p of X, sa(p,X) denotes the least
cardinal γ such that there exists A ⊂ X \{p} with |A| ≤ γ and p ∈ A, see [6,15].
Whenever p is isolated in X, set sa(p,X) = 0. The cardinal number sa(p,X)
has the meaning of an approaching number of X in p, and might be compared
with the tightness t(p,X) of X in p, see [6,15].

Let p ∈ X and g ∈ se�[F2(X)]. Following [6], we consider the left approach
to p with respect to g defined by λg(p,X) = sa

(
p, (←, p]�g

)
, and, respectively,

the right approach ρg(p,X) = sa
(
p, [p,→)�g

)
. Finally, let

µg(p,X) = max
{
λg(p,X), ρg(p,X)

}
.

According to [6: Theorem 4.1], p is a Gδ-point of X provided µg(p,X) ≤ ω for
some g ∈ se�[F2(X)]. Consequently, in this case, if X is a regular countably
compact space, then it must be first countable at p. In this section, we first
provide the following refinement of [6: Theorem 4.1] for the case of countably
compact spaces.

����� 5.1� For a countably compact space X with se�[F2(X)] �= ∅, and p ∈ X,
the following are equivalent :

(a) X is first countable at p.

(b) µg(p,X) ≤ ω for every g ∈ se�[F2(X)].

(c) µg(p,X) ≤ ω for some g ∈ se�[F2(X)].
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To prepare for the proof of Lemma 5.1, we need the following proposition.

�����	
�
�� 5.2� Let X be a countably compact space, 
s be an admissible
selection relation on X, and let p ∈ X be such that p ∈ A for some countable set
A ⊂ (p,→)�s

. Then, [p,→)�s
has a countable local base at p of T�s

-open sets.

P r o o f. We proceed in a way very similar to Corollary 3.6. Namely, let A be
the set of all nonempty finite subsets of A. For every α ∈ A , let

Uα =
⋂{

[p, x)�s
: x ∈ α

}
and Fα =

⋂{
[p, x]�s

: x ∈ α
}
.

Then, p ∈ Uα ⊂ Uα ⊂ Fα, α ∈ A , and
⋂{

Fα : α ∈ A
}

= {p}. Since
X is countably compact and A is countable, exactly in the same way as in
Corollary 3.6, every open subset of X containing p will contain also an Fα for
some α ∈ A . Since 
s is an admissible selection relation on X,

{
Uα : α ∈ A }

will be a local base at p in [p,→)�s
. �

P r o o f o f L e mm a 5.1. The implications (a) =⇒ (b) =⇒ (c) are obvious.
To show that (c) =⇒ (a), suppose that µg(p,X) ≤ ω for some g ∈ se�[F2(X)].
If p is not isolated in [p,→)�g

, then, by Proposition 5.2, [p,→)�g
will be first

countable at p because sa
(
p, [p,→)�g

) ≤ ω. Using the reverse relation of 
g,
the same is true for (←, p]�g

. Hence, X is first countable at p. �

Lemma 5.1 is not true for arbitrary spaces and, in general, µg(p,X) is not
the same for all g ∈ se�[F2(X)]. Here is an example.

Example 5.3. There exists a space X with se�[F2(X)] �= ∅, and a point p ∈ X
such that p is a weakly extreme cut point of X, but there are weak selections
f, g ∈ se�[F2(X)] with µf (p,X) ≤ ω < µg(p,X).

