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allows to represent ortholattices in a similar way in which orthomodular lattices

are represented in the setting of effect algebras is introduced.
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1. Introduction

In the middle of the nineties, two new classes of quantum structures have

appeared: effect algebras and D-posets. Foulis and Bennett [3] defined effect
algebras as algebraic systems 〈A; +, 0, 1〉 where A is a non-empty set, 0 and 1

two special elements of A (called the zero and the unit), and + is a partial binary

operation on A satisfying the following conditions for all a, b, c ∈ A:

(E1) If a+ b is defined, then b+ a is defined and a+ b = b+ a;

(E2) If a+ b and (a+ b) + c are defined, then b+ c and a+ (b+ c) are defined,

and (a+ b) + c = a+ (b+ c);

(E3) For every a ∈ A there exists a unique a′ ∈ A such that a′ + a is defined

and a′ + a = 1 (a′ is referred to as the orthosupplement of a);

(E4) If a+ 1 is defined, then a = 0.
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D-posets (difference posets) were independently introduced by Kôpka and Cho-
vanec [9] (also see [8]) as algebraic structures 〈A;≤,−, 1〉 where 〈A;≤〉 is a

poset with greatest element 1 and − is a partial binary operation on A (called a

difference) such that a − b is defined iff a ≥ b, and the following conditions are

satisfied, for all a, b, c ∈ A:

(D1) a− b ≤ a and a− (a− b) = b;

(D2) if a ≤ b ≤ c, then c− b ≤ c− a and (c− a)− (c− b) = b− a.

It turned out that the two concepts are equivalent, i.e., every effect algebra can

be made a D-poset and vice versa, and both effect algebras and D-posets have

received much attention. For the background of effect algebras and D-posets we
refer to the comprehensive monograph [2].

It is well-known that orthomodular lattices can be identified with a certain
subclass of effect algebras. However, if we consider ortholattices instead of or-

thomodular lattices, we see that it is impossible to characterize them in the

setting of effect algebras because, roughly speaking, the induced lattice of an ef-

fect algebra is automatically orthomodular once it is an ortholattice. Therefore,

our primary aim is to find a suitable common extension of effect algebras and

ortholattices. In an attempt to cope with this problem we introduce pre-effect
algebras that essentially differ from effect algebras in one respect: the orthosup-

plements are not necessarily uniquely determined, i.e., for every a there exists

a′ such that a+a′ = 1, but we admit the existence of other elements b such that

a+ b = 1.

Various generalizations of effect algebras and D-posets can be found in the

literature, so the question what happens if we weaken the axiom (E3) by omitting

uniqueness itself can be seen as a motivation for the introduction of pre-effect

algebras.

Let us recall some basic notions, see e.g. [5], [7], or the aforementioned

book [2].

A partial abelian monoid is a structure 〈A; +, 0〉, where A is a non-empty set,

+ is a partially defined binary operation on A and 0 is a distinguished element

of A, satisfying the conditions (E1) and (E2) together with the condition that
a + 0 is always defined and equals a. Thus the partial addition + is both

commutative and associative and 0 acts as an identity element. As usual, when

we write a + b = c, we mean “a+ b is defined and equals c”. A partial abelian

monoid 〈A; +, 0〉 is
• positive if, for all a, b ∈ A, a+ b = 0 implies a = b = 0;

• cancellative if, for all a, b, c ∈ A, a+ c = b+ c implies a = b.
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A unital partial abelian monoid is a structure 〈A; +, 0, 1〉 where 〈A; +, 0〉 is a
partial abelian monoid and 1 is its unit, i.e., for every a ∈ A there exists b ∈ A

such that a+ b = 1. Using this terminology, effect algebras are exactly positive

cancellative unital partial abelian monoids. In a sense, pre-effect algebras that

we are going to define in Section 2 are a particular kind of positive unital partial

abelian monoids.

Every positive cancellative1 partial abelian monoid can be naturally ordered
by putting

a ≤ b iff b = a+ c for some c.

Clearly, 0 is the least element of the poset thus obtained. In an effect algebra,
the unit 1 is the greatest element, and moreover, we have b = a+c iff a+ b′ = c′,
which means that ≤ can alternatively be specified by

a ≤ b iff a+ b′ is defined.

This partial order is the link between effect algebras and D-posets. Indeed,

given an effect algebra 〈A; +, 0, 1〉, if we let b−a be the only c such that b = a+c

provided a ≤ b, then 〈A;≤,−, 1〉 is a D-poset (observe that b− a can be defined

more explicitly by b−a = (a+b′)′ if a ≤ b). Conversely, in a D-poset 〈A;≤,−, 1〉,
if we define a+ b to be the only c such that c ≥ b and c− b = a, then 〈A; +, 0, 1〉
with 0 = 1 − 1 becomes an effect algebra in which a′ = 1 − a (observe that

a+ b = (b′ − a)′ if a ≤ b′). This correspondence is one-to-one.

An effect algebra which is a lattice with respect to its natural order ≤ is said

to be lattice-ordered ; it is also called a lattice effect algebra (and the associated
D-poset is a D-lattice).

In order to describe the connections between effect algebras and orthomodular

lattices, we need one more notion: An orthoalgebra is an effect algebra satisfying

the additional condition that a+ a is defined only if a = 0, which is equivalent

to saying that for every a, the orthosupplement a′ is a complement of a in

the underlying poset. For completeness we recall that an ortholattice is an

algebra 〈L;∨,∧,′ , 0, 1〉 such that 〈L;∨,∧, 0, 1〉 is a bounded lattice and ′ is an

orthocomplementation on it (i.e., x �→ x′ is an antitone involution such that x′

is a complement of x), and an orthomodular lattice is an ortholattice satisfying

the orthomodular law x ≤ y =⇒ x ∨ (x′ ∧ y) = y. Now, orthomodular lattices

and lattice-ordered orthoalgebras are equivalent:

1In fact, a condition weaker than cancellativity is sufficient for ≤ to be a partial order; namely,

it suffices to assume that a+ b = b implies a = 0 (cf. Proposition 2.3).
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• Given 〈L;∨,∧,′ , 0, 1〉 an orthomodular lattice, let + be the restriction of
∨ to the pairs 〈a, b〉 with a ≤ b′. Then 〈L; +, 0, 1〉 is a lattice-ordered

orthoalgebra. Thus we obtain an orthoalgebra if we define a + b = a ∨ b
for a ≤ b′.

