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ABSTRACT. Weak relatively uniform convergences (wru-convergences, for
short) in lattice ordered groups have been investigated in previous authors’ pa-
pers. In the present article, the analogous notion for MV-algebras is studied.

The system s(A) of all wru-convergences on an MV-algebra A is considered; this
system is partially ordered in a natural way. Assuming that the MV-algebra A
is divisible, we prove that s(A) is a Brouwerian lattice and that there exists an
isomorphism of s(A) into the system s(G) of all wru-convergences on the lattice
ordered group G corresponding to the MV-algebra A. Under the assumption that
the MV-algebra A is archimedean and divisible, we investigate atoms and dual

atoms in the system s(A).
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The notion of relatively uniform convergence (ru-convergence, for short) has
been studied in archimedean vector lattices (cf. [17], [21]) and later in archime-
dean lattice ordered groups (cf. [2], [8], [9], [16], [18]). The notion of a regulator
of a convergent sequence is essential in this theory. (For definitions, cf. Section 1
below.) Distinct convergent sequences have, in general, distinct regulators. Each
positive element of the structure under consideration can serve as a regulator.

A different standpoint is applied in [5]; here, there are studied archimedean
lattice ordered groups with a fixed regulator.

The notion of ru-convergence in archimedean lattice ordered groups was gen-
eralized in [7] in two directions. First, the lattice ordered group G under consid-
eration was assumed to be abelian (this is a weaker condition than the assump-
tion of the archimedean property). Secondly, it was assumed that the regulators
form a set M �= ∅ of archimedean elements of G such that M is closed with re-
spect to the operation + . This type of convergence was called a weak relatively
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uniform convergence (wru-convergence, for short) generated by the set M of reg-
ulators and it was denoted by β(M ). The system s(G) of all wru-convergences
on G is partially ordered in a natural way. In [7] there is proved that s(G) is a
Brouwerian lattice.

Let A be an MV -algebra. In view of the well-known result of Mundici [19],
there exists an abelian lattice ordered group G with a strong unit u such that,
under the notation as in [4], we have A = Γ(G, u).

In [3], there is introduced the notion of an MV -convergence as a convergence
on anMV -algebra which makes theMV -operations continuous. In an analogical
way, a convergence on a unital lattice ordered group (G, u), called lu-converg-
ence, is defined. Connections between MV -convergences on the MV -algebra A
and lu-convergences on the unital lattice ordered group (G, u) are dealt with,
where A = Γ(G, u) (cf. also Section 3 below).

A will be said to be archimedean if G is archimedean. In [4], a different
terminology for MV -algebras is applied: instead of “archimedean” the term
“semisimple” is used. A is archimedean if and only if A is semisimple (cf. [10]).

In [6], the notion of convergence with a fixed regulator on an archimedean
MV -algebra A has been introduced and studied. In the definition of this type
of convergence on A, the operations of the lattice ordered group G have been
used.

The present paper can be considered as a sequel to the article [6]. First, a new
definition of convergence with a fixed regulator on an MV -algebra A is given.
In this definition, merely the operations in A are applied and the archimedean
property of A is not assumed to be valid. The definition used in the present
paper is equivalent with that from [6] in the case when the MV -algebra A is
archimedean.

Our main interest consists in studying the notion of wru-convergences on an
MV -algebra A; the definition is analogous as in the case of lattice ordered groups
(in this definition, merely the operations from A are used). After deducing the
basic properties of wru-convergences on A, we consider the system s(A) of all
wru-convergences on A; this system is partially ordered in an analogous way
to s(G). We prove that s(A) is a Brouwerian lattice and that there exists an
isomorphism of s(A) into s(G). Under the assumption that the MV -algebra A
is archimedean and divisible, we investigate atoms and dual atoms of the lattice
s(A).

1. wru-convergence in abelian lattice ordered groups

The standard terminology and notation for lattice ordered groups will be used
(cf., e.g. [1], [11]). All lattice ordered groups dealt with in the present paper are
assumed to be abelian.
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Let G be a lattice ordered group. In this section, we recall the notions of
b-uniform convergence, wru-convergence and some relevant results.

An element 0 ≤ b ∈ G is called archimedean if for each 0 < x ∈ G there
exists n ∈ N such that nx � b. If each element 0 ≤ b ∈ G is archimedean then
G is said to be archimedean. The set of all archimedean elements of G will be
denoted by A(G).

����� 1.1� (cf. [7]) Let b1, b2 ∈ A(G). Then b1 + b2 ∈ A(G).

Apparently, if b ∈ A(G) and b′ ∈ G, 0 ≤ b′ ≤ b, then also b′ ∈ A(G).

������	�
� 1.2� (cf. [7]) Let (xn) be a sequence in G, x ∈ G and b ∈ A(G).

We say that (xn) b-uniformly converges to x in G, written xn
b→β x, if for each

k ∈ N there exists n0(b, k) ∈ N such that

k|xn − x| ≤ b

for each n ∈ N , n ≥ n0(b, k).

The element b is referred to as a regulator of convergence.

In the whole section, M is assumed to be a nonvoid subset of A(G) closed
with respect to the addition.

������	�
� 1.3� (cf. [7]) Let (xn) be a sequence in G and x ∈ G. We say that
the sequence (xn) β(M )-converges to x, in symbols, xn →β(M) x, if there exists

b ∈ M such that xn
b→β x.

We denote this type of convergence as wru-convergence on G with the set M
of regulators, or shortly, as β(M )-convergence.

If G is archimedean and if M = G+, then β(M )-convergence coincides with
ru-convergence (for definition of ru-convergence cf. [2], [18], [20]).

If the role of G is to be emphasized, then we write β(G,M ) instead of β(M ).

Next, we will apply the basic properties of β(M )-convergence presented in [7].