P r o o f. Let X be the space obtained from the ordinal space ωω+1 be promoting
all ordinals ωn, n < ω, to be isolated, and by changing the local base at p =
ωω ∈ X to be of all sets U ⊂ X for which p ∈ U and there exists m < ω and
ordinals αn < ωn < αn+1, n ≥ m, such that (αn, ωn] ⊂ U for every n ≥ m.
The resulting topology on X = ωω + 1 is finer than the original one, so X has
a continuous weak selection f such that x 
f p for every x ∈ X. In fact, f is
defined by f(S) = minS, S ∈ F2(X), where the minimum is taken with respect
to the usual linear order ≤ on X = ωω + 1. Then X = (←, p]�f

and

A = {ωn : n < ω} ⊂ (←, p)�f
= X \ {p}

is such that p ∈ A. Hence, µf (p,X) ≤ ω. On the other hand, considering A
in the reverse order and making each element of A bigger than any element
of X \ A, we get another linear order 
 on X. Then, we may define another
continuous weak selection g for X by g(S) = min

�
S, S ∈ F2(X). Now 
g=
,

and we have that X \A = (←, p]� and A = [p,→)�. This demonstrates that p
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is a cut point of X because U = (←, p)� and V = (p,→)� = A are disjoint open

subsets of X such that X \ {p} = U ∪ V and U ∩ V = {p}. Finally, let us show
that µg(p,X) > ω. So, let B ⊂ (←, p)� be a countable set. Since each ordinal
ωn+1, n < ω, is uncountable and regular, for every n < ω there exists an αn+1,
with ωn < αn+1 < ωn+1, such that β < αn+1 for every β ∈ B ∩ ωn+1. Then,
W = {p} ∪⋃{

(αn+1, ωn+1]� : n < ω
}
is a neighbourhood of p in X such that

W ∩ B = ∅. Consequently, sa
(
p, (←, p]�

)
> ω. The proof is completed. �

In conclusion, let us also mention the following consequence of Theorem 3.8
and Proposition 5.2. We let,

µg(X) = min
{
γ : µg(p,X) ≤ γ for every p ∈ X

}
.


�������� 5.4� Let X be a countably compact space such that µg(X) ≤ ω
for some g ∈ se�[F2(X)]. Then, X is a Tychonoff space and, in particular, is
suborderable.

P r o o f. Take a point p ∈ X. If p is non-isolated in [p,→)�g
, by Proposition 5.2,

[p,→)�g
has a countable base at p consisting of T�g

-open sets of [p,→)�g
. Ac-

cording to a recent result of [19], (X,T�g
) is a Tychonoff space. Hence, [p,→)�g

is itself a Tychonoff space at p. Exactly in the same way, using the reverse rela-
tion of 
g, the interval (←, p]�g

is also a Tychonoff space at p. Consequently, so
is X. The latter part of this statement now follows by Theorem 3.8. The proof
is completed. �

6. Countable compactness and zero-dimensionality

Another extreme-like property was introduced in [13], and studied also in [9].
The following theorem summarises [13: Theorem 1.5] and [9: Theorem 2.1].

������� 6.1� ([9, 13]) Let X be a space, with se�[F (X)] �= ∅. Then, the set{
f(X) : f ∈ se�[F (X)]

}
is dense in X if and only if X has a clopen π-base.

Moreover, X is totally disconnected whenever the set
{
f(X) : f ∈ se�[F (X)]

}
is dense in X.

Here, a family P of open subsets of X is a π-base (sometimes, called also a
pseudobase) for X if every nonempty open subset of X contains some nonempty
member of P.

Let us emphasise that there is a space X which is not zero-dimensional (ac-
tually, not regular), but the set

{
f(X) : f ∈ se�[F (X)]

}
is dense in X, see [17:

Example 4.4]. Here, we prove the following theorem.

������� 6.2� Let X be a regular countably compact space with se�[F (X)] �= ∅.
Then, the set

{
f(X) : f ∈ se�[F (X)]

}
is dense in X if and only if X is totally

disconnected.
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To prepare for the proof of Theorem 6.2, let us recall that a point p ∈ X is
0-approachable if it is an isolated point of X, and that it is ω-approachable if
there exists an open subset U ⊂ X \ {p} such that U = U ∪ {p} and p has a
countable clopen base in U , see [9]. We say that p ∈ X is countably-approachable
if it is either 0-approachable or ω-approachable. According to [9: Lemma 4.2], if
se�[F (X)] �= ∅, then for every countably-approachable point p ∈ X there exists
an f ∈ se�[F (X)] such that f(X) = p. In fact, it was proved in [9] that, for a
space X with se�[F (X)] �= ∅, the set

{
f(X) : f ∈ se�[F (X)]

}
is dense in X if

and only if the set of all countably-approachable points of X is dense in X.