• If 〈A; +, 0, 1〉 is a lattice-ordered orthoalgebra with the induced lattice

operations ∨ and ∧, then 〈A;∨,∧,′ , 0, 1〉 is an orthomodular lattice.

2. Pre-effect algebras

As we have already pointed out, we cannot describe ortholattices in the setting

of lattice effect algebras because when 〈A; +, 0, 1〉 is a lattice effect algebra such
that 〈A;∨,∧,′ , 0, 1〉 is an ortholattice, then 〈A; +, 0, 1〉 is an orthoalgebra and

it follows that 〈A;∨,∧,′ , 0, 1〉 is an orthomodular lattice. Therefore, we modify

the definition of effect algebras so that we could characterize ortholattices in a

similar way in which orthomodular lattices are characterized within lattice effect

algebras.

���������� 2.1� A pre-effect algebra is a structure 〈A; +,′ , 0, 1〉 where 〈A; +, 0〉
is a partial abelian monoid, 1 is an element of A and ′ is a unary operation such

that a′ + a = 1 for all a ∈ A, and the relation ≤ given by the rule

a ≤ b iff a+ b′ is defined (1)

is a partial order. A pre-effect algebra satisfying the condition that a = 0
whenever a+ a is defined (i.e. a = 0 if a ≤ a′) is called a pre-orthoalgebra.

Comparing unital partial abelian monoids and pre-effect algebras, it is evident

that every pre-effect algebra is a unital partial abelian monoid (it need not be

cancellative, but it is positive by Lemma 2.2(vii)). The difference is that in a

pre-effect algebra, for each a we fix one of the elements x with the property

a+ x = 1, and this is done in such a way that (1) defines a partial order.

Pre-effect algebras generalize effect algebras. The axiom (E3) says that to

each a ∈ A there corresponds a unique a′ ∈ A such that a + a′ = 1, hence we
may extend the signature of effect algebras with a unary symbol ′ to denote

the operation of taking orthosupplements. In other words, every effect algebra

〈A; +, 0, 1〉 can be regarded as the structure 〈A; +,′ , 0, 1〉 which apparently is a

pre-effect algebra.

��		
 2.2� For any pre-effect algebra 〈A; +,′ , 0, 1〉, the poset 〈A;≤〉 is bounded,
0 and 1 being the least and the greatest element, and for all a, b ∈ A we have:

(i) 0′ = 1,

(ii) a′′ = a,
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(iii) 1′ = 0,

(iv) a ≤ b iff b′ ≤ a′,

(v) a+ 1 is defined iff a = 0,

(vi) if a+ b = b, then a = 0,

(vii) if a+ b = 0, then a = b = 0.

P r o o f. First, 0 is the least element of 〈A;≤〉 because 0+a′ is defined for every

a ∈ A.

(i) Trivially, 0′ = 0′ + 0 = 1.

(ii) Since a′′ + a′ = 1, we have a′′ ≤ a for all a ∈ A. Replacing a respectively

with a′ and a′′, we get a′′′ ≤ a′ and a′′′′ ≤ a′′ ≤ a, which means that a′′′′ + a′ is
defined, and so a′ ≤ a′′′. Thus a′ = a′′′ whence 1 = a′ + a = a′′′ + a, so a ≤ a′′.

(iii) Clearly, 1′ = 0′′ = 0. Notice that this shows that 1 is the greatest element

in 〈A;≤〉 since a ≤ 1 iff a+ 1′ = a+ 0 is defined.

(iv) By definition, b′ ≤ a′ iff b′ + a′′ is defined iff b′ + a is defined iff a ≤ b.

(v) The existence of a+ 1 implies a ≤ 1′ = 0, i.e. a = 0.

(vi) If a+ b = b, then 1 = b+ b′ = a+ b+ b′ = a+ 1, whence a = 0.

(vii) If a+ b = 0, then a′ = a′ + a+ b = 1 + b, and so b = 0 and a = 0. �

In addition to the partial order ≤, which is specified by + and ′, pre-effect
algebras have another partial order that is induced solely by + as follows:

���
������� 2.3� Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra. The relation �
defined by

a � b iff b = a+ c for some c ∈ A (2)

is a partial order such that, for all a, b ∈ A, a � b implies a ≤ b. The two orders

coincide if and only if 〈A; +,′ , 0, 1〉 is an effect algebra.

P r o o f. It is easy to see that � is a partial order: reflexivity and transitivity

are trivial since 〈A; +, 0〉 is a partial abelian monoid, and � is antisymmetric

owing to Lemma 2.2(vi) and (vii), because if b = a + x and a = b + y for some

x, y ∈ A, then a = a+ x+ y yields x+ y = 0, whence x = y = 0 and so a = b.

Moreover, if a � b, then b = a+c for some c ∈ A, whence 1 = b′+b = b′+a+c.
Thus b′ + a = a+ b′ is defined, showing a ≤ b.

Let � and ≤ coincide. We have to show that a′ is the only element with

a′ + a = 1. For, assume x+ a = 1. Then x ≤ a′, which implies x � a′, so there

exists y ∈ A such that a′ = x + y. Then 1 = a + x + y = 1 + y whence y = 0

proving a′ = x. Therefore 〈A; +,′ , 0, 1〉 is an effect algebra.
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On the other hand, if 〈A; +,′ , 0, 1〉 is an effect algebra, then it follows from
basic properties of effect algebras that we have already mentioned above that

a + b′ is defined iff b = a + c for some c (in fact, c = (a + b′)′, see e.g. [2:

Lemma 1.2.5(i)]), thus � and ≤ coincide. �

��		
 2.4� Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra and a, b, c, d ∈ A. If a ≤ b,

c ≤ d and b+d is defined, then a+ c is defined too, and a+ c ≤ b+d. The same

holds true for �.