The symbol S(G) will denote the system of all nonempty subsets of A(G)
closed with respect to the addition and s(G) will be the system of all conver-
gences β(M ) where M runs over the system S(G). For M1,M2 ∈ S(G) we
put β(M1) ≤ β(M2) if for each sequence (xn) in G and x ∈ G, the relation
xn →β(M1) x implies xn →β(M2) x. Then s(G) turns out to be a partially
ordered set.

When dealing with sequences in G, sometimes it is useful to consider a set ∅ �=
M ⊆ A(G) which needs not be closed under the addition. This is a motivation
to introduce the following definition.
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������	�
� 1.4� (cf. [7]) Let M be a nonempty subset of A(G), (xn) a sequence
in G and x ∈ G. We say that the sequence (xn) β0(M )-converges to x, in
symbols, xn →β0(M) x, if there is b = b1+ · · ·+ bm with bi ∈ M (i = 1, 2, . . . ,m)

such that xn
b→β x.

If M ∈ S(G) then β0(M ) = β(M ).

Let M1,M2 be nonempty subsets of A(G). Apparently, if M1 ⊆ M2 then
β0(M1) � β0(M2), but not conversely.

Given ∅ �= M ⊆ A(G), denote by M̃ the set of all elements b ∈ A(G) such

that for each sequence (xn) in G and x ∈ G, the relation xn
b→β x implies

xn →β0(M) x.

In 1.5–1.8 we assume that G is a divisible lattice ordered group.

����� 1.5� (cf. [7: Lemma 6.4]) Let ∅ �= M ⊆ A(G). Then β0(M ) = β0(M̃).

����� 1.6� (cf. [7: Lemma 6.5]) Let M1 and M2 be nonempty subsets of A(G).

Then β0(M1) � β0(M2) if and only if M̃1 ⊆ M̃2.

����� 1.7� (cf. [7: Lemma 6.3]) If M is a nonempty subset of A(G), then

M̃ ∈ S(G).

���

�� 1.8� (cf. [7: Theorems 6.6, 6.7]) The set s(G) is a complete Brouw-
erian lattice. If I is a nonempty set and Mi ∈ S(G) for each i ∈ I, then∧

i∈I

β(Mi) = β
(⋂

i∈I

M̃i

)
,

∨
i∈I

β(Mi) = β
(⋃

i∈I

Mi

)∼
.

The equations β0(M ) = β0(M̃) = β(M̃) holding on account of Lemma 1.5
for each ∅ �= M ⊆ A(G) and the relation β0(M ) = β(M ) that is valid for each
M ∈ S(G) yield that s(G) can be viewed as the system s0(G) of all convergences
β0(M ) where M runs over the system of all nonempty subsets of A(G).

2. wru-convergence in MV -algebras

An MV -algebra is a system A = (A,⊕, ∗,¬, 0, 1) where A is a nonempty set,
⊕, ∗ are binary operations, ¬ is a unary operation and 0, 1 are nulary operations
on A satisfying the conditions (m1)–(m9) from [12]. ForMV -algebras, a formally
different but equivalent system of axioms has been applied in [4].
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���

�� 2.1� (cf. [12]) Let A be an MV -algebra. For each a, b ∈ A, put

a ∨ b = (a ∗ ¬b)⊕ b, a ∧ b = ¬(¬a ∨ ¬b).
Then (A,∨,∧) is a distributive lattice with the least element 0 and the greatest
element 1.

Let A′ be a nonempty subset of A closed under the operations ⊕, ∗,¬, 0, 1
in A. Then A′ = (A′,⊕, ∗,¬, 0, 1) is called a subalgebra of A.

An isomorphism of MV -algebras is defined in a usual way.

The following two theorems are due to Mundici [19].

���

�� 2.2� Let G be an abelian lattice ordered group with a strong unit u.
Let A be the interval [0, u] of G. For each a, b in A we put

a⊕ b = (a+ b) ∧ u, ¬a = u− a, 1 = u, a ∗ b = ¬(¬a⊕ ¬b).
Then A = (A,⊕, ∗,¬, 0, 1) is an MV -algebra.

If A is as in 2.2, we will write A = Γ(G, u).

���

�� 2.3� Let A be an MV -algebra. Then there exists an abelian lattice
ordered group G with a strong unit u such that A = Γ(G, u).

Let us remark that if A and G are as in 2.2, then the partial order on A
inherited from G is the same as the partial order on A defined by means of the
lattice (A,∨,∧) in 2.1.

In what follows, unless otherwise stated, we assume that A = Γ(G, u).

Definition 1.2 of b-uniform convergence in lattice ordered groups has been
applied in [6] to archimedean MV -algebras assuming that (xn) is a sequence in
A, x ∈ A and b ∈ A. However, such a definition was not given in MV -algebra
operations; in fact, we used the operations concerning the lattice ordered group
G (cf. Theorem 2.3).

In the present paper, we introduce a new definition of b-uniform convergence
in A using merely the MV -algebra operations. Further, we prove that if (xn) is
a sequence in A, x ∈ A and b ∈ A, then the following conditions are equivalent:

(i) (xn) b-uniformly converges to x in A in the new definition.

(ii) (xn) b-uniformly converges to x in G in the Definition 1.2.

Assume that a1, a2 ∈ A, a1 ≤ a2. Then, 0 ≤ a2 − a1 ≤ u, so, a2 − a1 ∈ A.

����� 2.4� (cf. [13]) Let a1, a2 ∈ A, a1 ≤ a2. Then

a2 − a1 = ¬(a1 ⊕ ¬a2).
Let a ∈ A. We denote

a⊕ a⊕ · · · ⊕ a = n · a (n times)
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and as usual, we write

a+ a+ · · ·+ a = na (n times).

Recall that for a1, a2, . . . , an ∈ A, the relation a1⊕ a2 ⊕ · · ·⊕ an = (a1 + a2 +
· · ·+ an) ∧ u is valid. Hence n · a = na ∧ u for each n ∈ N .

An element b ∈ A is called archimedean in A if b is archimedean in G. Let
A(A) be the set of all archimedean elements of A. Then A(A) = A(G) ∩A.