�����	
�
�� 6.3� Let X be a countably compact space which is totally discon-
nected in a point p ∈ X and has a continuous weak selection. Then, the following
are equivalent :

(a) sa(p,X) ≤ ω.

(b) p is countably-approachable.

P r o o f. The statement follows immediately by the definitions if p is an isolated
point of X. Suppose that p is non-isolated. Then, (b) =⇒ (a) is true without
any extra hypotheses on X. So, let sa(p,X) ≤ ω, and let g ∈ se�[F2(X)].
Since p is non-isolated and sa(p,X) ≤ ω, there exists a countable set A ⊂ X
such that p ∈ A and A ⊂ (←, p)�g

or A ⊂ (p,→)�g
, say A ⊂ (p,→)�g

. Then,
by Proposition 5.2, [p,→)�g

has a countable local base at p of T�g
-open sets.

However, by hypothesis, {p} is an intersection of clopen subsets of X. Hence, by
[18: Proposition 5.6], p is a countable intersection of clopen subsets of [p,→)�g

.
Since X is also countably compact, this finally implies that [p,→)�g

is zero-
dimensional at p. �

P r o o f o f T h e o r e m 6.2. Suppose thatX is totally disconnected, and U⊂X
is a nonempty open set. If U is finite, then it consists of isolated points and, in
particular, will be clopen. Hence, there exists g ∈ se�[F (X)] with g(X) ∈ U ,
see, e.g., [13: Lemma 2.1]. Actually, in this case, any point of U will be selection
maximal. Suppose that U is infinite and 
s is a closed selection relation on
X. Then, U contains a sequence of distinct points and, by Proposition 3.3 and
Corollary 3.6, U contains a strictly 
s-monotone sequence S = {xn : n < ω}
which is convergent in X to a point p ∈ U . In particular, we now have that
sa(p,X) ≤ ω and, by Proposition 6.3, p must be countably-approachable. Fi-
nally, by [9: Lemma 4.2], there exists an f ∈ se�[F (X)] such that f(X) = p ∈ U .
Since X is regular, this implies that the set

{
f(X) : f ∈ se�[F2(X)]

}
is dense

in X. According to Theorem 6.1, the proof is completed. �

Let us explicitly mention the following consequence of Theorems 3.8 and 6.2
which sheds some light on [17: Question 3].
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�������� 6.4� If X is a countably compact Tychonoff space with
se�[F (X)] �= ∅, then the set

{
f(X) : f ∈ se�[F (X)]

}
is dense in X iff X

is zero-dimensional.

P r o o f. IfX is a countably compact Tychonoff space with se�[F (X)] �= ∅, then,
by Theorem 3.8, it is suborderable. However, in the presence of suborderability,
total disconnectedness is equivalent to zero-dimensionality. Hence, the statement
is an immediate consequence of Theorem 6.1 and [13: Theorem 1.3]. �

According to Lemma 5.1 and Corollary 5.4, every countably compact space
X, with µg(X) ≤ ω for some g ∈ se�[F2(X)] �= ∅, is a first countable Tychonoff
space. By Theorem 1.1 and Corollary 6.4, this implies the following further
consequence.


�������� 6.5� Let X be a countably compact space such that µg(X) ≤ ω for
some g ∈ se�[F2(X)]. Then, the following are equivalent :

(a) X is selection pointwise-maximal.

(b) X =
{
f(X) : f ∈ se�[F (X)]

}
.

(c) the set
{
f(X) : f ∈ se�[F (X)]

}
is dense in X.

(d) X is zero-dimensional.

Let us remark that, by [9: Corollary 4.5], (b) and (c) of Corollary 6.5 are
equivalent for every first countable regular space.
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