P r o o f. Since 1 = b + d + (b + d)′, we have a ≤ b ≤ (d + (b + d)′)′, thus

a+ d+ (b+ d)′ is defined and a+ d ≤ b+ d. Similarly, a+ c ≤ a+ d, and hence

a+ c ≤ b+ d.

Let now a � b and c � d, i.e., b = a + x and d = c + y for some x, y ∈ A.

Then b+ d = a+ x+ c+ y = a+ c+ x+ y, so a+ c � b+ d. �

We now turn our attention to ortholattices.

��		
 2.5� Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra. Then 〈A; +,′ , 0, 1〉 is a

pre-orthoalgebra if and only if for every a ∈ A, a′ is a complement of a in
〈A;≤〉. In this case, a′ is a complement of a in 〈A;�〉.
P r o o f. Let 〈A; +,′ , 0, 1〉 be a pre-orthoalgebra. If x ≤ a and x ≤ a′, then by

Lemma 2.4, x+x is defined, which is possible only if x = 0. Thus inf{a, a′} = 0.

Consequently, if x ≥ a and x ≥ a′, then x′ ≤ a′ and x′ ≤ a′′ = a by

Lemma 2.2(iv), so x′ = 0 and x = x′′ = 1, proving sup{a, a′} = 1. Since

the order ≤ exceeds � (i.e. x � y implies x ≤ y), it follows that inf{a, a′} = 0
and sup{a, a′} = 1 in 〈A;�〉.

Conversely, assume that for every a ∈ A, a′ is a complement of a in 〈A;≤〉.
If a+ a is defined, then a ≤ a′ and hence a = inf{a, a′} = 0. Thus 〈A; +,′ , 0, 1〉
is a pre-orthoalgebra. �

Before the next definition, it is worth emphasizing that in view of Proposi-

tion 2.3, if a + b is defined, then it is a common upper bound of a, b in 〈A;�〉
as well as in 〈A;≤〉. In orthoalgebras, where � and ≤ coincide, a + b is even a

minimal one, but this need not be the case for pre-orthoalgebras.

���������� 2.6� We say that a pre-effect algebra 〈A; +,′ , 0, 1〉 is a strong pre-

orthoalgebra if for all a, b ∈ A for which a + b is defined, a + b is a minimal

common upper bound of a, b in the poset 〈A;≤〉.
The definition is correct because when a + a is defined, then the condition

guarantees a = a + a, whence a = 0 by Lemma 2.2(vi), i.e., every strong pre-

orthoalgebra is a pre-orthoalgebra.
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The following theorem gives the promised characterization of ortholattices
within pre-effect algebras: there is a one-to-one correspondence between ortho-

lattices and those strong pre-orthoalgebras which are lattice-ordered under ≤.

Recalling Lemma 2.5, the proof of the theorem is straightforward, hence we

omit it.

������	 2.7� Let 〈A; +,′ , 0, 1〉 be a pre-orthoalgebra such that 〈A;≤〉 is a

lattice with the associated lattice operations ∨ and ∧. Then 〈A;∨,∧,′ , 0, 1〉 is an
ortholattice. Conversely, let 〈L;∨,∧,′ , 0, 1〉 be an ortholattice. If we define +

by stipulating that a + b is defined iff a ≤ b′ in which case a + b = a ∨ b, then
〈L; +,′ , 0, 1〉 is a strong pre-orthoalgebra.

We cannot skip the adjective “strong” since two (or more) distinct pre-
orthoalgebras can determine the same ortholattice.

���
������� 2.8� Let 〈L;∨,∧,′ , 0, 1〉 be an ortholattice. Let L be equipped with
+ as follows: a + 0 = 0 + a = a for every a ∈ A, and if a, b ∈ A \ {0}, then
a + b = b + a is defined iff a ≤ b′, in which case a + b = b + a = 1. Then

〈L; +,′ , 0, 1〉 is a pre-orthoalgebra which induces the ortholattice 〈L;∨,∧,′ , 0, 1〉.
P r o o f. It is obvious that the only thing we have to check is associativity of

+. Trivially, if 0 ∈ {a, b, c}, then (a + b) + c is defined iff so is a + (b + c), and

(a+ b)+ c = a+(b+ c). Let 0 /∈ {a, b, c}. In this case, if (a+ b)+ c were defined,

then 1 = a + b ≤ c′ and we would get c = 0. Also, if a + (b + c) were defined,

then a ≤ (b + c)′ = 1′ = 0, so a = 0. Thus neither (a+ b) + c nor a+ (b+ c) is
defined when 0 /∈ {a, b, c}. �

������	 2.9� Let 〈A; +,′ , 0, 1〉 be a pre-orthoalgebra such that 〈A;�〉 is a
lattice with the associated lattice operations � and 
. If 〈A;�,
,′ , 0, 1〉 is an

ortholattice,2 then it is an orthomodular lattice.

P r o o f. Suppose by way of contradiction that the ortholattice 〈A;�,
,′ , 0, 1〉
is not orthomodular, so it contains a subalgebra {0, a, b, a′, b′, 1} where a � b,

b′ � a′, x � y = 1 and x 
 y = 0 for x ∈ {a, b}, y ∈ {a′, b′}. Since a � b, there

exists c ∈ A such that b = a+ c, and hence 1 = b′ + b = b′ + a+ c. Thus b′ + a

is defined and is equal to 1 because b′ + a is a common upper bound of a, b′ and
a � b′ = 1. Hence 1 = 1+ c, which is possible only if c = 0. Then b = a+ c = a,
a contradiction. �

Remark� After submitting the paper, thanks to the referee’s comments, we

found out that in the literature, there already exist structures that generalize

2By Lemma 2.5, 〈A;�,�,′ , 0, 1〉 is a lattice with complementation, but we don’t know if the

de Morgan laws hold, hence we assume that it is an ortholattice.
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effect algebras and have most of the features that we wanted our pre-effect al-
gebras to have. Namely, in [1], quasi effect algebras are defined as structures

〈A;≤,+,′ , 0, 1〉 where 〈A;≤,′ , 0, 1〉 is a bounded poset with an antitone involu-

tion (i.e., the map x �→ x′ is an antitone involution) and + is a partial binary

operation on A such that:

(i) a+ b = b+ a when one side is defined,

(ii) a+ 0 = a,

(iii) a′ + a = 1,

(iv) if a+ 1 is defined, then a = 0,

(v) if a ≤ b and a+ c, b+ c are defined, then a+ c ≤ b+ c.