Let (xn) be a sequence in G, xn ≥ 0 for each n ∈ N , and b ∈ A(G). Ap-

parently, xn
b→β 0 if and only if for each k ∈ N there exists n0 ∈ N such that

kxn ≤ b−xn whenever n ∈ N , n ≥ n0. This is a motivation to define the notion
of b-uniform convergence in A as follows.

������	�
� 2.5� Let (an) be a sequence in A and b ∈ A(A). We say that the

sequence (an) b-uniformly converges to 0 in A, in symbols an
b→α 0 if for each

k ∈ N there exists n0(b, k) ∈ N such that the relation

k · an ≤ b− an

is valid for each n ∈ N , n ≥ n0(b, k).

From the relation b − an ≥ 0 we get an ≤ b for each n ∈ N , n ≥ n0. Hence,
b− an ∈ A for each n ∈ N , n ≥ n0.

Let a1, a2 ∈ A. Then a1 − a2 ≤ a1 ≤ u and a2 − a1 ≤ a2 ≤ u. Hence,
|a1 − a2| ∈ A. Therefore, if (an) is a sequence in A and a ∈ A, then |an − a| ∈ A
for each n ∈ N .

������	�
� 2.6� Let (an) be a sequence in A, a ∈ A and b ∈ A(A). We say

that the sequence (an) b-uniformly converges to a and we write an
b→α a if

|an − a| b→α 0.

Let (an) and a be as in 2.6. Then the elements pn = an ∨ a and qn = an ∧ a
belong to A for each n ∈ N . We get qn ≤ pn and |an − a| = pn − qn. Thus, we
can express the elements |an − a| and b− an by using Lemma 2.4. We conclude
that the Definition 2.6 of b-uniform convergence in A is given in terms of the
MV -algebra operations.

Let (an) and b be as in 2.5. If an
b→α 0, then for each k ∈ N there exists

n0 ∈ N such that k · an ≤ b for each n ∈ N , n ≥ n0. The converse does not hold
in general.

Example 2.7. Let G be the set of all convergent sequences of reals. If the
operation + and the relation ≤ are performed componentwise, G turns out to
be an abelian lattice ordered group and the constant sequence u = (1, 1, . . . ) is a
strong unit of G. Consider the MV -algebra A = Γ(G, u) and the sequence (an)
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in A defined as follows: an = (t1, t2, t3, . . . ) such that ti = 0 if i ≤ n and ti = 1
otherwise. Let b = (0, 1, 1, . . . ). For each k ∈ N and each n ∈ N , we have

k · an = kan ∧ u = an,

so
k · an ≤ b

and

b− an = (0, 1, 1, . . . )− (0, 0, . . . , 0, 1, 1, . . . ) = (0, 1, . . . , 1, 0, 0, . . . ).

Hence, k · an � b− an, so, an
b
�α 0.

���

�� 2.8� Let (an) be a sequence in A and b ∈ A(A). Then the following
conditions are equivalent:

(i) an
b→β 0,

(ii) an
b→α 0.

P r o o f.

(i) =⇒ (ii): Let an
b→β 0. Then for each k ∈ N there exists n0 ∈ N such

that k · an ≤ kan ≤ b− an for each n ∈ N , n ≥ n0. Thus, (ii) is valid.

(ii) =⇒ (i): Suppose that an
b→α 0. We first prove that for each k ∈ N , there

is n0 ∈ N such that the relation

k · an = kan (1)

holds for each n ∈ N , n ≥ n0.

We proceed by induction. Apparently, the relation (1) is valid for k = 1.
Assume that (1) holds for some k ∈ N . In view of (ii), there exists n0 ∈ N such
that k · an ≤ b − an for each n ∈ N , n ≥ n0. Consequently, an + k · an ≤ b, so,
an + k · an = an ⊕ k · an for each n ∈ N , n ≥ n0. We have

(k + 1) · an = an ⊕ k · an = an + k · an = an + kan = (k + 1)an

for each n ∈ N , n ≥ n0, and the relation (1) holds.

Then, kan = k·an ≤ b−an, for each n ∈ N , n ≥ n0. Hence, (i) is satisfied. �

�


���
� 2.9� Let (an) be a sequence in A, a ∈ A and b ∈ A(A). Then the
following conditions are equivalent:

(i) an
b→β a,

(ii) an
b→α a.

Let b1, b2 ∈ A(A). Then b1, b2 ∈ A(G). By Lemma 1.1, b1 + b2 ∈ A(G). We
have b1 ⊕ b2 ≤ b1 + b2. Thus, b1 ⊕ b2 ∈ A(G). Hence, we have:

����� 2.10� Let b1, b2 ∈ A(A). Then b1 ⊕ b2 ∈ A(A).
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In the rest of this section, M will be assumed to be a nonempty subset of
A(A) closed with respect to the operation ⊕.

������	�
� 2.11� Let (an) be a sequence in A and a ∈ A. We say that the

sequence (an) α(M )-converges to a in A, written an →α(M) a, if an
b→α a for

some b ∈ M .

To avoid misunderstanding, the convergence in A will be denoted also by
α(A,M ) rather than α(M ).

If A is archimedean and M = A, then we say that a sequence (an) in A
relatively uniformly converges (ru-converges, for short) to an element a ∈ A, if
an →α(M) a.

���

�� 2.12� Let (an), (a
′
n) be sequences in A and a, a′ ∈ A. If an →α(M) a

and a′n →α(M) a
′, then

(i) an ⊕ a′n →α(M) a⊕ a′,
(ii) an ∨ a′n →α(M) a ∨ a′,
(iii) an ∧ a′n →α(M) a ∧ a′,
(iv) k · an →α(M) k · a for each k ∈ N ,

(v) if c, d ∈ A, c ≤ an ≤ d for each n ∈ N , then c ≤ a ≤ d.

P r o o f.

(i) We have to prove that |an⊕a′n−(a⊕a′)| →α(M) 0. The hypothesis implies
|an − a| →α(M) 0 and |a′n − a′| →α(M) 0. Hence, there exist b1, b2 ∈ M with

|an − a| b1→α 0 and |a′n − a′| b2→α 0. Let us put cn = |an − a| and c′n = |a′n − a′|.
Then (cn) and (c′n) are sequences in A. Denoting b = b1 ⊕ b2, we get b1 ≤ b,

b2 ≤ b and b ∈ M . Hence, cn
b→α 0 and c′n

b→α 0. By Theorem 2.8, cn
b→β 0 and

c′n
b→β 0. It is easy to verify (cf. [5]) that cn + c′n

b→β 0. Thus, for each k ∈ N ,
there exists n0 ∈ N such that

k(cn + c′n) ≤ b

whenever n ∈ N , n ≥ n0.

We have

k|an ⊕ a′n − (a⊕ a′)| = k|(an + a′n) ∧ u− (a+ a′) ∧ u|
≤ k|(an + a′n)− (a+ a′)| ≤ k(|an − a|+ |a′n − a′|)
= k(cn + c′n) ≤ b

for each n ∈ N , n ≥ n0. Hence |an ⊕ a′n − (a ⊕ a′)| b→β 0. Again, in view of

Theorem 2.8, |an⊕a′n− (a⊕a′)| b→α 0. Therefore, |an⊕a′n− (a⊕a′)| →α(M) 0.
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(ii) The hypothesis yields that there are b1, b2 ∈ M with an
b1→α a and

a′n
b2→α a′. Let b be an element from M as in (i). Using the procedure from (i),

we obtain an
b→β a and a′n

b→β a′. Then, an ∨ a′n
b→β a ∨ a′ (for the proof,

cf. [5]). The sequence (an ∨ a′n) is in A and a ∨ a′ ∈ A. Corollary 2.9 yields

an ∨ a′n
b→α a ∨ a′ and (ii) holds.

(iii) The proof is dual to that of (ii).

(iv) and (v) are easy to verify. �

3. The partially ordered set of wru-convergences on A

As before, let A = Γ(G, u). Denote by S(A) the system of all nonempty
subsets of A(A) that are closed under the operation ⊕ and by s(A) the system
of all convergences α(M ) where M runs over the system S(A).

Let us proceed similarly as in Section 2.

Assuming that M1,M2 ∈ S(A), we define the binary relation ≤ on s(A) by
putting α(M1) ≤ α(M2) if for each sequence (an) in A and a ∈ A, the relation
an →α(M1) a implies an →α(M2) a. Then ≤ is a partial order on the set s(A).

Analogously as we did in lattice ordered groups, in MV -algebras we will
consider wru-convergence without the assumption that the set of regulators is
closed with respect to the operation ⊕; i.e., we apply the following definition.

������	�
� 3.1� Let M be a nonempty subset of A(A), (an) a sequence in
A and a ∈ A. We say that the sequence (an) α0(M )-converges to a, written
an →α0(M) a, if there is b = b1 ⊕ · · · ⊕ bm with bi ∈ M (i = 1, . . . ,m) such that

an
b→α a.

Especially, if M ∈ S(A) then α0(M ) = α(M ).

Let M1 and M2 be nonempty subsets of A(A). Evidently, if M1 ⊆ M2 then
α0(M1) ≤ α0(M2), but not conversely. In fact, let b ∈ A(A), 0 < b < u,
M1 = {b, 2 · b}, M2 = {b}. Then, M1 � M2 but α0(M1) ≤ α0(M2). The relation
α0(M1) = α0(M2) is valid.

Assume that ∅ �= M ⊆ A(A). Let us form the set M of all elements b ∈ A(A)

such that for each sequence (an) in A and a ∈ A, the relation an
b→α a implies

an →α0(M) a. Then, M ⊆ M , and obviously, M ⊆ M̃ . Further, if b ∈ M and

b1 ∈ A, b1 ≤ b, then b1 ∈ M , whence 0 ∈ M .

Taking into account Corollary 2.9 and the fact that b1⊕· · ·⊕bm ≤ b1+· · ·+bm
whenever b1, . . . , bm ∈ M , we obtain

����� 3.2� Let ∅ �= M ⊆ A(A), (an) a sequence in A and a ∈ A. If an →α0(M)

a, then an →β0(M) a.
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An open question remains whether the converse assertion is valid.

Let ∅ �= M ⊆ A(A). We remark that Theorem 2.12 is valid also for
α0(M )-convergence. The proof of this assertion is similar to the proof of Theo-
rem 2.12.

We will apply the notion of a divisible MV -algebra.

The MV -algebra A is called divisible (cf. [15]) if for each b ∈ A with b �= 0
and each n ∈ N there exists a ∈ A such that

(i1) n · a = b,

(ii2) a < 2 · a < 3 · a < . . . < (n− 1) · a < b.

����� 3.3� (cf. [15]) A is divisible if and only if G is divisible.

Remark that if A is assumed to satisfy only the condition (i1) then G need
not be divisible (cf. [15]).

In 3.4–3.10 we suppose that A is a divisible MV -algebra.

�

�
��	�
� 3.4� Let ∅ �= M ⊆ A(A). Then M is closed with respect to the
operation ⊕.

P r o o f. Let b1, b2 ∈ M . Then b = b1 ⊕ b2 ∈ A(A) on account of Lemma 2.10.

Assume that (an) is a sequence in A, a ∈ A and an
b→α a. We have to show

that an →α0(M) a. By Corollary 2.9, an
b→β a. Then cn = |an − a| is a sequence

in A and cn
b→β 0. Thus for each k ∈ N there exists n0 ∈ N such that

kcn ≤ b

whenever n ∈ N , n ≥ n0. According to Lemma 3.3, G is divisible. Then

cn ≤ 1

k
b =

1

k
(b1 ⊕ b2) ≤ 1

k
(b1 + b2) =

1

k
b1 +

1

k
b2

for each n ∈ N , n ≥ n0.