It is obvious by Lemmata 2.2 and 2.4 that if 〈A; +,′ , 0, 1〉 is a pre-effect al-

gebra, then 〈A;≤,+,′ , 0, 1〉 where ≤ is given by (1) is a quasi effect algebra.

On the other hand, if 〈A;≤,+,′ , 0, 1〉 is a quasi effect algebra, then the reduct

〈A; +,′ , 0, 1〉 is a pre-effect algebra if and only if the conditions (E2) and (1) are

satisfied.

Besides associativity/non-associativity, the difference between pre-effect alge-

bras and quasi effect algebras is that in the latter case the partial order ≤ cannot

be eliminated from the signature because it need not be specified by + (or by

+ and ′) as it is in pre-effect algebras. This is demonstrated by the following

simple example.

Let 〈A;∨,∧,′ , 0, 1〉 be the 4-element Boolean lattice with A = {0, a, b, 1}. If

we make it a lattice effect algebra, we get

+ 0 a b 1

0 0 a b 1

a a . 1 .
b b 1 . .

1 1 . . .

because a′ = b and b′ = a, and the underlying lattice order ≤ obeys both (1)

and (2). Let us equip A with the linear order � such that 0 � a � b � 1. Then

〈A;�,+,′ , 0, 1〉 is a quasi effect algebra in which � obeys neither (1) nor (2). In
other words, 〈A;≤,+,′ , 0, 1〉 and 〈A;�,+,′ , 0, 1〉 are non-isomorphic quasi effect

algebras, though the reduct 〈A; +,′ , 0, 1〉 is the same.

In the rest of this section we present pre-difference posets, the “pre-version”

of difference posets (D-posets), and prove that they are equivalent to pre-effect

algebras. Observe that if 〈A;≤,−, 1〉 is a D-poset and if we add the constant

0 = 1 − 1 to the signature, then 〈A;≤,−, 0, 1〉 is a pre-difference poset in the

sense of the following definition.
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���������� 2.10� By a pre-difference poset we mean a structure 〈A;≤,−, 0, 1〉,
where 〈A;≤〉 is a poset with greatest element 1 and − is a partial binary op-

eration such that a − b is defined iff b ≤ a, satisfying the following conditions

(for all a, b, c ∈ A):

(QD1) a− a = 0,

(QD2) 1− (1− a) = a,

(QD3) if a ≥ b and a−b ≥ c, then a ≥ c and a−c ≥ b, and (a−b)−c = (a−c)−b.
������	 2.11� For every pre-effect algebra 〈A; +,′ , 0, 1〉, the structure

〈A;≤, −, 0, 1〉, where ≤ is given by (1) and a − b = (a′ + b)′ for b ≤ a, is a

pre-difference poset.

P r o o f. We know that 〈A;≤〉 is a poset whose bounds are 0 and 1. Clearly,

a − b = (a′ + b)′ is defined iff a′ + b is defined iff b ≤ a. We also have

a − a = (a′ + a)′ = 1′ = 0 and 1 − a = (1′ + a)′ = (0 + a)′ = a′, and
hence 1 − (1 − a) = a′′ = a for all a ∈ A. There remains to verify (QD3).

By definition, a ≥ b and a − b = (a′ + b)′ ≥ c iff (a′ + b) + c is defined iff

(a′ + c) + b is defined iff a ≥ c and a− c = (a′ + c)′ ≥ b. If this is the case, then

(a− b)− c = ((a′ + b) + c)′ = ((a′ + c) + b)′ = (a− c)− b. �

For the reverse passage we need a technical lemma:

��		
 2.12� In any pre-difference poset 〈A;≤,−, 0, 1〉, for all a, b ∈ A we have:

(a) 0 ≤ a and a− 0 = a;

(b) a ≥ b iff 1− a ≤ 1− b, in which case a− b = (1− b)− (1− a).

P r o o f.

(a) Using (QD3), since a ≥ a and a − a ≥ 0, we have a ≥ 0 and a − 0 ≥ a.

Then a ≥ 0 together with a− 0 ≥ a− 0 implies a ≥ a− 0 again by (QD3). Thus

a− 0 = a.

(b) We have 1 ≥ 1 − a and 1 − (1 − a) = a ≥ b, hence 1 − b ≥ 1 − a and

a− b = (1− (1− a))− b = (1− b)− (1− a) by (QD3). �

������	 2.13� Let 〈A;≤,−, 0, 1〉 be a pre-difference poset. If we define a′ =
1 − a and a+ b = (a′ − b)′ for a′ ≥ b, then 〈A; +,′ , 0, 1〉 is a pre-effect algebra.

Moreover, the partial order defined by (1) coincides with ≤.

P r o o f. We prove that 〈A; +, 0〉 is a partial abelian monoid. Obviously, a + 0

= (a′ − 0)′ = a′′ = a for every a ∈ A. We have a′ ≥ b and a′ − b = (a′ − b)′′

= (a+ b)′ ≥ c iff a′ ≥ c and a′ − c = (a′ − c)′′ = (a + c)′ ≥ b. So (a+ b) + c =

(a′ − b)′ + b is defined iff (a + c) + b = (a′ − c)′ + b is defined, and we have
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(a + b) + c = ((a′ − b) − c)′ = ((a′ − c) − b)′ = (a + c) + b, which proves both
commutativity and associativity of +.