Using Riesz decomposition property for G, we get

cn = c1n + c2n, 0 ≤ c1n ≤ 1

k
b1, 0 ≤ c2n ≤ 1

k
b2

for each n ∈ N , N ≥ n0. Then

kc1n ≤ b1, kc2n ≤ b2

for each n ∈ N , n ≥ n0, i.e., c
1
n

b1→β 0, c2n
b2→β 0. Because 0 ≤ cin ≤ cn for

i = 1, 2 and for each n ∈ N , we obtain that (c1n) and (c2n) are sequences in A.

By Theorem 2.8, c1n
b1→α 0 and c2n

b2→α 0. The hypothesis implies c1n →α0(M) 0

and c2n →α0(M) 0. Applying Theorem 2.12 for α0(M )-convergence, we get cn =

c1n + c2n = c1n ⊕ c2n →α0(M) 0. Consequently, an →α0(M) a. �
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The above proof is a slight modification of the proof of [7: Lemma 2.12].

It is easy to verify that the inclusion M ⊆ M and Proposition 3.4 imply

α0(M ) = α0(M). (1)

����� 3.5� Let M1 and M2 be nonempty subsets of A(A). Then α0(M1) ≤
α0(M2) if and only if M1 ⊆ M2.

The proof is simple, it will be omitted.

����� 3.6� Let ∅ �= M ⊆ A(A). Then M ⊆ M̃ .

P r o o f. Let b ∈ M, (xn) a sequence in G and x ∈ G. Assume that xn
b→β x.

Our purpose is to prove that xn →β0(M) x. We have |xn − x| b→β 0. Then there
exists m ∈ N such that yn = |xn − x| ≤ b for each n ∈ N , n ≥ m, so (yn+m)

is a sequence in A and yn+m
b→β 0. By Corollary 2.9, yn+m

b→α 0. Then,
in view of the assumption, yn+m →α0(M) 0. By Lemma 3.2, yn+m →β0(M) 0.

From yn →β0(M) 0, we infer that xn →β0(M) x. Thus, b ∈ M̃ , and the proof is
finished. �

����� 3.7� Let ∅ �= M ⊆ A(A). Then β0(M) = β0(M ).

P r o o f. The relation M ⊆ M yields β0(M ) ≤ β0(M). Using Lemmas 3.6

and 1.5, we get β0(M) ≤ β0(M̃) = β0(M ). �

����� 3.8� Let ∅ �= M ⊆ A(A). Then M = M̃ ∩A.

P r o o f. In view of Lemma 3.6, M ⊆ M̃ ∩ A. Conversely, let b ∈ M̃ ∩ A. Then
b ∈ A(A). In order to prove that b ∈ M , assume that (an) is a sequence in A,

a ∈ A and an
b→α a. By Corollary 2.9, an

b→β a. Let k ∈ N . Then, there exists
n1 ∈ N such that

k|an − a| ≤ b

whenever n ∈ N , n ≥ n1. Thus, k|an − a| ∈ A for every n ∈ N , n ≥ n1.

From b ∈ M̃ and an
b→β a, we infer that an →β0(M) a. Then, there exist

n2 ∈ N and b1, . . . , bm ∈ M such that

k|an − a| ≤ b1 + · · ·+ bm

for every n ∈ N , n ≥ n2.

If n0 = max(n1, n2), then, for each n ∈ N,n ≥ n0, we get k|an − a| =
k|an − a| ∧ u ≤ (b1 + · · ·+ bm) ∧ u = b1 ⊕ · · · ⊕ bm. Putting b′ = b1 ⊕ · · · ⊕ bm,

we have b′ ∈ A(A) and an
b′→β a. By Corollary 2.9, an

b′→α a. Consequently,

an →α0(M) a. Thus b ∈ M . �
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By (1), we get α0(M ) = α0(M) = α(M) for each ∅ �= M ⊆ A(A). The
relation α0(M ) = α(M ) is fulfilled for each M ∈ S(A). Consequently, s(A) is
equal to the system s0(A) of all α0(M ) where M runs over all nonempty subsets
of A(A).

���

�� 3.9� There exists an isomorphism of the partially ordered set s(A)
into s(G).

P r o o f. Instead of s(A) and s(G) we can consider s0(A) and s0(G), respectively.
Assume that ∅ �= M ⊆ A(A). Define a mapping f : s0(A) → s0(G) by putting
f(α0(M )) = β0(M ).

For proving that f is corretly defined, suppose that M1 and M2 are nonempty
subsets of A(A) and α0(M1) = α0(M2) is satisfied. With respect to (1),
α0(M1) = α0(M2). By Lemma 3.5, M1 = M2, so, β0(M1) = β0(M2). Us-
ing Lemma 3.7, we get β0(M1) = β0(M2).

If the same arguments are applied, we get that f preserves the partial order
≤ from s(A).

Let β0(M1) ≤ β0(M2). According to Lemma 1.5, β0(M̃1) ≤ β0(M̃2). By

Lemma 1.6, we have M̃1 ⊆ M̃2. With respect to Lemma 3.8, M1 = M̃1 ∩ A ⊆
M̃2 ∩ A = M2. Hence α0(M1) ≤ α0(M2) and by (1), α0(M1) ≤ α0(M2).

Therefore the mapping f is injective and the proof is complete. �

Let us return to the results of the paper [3] in Theorem 3.3. Essential part of
Theorem 3.3 is the following assertion:

If A = Γ(G, u) then there exists a one-to-one correspondence between
the system of all MV -convergences on A and the system of all lu-
convergences on G.

It is evident that neither the above Theorem 3.9 is a corollary of [3: Theo-
rem 3.3] nor [3: Theorem 3.3] is a corollary of Theorem 3.9.