Moreover, it is easily seen that a′ + a = (a′′ − a)′ = 0′ = 1. Finally, the

relation � defined by (1), i.e. a � b iff a+ b′ exists, is a partial order because �
is exactly the initial partial order ≤. �

3. Generalized pre-effect algebras

Positive cancellative partial abelian monoids are sometimes called generalized

effect algebras (see e.g. [2]). We have already mentioned in Section 1 that the
stipulation a ≤ b iff b = a + c for some c defines a partial order, but there is

no upper bound in general, and a generalized effect algebra which has greatest

element is nothing but an effect algebra. Furthermore, like in effect algebras,

a partial subtraction is implicitly determined by +; namely, if a ≤ b, then

b − a is the only c such that b = a + c. Unfortunately, in pre-effect algebras

or pre-difference posets, + and − are related via the unit 1 (see Theorems 2.11
and 2.13), and hence if we want to generalize pre-effect algebras by dropping

units, we have to work with both + and −.

���������� 3.1� A generalized pre-effect algebra is a structure 〈A; +,−, 0〉
where + and − are partial binary operations on A such that

(GQE1) + is commutative, i.e., a+ b = b+ a if one side is defined,

(GQE2) a− a = 0 for all a ∈ A,

(GQE3) the relation ≤ defined by a ≤ b iff b− a exists is a partial order,

(GQE4) for all a, b, c ∈ A, a ≥ b and a− b ≥ c iff b+ c is defined and a ≥ b+ c,

in which case (a− b)− c = a− (b+ c).

We first show that both generalized effect algebras and pre-effect algebras are

special cases of generalized pre-effect algebras:

���
������� 3.2� Let 〈A; +, 0〉 be a generalized effect algebra. For a, b ∈ A,

let a − b be defined iff there exists c ∈ A such that a = b + c, and in this case
a− b = c. Then 〈A; +,−, 0〉 is a generalized pre-effect algebra.

P r o o f. The definition of − is correct because + is cancellative. Also, a − b is
defined iff b ≤ a, where ≤ is the natural order of 〈A; +, 0〉, hence we only have

to check the condition (GQE4). If a ≥ b and a− b ≥ c, then a = (a− b) + b =

((a− b)− c) + c+ b, so b + c is defined and a ≥ b + c. Conversely, if a ≥ b+ c,

then a = (a− (b+ c)) + b+ c and so a ≥ b and a− b = (a− (b+ c)) + c ≥ c. In

this case we obviously have a− (b+ c) = (a− b)− c. �
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���
������� 3.3� Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra and let − be defined
as in Theorem 2.11, i.e., a − b = (a′ + b)′ when b ≤ a. Then 〈A; +,−, 0〉 is a

generalized pre-effect algebra.

P r o o f. (GQE1), (GQE2) and (GQE3) are obviously satisfied. Further, a ≥ b

and (a′ + b)′ = a − b ≥ c iff (a′ + b) + c is defined iff a′ + (b + c) is defined iff

b + c is defined and a ≥ b+ c, and then we have a− (b + c) = (a′ + (b + c))′ =
((a′ + b) + c)′ = ((a′ + b)′′ + c)′ = (a − b) − c. Thus the condition (GQE4) is

fulfilled too. �

We now prove some properties of generalized pre-effect algebras. Notice that

by (v) and (viii), generalized pre-effect algebras are positive abelian monoids.

��		
 3.4� Let 〈A; +,−, 0〉 be a generalized pre-effect algebra. Then for all

a, b, c ∈ A:

(i) a ≥ b and a− b ≥ c iff a ≥ c and a− c ≥ b, and in this case (a− b)− c =

(a− c)− b;

(ii) 0 ≤ a and a− 0 = a;

(iii) a+ 0 = a;

(iv) if a+ b is defined, then a+ b ≥ b and (a+ b)− b ≥ a;

(v) if a+ b = 0, then a = b = 0;

(vi) if a+ b = b, then a = 0;

(vii) if a ≥ b, then a ≥ a− b, a− (a− b) ≥ b and a ≥ (a− b) + b;

(viii) + is associative (in the sense of the axiom (E2));

(ix) if a ≥ b and a + c is defined, then b + c is defined, a + c ≥ b + c and

(a+ c)− (b+ c) ≥ a− b;

(x) if a ≥ b ≥ c, then a− c ≥ (a− b) + (b− c).

P r o o f.

(i) This follows from (GQE4) and commutativity of +.

(ii) Using the item (i), a ≥ a and a − a ≥ 0 implies a ≥ 0 and a − 0 ≥ a.

Analogously, a ≥ 0 and a− 0 ≥ a− 0 implies a ≥ a− 0, hence a− 0 = a.

(iii) By (GQE4), from a ≥ a and a− a ≥ 0 we get that a + 0 is defined and

a ≥ a+0. Then a+0 ≥ a+0 implies a+0 ≥ a again by (GQE4), thus a+0 = a.

(iv) If a + b is defined, then a + b ≥ a + b = b + a yields a + b ≥ b and

(a+ b)− b ≥ a by (GQE4).

(v) Since a + b is a common upper bound of a, b whenever a + b is defined,
a+ b = 0 implies a = b = 0.

(vi) If a+ b = b, then 0 = (a+ b)− b ≥ a by (iv), so a = 0.
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(vii) If a ≥ b, then a − b ≥ a − b implies a ≥ a − b, a − (a − b) ≥ b and
a ≥ (a− b) + b by (GQE4) and (i).

(viii) Let (a + b) + c be defined. Then by (iv) we have (a + b) + c ≥ c
and ((a + b) + c) − c ≥ a + b = b + a, and so ((a + b) + c) − c ≥ b and

(((a + b) + c) − c) − b ≥ a by (GQE4). On the other hand, again by (GQE4),

((a+ b) + c)− c ≥ b entails the existence of c+ b and (a+ b)+ c ≥ c+ b, whence

((a+ b)+ c)− (c+ b) = (((a+ b)+ c)− c)− b≥ a. But this means that (c+ b)+a

is defined and (a+ b)+ c ≥ (c+ b)+a = a+(b+c). Thus (a+ b)+ c ≥ a+(b+c)

whenever the left side is defined. Further, by what we have just shown, and since
+ is commutative, we have a+ (b+ c) = (c+ b) + a ≥ c+ (b+ a) = (a+ b) + c.