���

�� 3.10� The set s(A) is a complete Brouwerian lattice. If I is a non-
empty set and Mi ∈ S(A) for each i ∈ I, then

∧
i∈I

α(Mi) = α
(⋂

i∈I

M i

)
,

∨
i∈I

α(Mi) = α
(⋃

i∈I

Mi

)
. (2)

P r o o f. According to Theorem 1.8, s(G) is a complete Browerian lattice. Anal-
ogously as in [7], we can prove that also s(A) is a complete lattice and that the
relations (2) are satisfied.
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The sets
⋂
i∈I

M i,
⋃
i∈I

Mi and all Mi belong to S(A). In view of (1), α0

( ⋃
i∈I

Mi

)
= α0

( ⋃
i∈I

Mi

)
. Then the relation (2) can be written in the form

∧
i∈I

α0(Mi) = α0

(⋂
i∈I

M i

)
,

∨
i∈I

α0(Mi) = α0

(⋃
i∈I

Mi

)
. (3)

It remains to prove that the lattice s(A) is Brouwerian. A slightly modified
procedure from [7] will be applied.

We suppose that M and Mi are elements of S(A) for each i ∈ I. We have to
prove the relation

α(M ) ∧
(∨

i∈I

α(Mi)
)
=

∨
i∈I

(
α(M ) ∧ α(Mi)

)
.

According to (3), we get

α(M ) ∧
(∨

i∈I

α(Mi)
)
= α0(M ) ∧

(∨
i∈I

α0(Mi)
)

= α0(M ) ∧ α0

(⋃
i∈I

Mi

)
= α0

(
M ∩

(⋃
i∈I

Mi

))

and ∨
i∈I

(
α(M ) ∧ α(Mi)

)
=

∨
i∈I

(
α0(M ) ∧ α0(Mi)

)

=
∨
i∈I

α0

(
M ∩M i

)
= α0

(⋃
i∈I

(
M ∩M i

))
.

It is sufficient to verify the validity of the relation

α0

(
M ∩

⋃
i∈I

Mi

)
≤ α0

(⋃
i∈I

(
M ∩M i

))
.

Assume that (an) is a sequence in A, a ∈ A and an →
α0

(
M∩ ⋃

i∈I

Mi

) a.

Then an →α0(M) a and an →
α0

( ⋃

i∈I

Mi

) a. From α0

( ⋃
i∈I

Mi

)
= α0

( ⋃
i∈I

Mi

) ≤

α0

( ⋃
i∈I

M i

)
it follows that an →

α0

( ⋃

i∈I

Mi

) a. Therefore an
b→α a and an

b′→α a

where b = b1 ⊕ · · · ⊕ bm for some b1, . . . , bm ∈ M and b′ = b′1 ⊕ · · · ⊕ b′p for some

b′1, . . . , b
′
p ∈ ⋃

i∈I

M i. By Corollary 2.9, an
b→β a and an

b′→β a. Then for each

k ∈ N , there exists n0 ∈ N such that

k|an − a| ≤ b and k|an − a| ≤ b′
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for each n ∈ N , n ≥ n0.

Consequently,

k|an − a| ≤ b ∧ b′ = (b1 ⊕ · · · ⊕ bm) ∧ (b′1 ⊕ · · · ⊕ b′p)

= (b1 + · · ·+ bm) ∧ u ∧ (b′1 + · · ·+ b′p) ∧ u

= (b1 + · · ·+ bm) ∧ (b′1 + · · ·+ b′p) ∧ u

≤ (b1 ∧ b′1 + · · ·+ b1 ∧ b′p + · · ·+ bm ∧ b′1 + · · ·+ bm ∧ b′p) ∧ u

= (b1 ∧ b′1)⊕ · · · ⊕ (b1 ∧ b′p)⊕ · · · ⊕ (bm ∧ b′1)⊕ · · · ⊕ (bm ∧ b′p).

Putting b0 = (b1 ∧ b′1)⊕ · · · ⊕ (b1 ∧ b′p)⊕ · · · ⊕ (bm ∧ b′1)⊕ · · · ⊕ (bm ∧ b′p), we

obtain an
b0→β a and by Corollary 2.9, an

b0→α a.

We have bj ∧ b′� ≤ bj , b
′
� (j = 1, . . . ,m; � = 1, . . . , p), where bj ∧ b′� ∈

M ∩ ( ⋃
i∈I

M i

)
=

⋃
i∈I

(
M ∩ M i

)
(j = 1, . . . ,m; � = 1, . . . , p). We deduce that

an →
α0(

⋃

i∈I

(
M∩Mi

) a, as desired. �

4. Atoms and dual atoms in s(A)

In view of Theorem 3.10, the lattice s(A) has the least element and the
greatest element; these will be denoted by α0 and α1, respectively.

The notion of atom of s(A) is defined in the usual way. Analogously, an
element α of s(A) is defined to be a dual atom if α < α1 and if there does not
exist any element α′ in s(A) with α < α′ < α1.

If y ∈ A(A) and M = {n·y}n∈N, then instead of α(A,M ) we will write simply
α(A, y).

Our aim is to prove the following results.

���

�� 4.1� Assume that the MV -algebra A is archimedean and divisible.
Let α ∈ s(A). Then the following conditions are equivalent:

(i) α is an atom of s(A);

(ii) there exists an element y ∈ A(A) with y > 0 such that α = α(A, y) and
the inverval [0, y] of A is a chain.

���

�� 4.2� Let A be as in Theorem 4.1. Denote by a(s(A)) and a′(s(A))
the set of all atoms or the set of all dual atoms in s(A), respectively. Then
card a(s(A)) ≤ card a′(s(A)).

We need some lemmas.

����� 4.3� Let α be an atom of s(A). Then there is y ∈ A(A) such that
α = α(A, y).
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P r o o f. There exists M ⊆ A(A) such that α = α(A,M ). Since α > α0, there
exists a sequence (tn) in A such that 0 < tn for each n ∈ N and tn →α 0; having
in mind this relation, we conclude that there exists y ∈ M such that y is the
corresponding regulator. Then we also have tn →α(A,y) 0, whence α

0 < α(A, y).
Since y ∈ M , we get α(A, y) � α. From this and from the fact that α is an atom
of s(A), we conclude that α = α(A, y). �

The following assertion is easy to verify.