(ix) If a + c is defined and a ≥ b, then (a + c) − c ≥ a ≥ b, and so b + c is
defined and we have a + c ≥ b + c. Therefore, since a ≥ (a − b) + b, we have

a+ c ≥ (a− b) + b+ c, whence (a+ c)− (b+ c) ≥ a− b.

(x) Let a ≥ b ≥ c. Since a ≥ (a − b) + b and b ≥ (b − c) + c, the sum

(a − b) + (b − c) + c is defined and a ≥ (a − b) + (b − c) + c, which entails

a− c ≥ (a− b) + (b− c). �

Now, like in pre-effect algebras, it can easily be shown that the relation �
defined by (2), i.e., a � b iff b = a+ c for some c, is a partial order such that ≤
exceeds � (i.e., if a � b, then also a ≤ b).

���
������� 3.5� Let 〈A; +,−, 0〉 be a generalized pre-effect algebra. Then

≤ and � coincide if and only if 〈A; +, 0〉 is a generalized effect algebra. (Cf.

Proposition 2.3.)

P r o o f. We have to show that + is cancellative if ≤ and � coincide. To this

end, let d = a+ b = a+ c. Then d− a ≥ b, hence d− a � b and so d− a = b+ x

for some x ∈ A. It follows that d ≥ (d− a) + a = b+ x+ a = d+ x ≥ d by (vii)

and (iv) of Lemma 3.4, thus d = d + x which yields x = 0 by Lemma 3.4(vi),

and so d− a = b. Similarly, we get d− a = c. �

Example 3.6. Let A = {0, a, b, c, d, e} be equipped with the partial operations

+,− as follows:

+ 0 a b c d e

0 0 a b c d e

a a c c . . c

b b c c . . c

c c . . . . .

d d . . . . .

e e c c . . c

− 0 a b c d e

0 0 . . . . .

a a 0 0 . . 0

b b . 0 . . .

c c a a 0 . a

d d . 0 . 0 0

e e . . . . 0
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Then 〈A; +,−, 0〉 is a generalized pre-effect algebra; the Hasse diagrams of 〈A;≤〉
and 〈A;�〉 are:

0

c

a

e

d

b
a e b d

0

c

It is known that every generalized effect algebra can be embedded into an

effect algebra (see [6], [2]). This construction is called unitization and we now

show that it works for our generalized pre-effect algebras too.

Let 〈A; +A,−A, 0A〉 be a generalized pre-effect algebra (the underlying order
given by (GQE3) is denoted by ≤A). Let A∗ = {a∗ : a ∈ A} be a disjoint copy

of A. We can make A ∪ A∗ into a pre-effect algebra as follows:

• a+ b is defined iff a+A b is defined, and a+ b = a+A b;

• a + b∗ is defined iff b∗ + a is defined iff a ≤A b, and in this case a + b∗ =

b∗ + a = (b−A a)
∗;

• a∗ + b∗ is not defined;

• a′ = a∗ and (a∗)′ = a;

• 0 = 0A and 1 = 0∗A.

Thus for the order ≤ on A ∪A∗ we have:

(i) a ≤ b iff a ≤A b iff b∗ ≤ a∗,

(ii) a ≤ b∗ iff b ≤ a∗ iff a+A b is defined, and

(iii) a∗ � b for all a, b ∈ A.

������	 3.7� For every generalized pre-effect algebra 〈A; +A,−A, 0A〉, the

structure 〈A ∪A∗; +,′ , 0, 1〉 is a pre-effect algebra.

The proof is straightforward. The unitization of the generalized pre-effect

algebra from Example 3.6 is shown in the following figure:
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a

be

c d

0

d∗

b∗

c∗

e∗

a∗

1 = 0∗

4. Principal and central elements

In this section, we describe two-factor direct product decompositions of pre-

effect algebras. It turns out that they are determined by the so-called central

elements which are defined just as in effect algebras (see [2], [4]). We also prove
that the central elements form a Boolean subalgebra.

���������� 4.1� Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra. We call an element

a ∈ A principal if the interval [0, a] is closed under +, i.e., for all x, y ∈ A such
that x, y ≤ a and x+ y is defined we have x+ y ≤ a. Further, we say that a ∈ A

is a central element if

(i) both a and a′ are principal elements,

(ii) for every x ∈ A there exist y, z ∈ A such that y ≤ a, z ≤ a′ and x = y + z.

In what follows, 〈A; +,′ , 0, 1〉 is a fixed but arbitrary pre-effect algebra.

��		
 4.2� If a ∈ A is a principal element, then a ∧ (x − a) = 0 for every

x ∈ A with x ≥ a. In particular, a ∧ a′ = 0.

P r o o f. If y ≤ a and y ≤ x − a, then y + a is defined and y + a ≤ x. Since a

is principal and y ≤ a, we have y + a ≤ a, which yields y + a = a, and hence

y = 0. �

��		
 4.3� Let a ∈ A be central. If x = y + z where y ≤ a and z ≤ a′, then
y = x ∧ a and z = x ∧ a′.
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P r o o f. Assume that u ≤ x and u ≤ a. Then u ≤ y iff u + y′ is defined, so
we aim at showing that u + y′ exists. We can write y′ = p + q for some p ≤ a

and q ≤ a′. Then p ≤ y′ and so p + y is defined. Also, since p, y ≤ a, we have

p+y ≤ a ≤ z′ which entails the existence of p+y+z = p+x. Since u ≤ x, p+u

is defined too. Moreover, p+u ≤ a ≤ q′ because p, u ≤ a. Thus p+u+q = y′+u
is defined, proving u ≤ y. Hence y = x ∧ a.

In an analogous way we can show that z = x ∧ a′. �
��		
 4.4� Let a ∈ A be a central element. If x ≥ a, then x = a+(x− a) and

x− a = x ∧ a′. If x ≤ a, then a = (a− x) + x and a− (a− x) = x.

P r o o f. Let x ≥ a. By Lemma 4.3 we know that x = (x ∧ a) + (x ∧ a′) =
a + (x ∧ a′), whence x − a ≥ x ∧ a′ and so x ≥ a + (x− a) ≥ a + (x ∧ a′) = x.

Thus x = a+ (x− a). Since x− a = a′ − x′ ≤ a′, we conclude x− a = x∧ a′ by
Lemma 4.3.

Now, let x ≤ a. Since a′ is central and x′ ≥ a′, by the first part of the lemma

we have x′ = a′+(x′−a′) = a′+(a−x). Then 1 = x+x′ = x+a′+(a−x) where
x+(a−x) ≤ a, and it follows that a = x+(a−x). Furthermore, x′ = a′+(a−x)
implies x = 1− x′ = 1− (a′ + (a− x)) = (1− a′)− (a− x) = a− (a− x). �
��		
 4.5� Let a ∈ A be central. For all x, y ≤ a, x ≤ y iff x + (a − y) is
defined.

P r o o f. If x ≤ y, then x+y′ is defined. But 1 ≥ a ≥ y implies y′ = 1−y ≥ a−y,
hence x+ (a− y) is defined too. Conversely, assume that x+ (a− y) exists. We

have x, a−y ≤ a and hence x+(a−y) ≤ a, which yields y = a− (a−y) ≥ x. �
���
������� 4.6� Let a∈A be a central element. The structure 〈[0, a]; +,� , 0, a〉,
where x� = a− x, is a pre-effect algebra.

P r o o f. 〈[0, a]; +, 0〉 is evidently a partial abelian monoid. For all x ∈ [0, a] we

have x� + x = (a − x) + x = a. Likewise, the relation � defined by x � y iff

x+ y� = x+ (a− y) is defined in [0, a], is a partial order on [0, a]; in fact, � is

just the restriction to [0, a] of ≤. �
��		
 4.7� Let a ∈ A be central. Assume that x = y1 + z1 and x′ = y2 + z2
where y1, y2 ≤ a and z1, z2 ≤ a′. Then y1 = a− y2 and y2 = a− y1.

P r o o f. We have 1 = x + x′ = y1 + z1 + y2 + z2 = y1 + y2 + z1 + z2 where

y1 + y2 ≤ a and z1 + z2 ≤ a′, hence y1 + y2 = a and z1 + z2 = a′ by Lemma 4.3.

Then a− y2 ≥ y1 and a − y1 ≥ y2, so it remains to show that a − y2 ≤ y1 and

a− y1 ≤ y2.

Since (a−y2)+y2 = a ≤ z′2 by Lemma 4.4, we have a+z2 = (a−y2)+y2+z2 =

(a− y2) + x′, and hence a− y2 ≤ x. Analogously, a+ z1 = (a− y1) + y1 + z1 =
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(a − y1) + x, so x ≤ (a− y1)
′. Then a− y2 ≤ x ≤ (a− y1)

′ and hence (a− y2)
+(a−y1) is defined. Moreover, (a−y2)+(a−y1) ≤ a and so (a−y2)+(a−y1)+a′ is
defined. But y′1 = a′+(y′1−a′) = a′+(a− y1) by Lemma 4.4, thus (a− y2)+ y′1
is defined and we conclude a − y2 ≤ y1. Analogously, y′2 = a′ + (y′2 − a′) =

a′ + (a− y2), so y
′
2 + (a− y1) is defined, showing a− y1 ≤ y2. �

������	 4.8� Let a ∈ A be a central element. The map ψ : x �→ 〈x∧ a, x∧ a′〉
is an isomorphism of 〈A; +,′ , 0, 1〉 onto the direct product of 〈[0, a]; +,� , 0, a〉 and
〈[0, a′]; +,� , 0, a′〉, where x� = a− x and x� = a′ − x.

P r o o f. In view of Lemma 4.3, the map ψ is a well-defined bijection because,

for each x ∈ A, x ∧ a and x ∧ a′ exist, and x = (x ∧ a) + (x ∧ a′). Clearly,

ψ(0) = 〈0, 0〉 and ψ(1) = 〈a, a′〉.
Let x, y ∈ A. If x+ y is defined in A, then x+ y = (x∧ a) + (x∧ a′) + (y ∧ a)

+ (y ∧ a′) = (x ∧ a) + (y ∧ a) + (x ∧ a′) + (y ∧ a′). Since (x ∧ a) + (y ∧ a) ≤ a

and (x ∧ a′) + (y ∧ a′) ≤ a′, it follows that (x + y) ∧ a = (x ∧ a) + (y ∧ a)

and (x ∧ y) ∧ a′ = (x ∧ a′) + (y ∧ a′) by Lemma 4.3. Thus ψ(x) + ψ(y) =

〈x∧ a, x∧ a′〉+ 〈y ∧ a, y∧ a′〉 = 〈(x∧ a)+ (y ∧ a), (x∧ a′)+ (y ∧ a′)〉 is defined in
[0, a]× [0, a′]. Conversely, let ψ(x)+ψ(y) be defined. Then (x∧ a)+ (y ∧ a) and
(x ∧ a′) + (y ∧ a′) are defined in [0, a] and in [0, a′], respectively. But then also

(x∧a)+(y∧a)+(x∧a′)+(y∧a′) = (x∧a)+(x∧a′)+(y∧a)+(y∧a′) = x+y

is defined in A. In either case, we have ψ(x+ y) = 〈(x+ y) ∧ a, (x+ y) ∧ a′〉 =
ψ(x) + ψ(y).

It remains to show that ψ(x′) = ψ(x)′, i.e. 〈x′∧a, x′∧a′〉 = 〈(x∧a)�, (x∧a′)�〉,
for all x ∈ A. We have x′ = (x′∧a)+(x′∧a′) and x = (x∧a)+(x∧a′), hence by
Lemma 4.7, x′∧a = a−(x∧a) = (x∧a)� and x′∧a′ = a′−(x∧a′) = (x∧a′)�. �

Thus there is a one-to-one correspondence between direct product decompo-

sitions and central elements.