����� 4.4� Let M1 and M2 be nonempty subsets of A(A) such that they are
closed with respect to the operation ⊕. Assume that m1 ∧ m2 = 0 for each
m1 ∈ M1 and each m2 ∈ M2. Then α(A,M1) ∧ α(A,M2) = α0.

In Lemmas 4.5 and 4.6, we assume that A is an MV -algebra which is archi-
medean and divisible. We also suppose that A �= {0}.
����� 4.5� The relation {0} = {0} is valid.

P r o o f. Let 0 < b ∈ A. We apply the fact that A is divisible; we put an = 1
nb

for each n ∈ N . Let k be a positive integer. Then there exists n0 ∈ N with

kan ≤ b for each n ∈ N, n ≥ n0. Hence an
b→β 0. By Theorem 2.8, an

b→α 0.

This shows that b does not belong to {0}. �

����� 4.6� Let α and y be as in Lemma 4.3. Then the interval [0, y] of A is
a chain.

P r o o f. By way of contradiction, assume that the interval [0, y] of A fails to be
a chain. Then there are elements q1, q2 ∈ [0, y] such that qi > 0 for i = 1, 2
and q1 ∧ q2 = 0. In view of Lemma 4.5, we have α0 < α(A, qi), and clearly
α(A, qi) ≤ α(A, y) for i = 1, 2. Since α is an atom in s(A), we have α(A, qi) = α
for i = 1, 2, hence α(A, q1) = α(A, q2). In view of Lemma 4.4 and Lemma 4.5,
we arrived at a contradiction. �

The following assertion is easy to verify.

����� 4.7� Assume that A1 is a linearly ordered MV -algebra. Let y1 and y2
be positive archimedean elements of A1. Then α(A1, y1) = α(A1, y2).

Sketch of the proof. First, we show that an
y→α 0 if and only if an →α(A,y) 0

for each sequence (an) in A1 and each element y of A1. Further, we verify that if
A1 is linearly ordered then G is linearly ordered, too. Indeed, if G is not linearly
ordered then there are 0 < x, y ∈ G with the property x ∧ y = 0. The relation
g ∧ u > 0 is valid for each 0 < g ∈ G. By using these results we obtain that A1

fails to be linearly ordered.

According to [14], we have:
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�

�
��	�
� 4.8� Assume that A is an archimedean MV -algebra. Let C be a
convex chain in A, {0} ⊂ C. Then there exists a uniquely determined maximal
convex chain C′ in A with C ⊆ C′. The set C′ is closed with respect to the
operation ⊕. Moreover, C′ is a direct factor of A; thus, there is an MV -algebra
D with A = C′ ×D.

As an easy consequence of Lemma 4.7 and Proposition 4.8, we obtain:

����� 4.9� Let A be an archimedean MV -algebra and let C be a convex chain
in A with 0 ∈ C. Assume that y1 and y2 are nonzero elements of C. Then
α(A, y1) = α(A, y2).

����� 4.10� Let A be an archimedean and divisible MV -algebra. Assume that
C is a convex chain in A with 0 ∈ C and let 0 < y ∈ C. Then the convergence
α(A, y) is an atom in s(A).

P r o o f. By way of contradiction, assume that there exists α ∈ s(A) such that
α0 < α < α(A, y). Under the usual notation, let α = α(A,M ). Then there
exists y1 ∈ M such that α0 < α(A, y1). We obviously have α(A, y1) ≤ α(A,M ),
thus

α(A, y1) < α(A, y). (1)

If y1 ≥ y, then α(A, y1) ≥ α(A, y), contradicting (1). Clearly, y1 > 0. If y1 < y,
then y1 ∈ C and then Lemma 4.9 yields α(A, y1) = α(A, y); in view of (1), we
arrived at a contradiction.

Suppose that y and y1 are incomparable. Put y ∧ y1 = p and y′ = y − p,
y′1 = y1 − p. We have 0 < y′ and 0 < y′1. Then y′ and y′1 belong to A and

y′ ∧ y′1 = 0. (2)

According to Lemma 4.4 and in view of (2) we get

α(A, y′) ∧ α(A, y′1) = α0.

Further, we have 0 < y′ < y, hence y′ ∈ C and so, Lemma 4.9 yields α(A, y′) =
α(A, y). Further, we have

α0 < α(A, y′1) ≤ α(A, y1) ≤ α(A,M ) = α < α(A, y).

Hence

α(A, y′) ∧ α(A, y′1) = α(A, y) ∧ α(A, y′1) = α(A, y′1) > α0;

again, we arrived at a contradiction. This completes the proof. �

In view of Lemma 4.6 and Lemma 4.10, Theorem 4.1 is valid.

Let us apply the assumptions and the notation as in Proposition 4.8. For
each element a of A we put

a⊥ = {x ∈ A : x ∧ a = 0}.
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From Proposition 4.8, we conclude that for each c ∈ C′ the relation

c⊥ = D
is valid.

Let A,C′, D be as in Proposition 4.8, A = C′ × D. Let us denote by u(C′)
and u(D) the component of u in C′ and in D, respectively. Then the lattice [0, u]
is the direct product of the lattices [0, u(C′)], and [0, u(D)], [0, u] = [0, u(C′)]×
[0, u(D)] and both direct product decompositions of the MV-algebra A and of
the lattice [0, u] coincide. This is a consequence of the fact that the lattice
operations ∨ and ∧ are defined by means of the operations +, ∗ and ¬.

The mentioned connection between direct product decompositions is used in
the relation (r) below and also in the implication A = C′ × D =⇒ D = C′⊥.
This is applied to obtain the above equation c⊥ = D for each c ∈ C′.

�

�
��	�
� 4.11� Assume that A is an archimedean and divisible MV -alge-
bra. Let C be a convex chain in A, 0 ∈ C and 0 < y ∈ C. Then the convergence
α(A, y⊥) is a dual atom of the lattice s(A).

P r o o f. The set y⊥ is closed with respect to the operation ⊕; we can construct
the convergence α(A, y⊥). We put xn = 1

ny for each n ∈ N . Analogously, as
in the proof of Lemma 4.5, we can verify that xn →α(A,y) 0 in A. In view of
Lemma 4.4, the relation xn →α(A,y⊥) 0 fails to be valid, hence α(A, y) fails to

be equal or less than α(A, y⊥). Therefore, we have α(A, y⊥) < α1.

Assume that α ∈ s(A), α(A, y⊥) < α. Under the standard notation, let
α = α(A,M ). Then, we also have α = α(A,M). We get y⊥ ⊂ M . Thus, there
exists y1 ∈ M such that y1 does not belong to y⊥.

Consider the direct product decomposition A = C′×D from Proposition 4.8.

Let y1(C
′) and y1(D) be the component of y1 in C′ or in D, respectively.

Then

y1 = y1(C
′)⊕ y1(D) = y1(C

′) ∨ y1(D). (r)

If y1(C
′) = 0, then y1 = y1(D) ∈ y⊥ and we arrived at a contradiction. Thus,

y1(C
′) > 0.

Our aim is to prove that α = α1. Clearly, α1 = α(A, u). Let (tn)n∈N be a
sequence in A such that tn →α(A,u) 0. For any element a of A, we denote its

components in C′ and in D by a1 and a2, respectively. Then we have

t1n →α(A,u1) 0, t2n →α(A,u2) 0. (∗)
From the second relation of (∗), we infer that t2n →α(A,M) 0. Since u1 ∈ C′

and y ∈ C′, from Lemma 4.9, we conclude that α(A, u1) = α(A, y), thus
t1n →α(A,y) 0.
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Because α(A,M ) � α and α(A, y) � α, we get

t1n →α 0, t2n →α 0

and hence tn = t1n ∨ t2n →α 0. Therefore, α = α1, completing the proof. �

It is well-known that if an MV -algebra B possesses direct product decompo-
sitions B = C1 ×D1 and B = C2 ×D2, then

C1 = C2 =⇒ D1 = D2;

namely, we have D1 = C⊥
1 .

Thus, summarizing, the situation is as follows. Let A be an MV -algebra
which is archimedean and divisible. Let α ∈ a(s(A)). Then we have a direct
product decomposition A = C′

1 ×D1 with the properties as in Proposition 4.8.
Hence C′

1 is linearly ordered; according to Proposition 4.11, we get α(A,D1) ∈
a′(s(A)). Moreover, in view of the above remark, D1 is uniquely determined.
We put ϕ(α) = α′, where α′ = α(A,D1). We obtain an injective mapping
of the set a(s(A)) into a′(s(A)). Hence we obtain the relation card a(s(A)) ≤
card a′(s(A)). Therefore, Theorem 4.2 is valid.

It is an open question whether the following assertion holds:

(+) Each dual atom of s(A) can be obtained by the method described in Propo-
sition 4.11.

Example 4.12. Let R be the additive group of all reals with the natural linear
order and B = Γ(R, 1). Assume that I is a nonempty set and that MV -algebra
A is the direct product of MV -algebras Ai where Ai = B for each i ∈ I (for
the direct product of MV -algebras cf. [4]). For any element x ∈ A we denote
its component in Ai by x(i). Let u be the greatest element of A. Then u(i) = 1
for each i ∈ I. Given i ∈ I, denote by ui the element of A with components
ui(j) = 0 for each j ∈ J , j �= i, ui(i) = u(i) and we putMi =

{
a ∈ A : a(i) = 0

}
.

Particularly, the element ui ∈ A such that ui(j) = 1 for each j ∈ I, j �= i and
ui(i) = 0 is included in Mi. In view of Theorem 4.1 and Proposition 4.11 (or
directly, applying definitions of an atom and of a dual atom) we obtain that{
α(A, ui) : i ∈ I

}
and {α(A,Mi) : i ∈ I} are systems of all atoms and all dual

atoms in s(A), respectively. Evidently,
{
α(A,Mi) : i ∈ I

}
=

{
α(A, ui) : i ∈ I

}
.

Especially, if I = {1, 2}, then two convergences α(A, u1) and α(A, u2) are
all atoms and at the same time all dual atoms in s(A). Hence the lattice s(A)
possesses the diagram on page 31.

In the previous example the supremum of all atoms in s(A) satisfies the
relation

∨
i∈I

α(A, ui) = α1. There arises a question if there exists an MV -algebra

A and an element α ∈ s(A) covering the supremum of all atoms in s(A).
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�

�

α(A, a2)α(A, a1)

α0

α1 = α(A, u)
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[15] JAKUBÍK, J.: Regular representations of semisimple MV-algebras by continuous real
functions, Math. Slovaca 51 (2001), 269–274.
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[18] MARTINEZ, J.: Polar functions, III. On irreducible maps vs. essential extensions of
archimedean �-groups with unit, Tatra Mt. Math. Publ. 27 (2003), 189–211.

[19] MUNDICI, D.: Interpretation of AFC∗-algebras in �Lukasziewicz sentential calculus,
J. Funct. Anal. 65 (1986), 15–53.

[20] VEKSLER, A. I.: A new construction of the Dedekind completion of vector lattices and
divisible �-groups, Siberian Math. J. 10 (1969).

[21] VULIKH, B. Z.: Introduction to the Theory of Partially Ordered Spaces, Wolters-Nordhoff
Sci. Publ., Groningen, 1967.

Received 28. 7. 2011
Accepted 3. 1. 2012

Mathematical Institute
Slovak Academy of Sciences
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