������
�� 4.9� Let a ∈ A be central. Then a∨x and a∧x exist for all x ∈ A.

Moreover, a is a distributive element in 〈A;≤〉, i.e. a∨ (x∧y) = (a∨x)∧ (a∨y)
for all x, y ∈ A for which x ∧ y exists.

P r o o f. We can represent a, x, y ∈ A respectively as 〈a, 0〉, 〈x1, x2〉, 〈y1, y2〉 ∈
[0, a] × [0, a′]. Then 〈a, x2〉 = 〈a, 0〉 ∨ 〈x1, x2〉 and 〈x1, 0〉 = 〈a, 0〉 ∧ 〈x1, x2〉.
If 〈x1, x2〉 ∧ 〈y1, y2〉 exists, then it is equal to 〈x1 ∧ y1, x2 ∧ y2〉 and 〈a, 0〉 ∨
(〈x1, x2〉 ∧ 〈y1, y2〉) = 〈a, 0〉 ∨ 〈x1∧ y1, x2 ∧ y2〉 = 〈a, x2 ∧ y2〉 = 〈a, x2〉 ∧ 〈a, y2〉 =
(〈a, 0〉 ∨ 〈x1, x2〉) ∧ (〈a, 0〉 ∨ 〈y1, y2〉). �
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��		
 4.10� Let a1, . . . , an be principal elements of A such that a1 + · · ·+ an
exists. Assume that for every x ∈ A there exist x1, . . . , xn ∈ A such that xi ≤ ai
(for i = 1, . . . , n) and x = x1 + · · · + xn. Then every element of the form

ai1 + · · ·+ aik , where the indices i1, . . . , ik ∈ {1, . . . , n} are mutually distinct, is

central.

P r o o f. Due to commutativity, it is sufficient to prove that a = a1 + · · · + ak
with k ≤ n is a central element. We first notice that any x ≤ a can be written

as x = x1 + · · ·+ xk for some xi ≤ ai (i = 1, . . . , k). Indeed, by our hypothesis,

x = x1 + · · ·+ xn where xi ≤ ai for i = 1, . . . , n. Since x ≤ a = a1 + · · ·+ ak, it
follows that x+ak+1+ · · ·+an is defined and equals x1+ · · ·+xk+xk+1+ak+1+

· · ·+xn+ an. But xj + aj ≤ aj for j = k+1, . . . , n, since aj ’s are principal, and

this is possible only if xj = 0. Hence x = x1 + · · ·+ xk as claimed.

Now, we show that a is principal. Let x, y ≤ a and let x+ y be defined. We

can write x = x1+ · · ·+xk and y = y1+ · · ·+yk where xi, yi ≤ ai (i = 1, . . . , k).
Thus x+ y = x1 + y1 + · · ·+ xk + yk ≤ a1 + · · ·+ ak = a.

Next, we show that a′ = ak+1 + · · ·+ an. We have a′ = z1+ · · ·+ zn for some

zi ≤ ai (i = 1, . . . , n). Then 1 = a+a′ = a1+z1+· · ·+ak+zk+zk+1+· · ·+zn and

the same argument as before yields z1 = · · · = zk = 0, so a′ = zk+1+· · ·+zn. On

the other hand, it is clear that 1 = a1+ · · ·+an = a+ak+1+ · · ·+an, and hence
a′ = 1− a ≥ ak+1 + · · ·+ an ≥ zk+1 + · · ·+ zn = a′. Thus a′ = ak+1 + · · ·+ an.

This also proves that a′ is principal.
Now, let x ∈ A be arbitrary. There exist xi ≤ ai (i = 1, . . . , n) such that

x = x1 + · · · + xn. If we put y = x1 + · · · + xk and z = xk+1 + · · · + xn,
then obviously y ≤ a, z ≤ a′ and x = y + z, which proves that a is a central

element. �

By the center of a pre-effect algebra we mean the set of its central elements.

������	 4.11� The center of a pre-effect algebra is a subalgebra which is a

Boolean algebra in its own right.

P r o o f. Let 〈A; +,′ , 0, 1〉 be a pre-effect algebra and B its center. B is a subal-

gebra iff 0, 1 ∈ B, a′ ∈ B for each a ∈ B, and a+ b ∈ B whenever a, b ∈ B and

a+ b is defined. We only have to check the last property.

Let a, b ∈ B and put c1 = a ∧ b, c2 = a ∧ b′, c3 = a′ ∧ b and c4 = a′ ∧ b′.
The elements ci exist by Corollary 4.9 and they are principal (ci’s are meets of

principal elements). Moreover, we have c1 + c2 = a, c1 + c3 = b, c3 + c4 = a′

and c2 + c4 = b′. We show that the ci’s meet the conditions of Lemma 4.10. To

this end, let x ∈ A be arbitrary. Since a ∈ B, we can write x = y + z for some

y ≤ a and z ≤ a′. At the same time, since b ∈ B, there exist x1, x3 ≤ b and
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x2, x4 ≤ b′ such that y = x1 + x2 and z = x3 + x4. Then x = x1 + x2 + x3 + x4
where x1, x2 ≤ y ≤ a and x3, x4 ≤ z ≤ a′, thus xi ≤ ci for i = 1, 2, 3, 4.

Now, if a + b is defined, then a ≤ b′ and hence c2 = a and c3 = b. Thus

a + b = c2 + c3 which is a central element by Lemma 4.10. This proves that B

is a subalgebra. In view of Corollary 4.9 and Lemma 4.2, 〈B;≤〉 is a Boolean

lattice. �
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[8] KÔPKA, F.: D-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83–87.
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Palacký University in Olomouc

17. listopadu 12

CZ–77146 Olomouc

CZECH REPUBLIC

E-mail : ivan.chajda@upol.cz

jan.kuhr@upol.cz

1062

Unauthenticated
Download Date | 2/3/17 10:53 AM


	Abstract
	1. Introduction
	2. Pre-effect algebras
	3. Generalized pre-effect algebras
	4. Principal and central elements
	REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldMT
    /ArialMT
    /Times
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice




