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1. Introduction

In the middle of the nineties, two new classes of quantum structures have
appeared: effect algebras and D-posets. Foulis and Bennett [3] defined effect
algebras as algebraic systems (A;+,0,1) where A is a non-empty set, 0 and 1
two special elements of A (called the zero and the unit), and + is a partial binary
operation on A satisfying the following conditions for all a, b, c € A:

(E1) If a + b is defined, then b+ a is defined and a +b = b+ q;

(E2) If a+ b and (a + b) + ¢ are defined, then b+ ¢ and a + (b+ ¢) are defined,
and (a+b)+c=a+ (b+c);

(E3) For every a € A there exists a unique a’ € A such that o’ + a is defined
and o’ +a =1 (a’ is referred to as the orthosupplement of a);

(E4) If a + 1 is defined, then a = 0.
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D-posets (difference posets) were independently introduced by Képka and Cho-
vanec [9] (also see [§]) as algebraic structures (A;<,—,1) where (A;<) is a
poset with greatest element 1 and — is a partial binary operation on A (called a
difference) such that a — b is defined iff a > b, and the following conditions are
satisfied, for all a,b,c € A:

(D1) a—b<aand a—(a—0b)=1b
(D2) ifa<b<c,thenc—b<c—aand (c—a)—(c—b) =b—a.

It turned out that the two concepts are equivalent, i.e., every effect algebra can
be made a D-poset and vice versa, and both effect algebras and D-posets have
received much attention. For the background of effect algebras and D-posets we
refer to the comprehensive monograph [2].

It is well-known that orthomodular lattices can be identified with a certain
subclass of effect algebras. However, if we consider ortholattices instead of or-
thomodular lattices, we see that it is impossible to characterize them in the
setting of effect algebras because, roughly speaking, the induced lattice of an ef-
fect algebra is automatically orthomodular once it is an ortholattice. Therefore,
our primary aim is to find a suitable common extension of effect algebras and
ortholattices. In an attempt to cope with this problem we introduce pre-effect
algebras that essentially differ from effect algebras in one respect: the orthosup-
plements are not necessarily uniquely determined, i.e., for every a there exists
a’ such that a+a’ = 1, but we admit the existence of other elements b such that
a+b=1.

Various generalizations of effect algebras and D-posets can be found in the
literature, so the question what happens if we weaken the axiom (E3) by omitting
uniqueness itself can be seen as a motivation for the introduction of pre-effect
algebras.

Let us recall some basic notions, see e.g. [5], [7], or the aforementioned
book [2].

A partial abelian monoid is a structure (A4; +,0), where A is a non-empty set,
+ is a partially defined binary operation on A and 0 is a distinguished element
of A, satisfying the conditions (E1) and (E2) together with the condition that
a + 0 is always defined and equals a. Thus the partial addition + is both
commutative and associative and 0 acts as an identity element. As usual, when
we write a + b = ¢, we mean “a 4 b is defined and equals ¢”. A partial abelian
monoid (A;+,0) is

e positive if, for all a,b € A, a + b = 0 implies a = b = 0;

o cancellative if, for all a,b,c € A, a4+ ¢ = b+ c implies a = 0.

1046

Unauthenticated
Download Date | 2/3/17 10:53 AM



A GENERALIZATION OF EFFECT ALGEBRAS AND ORTHOLATTICES

A unital partial abelian monoid is a structure (4;+,0,1) where (A;+,0) is a
partial abelian monoid and 1 is its unit, i.e., for every a € A there exists b € A
such that a + b = 1. Using this terminology, effect algebras are exactly positive
cancellative unital partial abelian monoids. In a sense, pre-effect algebras that
we are going to define in Section 2 are a particular kind of positive unital partial
abelian monoids.

Every positive cancellative] partial abelian monoid can be naturally ordered
by putting

a<b iff b=a+c forsome c.

Clearly, 0 is the least element of the poset thus obtained. In an effect algebra,
the unit 1 is the greatest element, and moreover, we have b =a+ciff a+b' = ¢/,
which means that < can alternatively be specified by

a<b iff a+b is defined.

This partial order is the link between effect algebras and D-posets. Indeed,
given an effect algebra (A4; +,0,1), if we let b—a be the only ¢ such that b = a+c¢
provided a < b, then (A; <, — 1) is a D-poset (observe that b — a can be defined
more explicitly by b—a = (a+b') if a < b). Conversely, in a D-poset (A; <, —, 1),
if we define a + b to be the only ¢ such that ¢ > b and ¢ — b = a, then (4;+,0,1)
with 0 = 1 — 1 becomes an effect algebra in which ¢’ = 1 — a (observe that
a+b= (' —a) if a <?b'). This correspondence is one-to-one.

An effect algebra which is a lattice with respect to its natural order < is said
to be lattice-ordered; it is also called a lattice effect algebra (and the associated
D-poset is a D-lattice).

In order to describe the connections between effect algebras and orthomodular
lattices, we need one more notion: An orthoalgebra is an effect algebra satisfying
the additional condition that a + a is defined only if @ = 0, which is equivalent
to saying that for every a, the orthosupplement a’ is a complement of a in
the underlying poset. For completeness we recall that an ortholattice is an
algebra (L;V, A, ,0,1) such that (L;V,A,0,1) is a bounded lattice and ’ is an
orthocomplementation on it (i.e., x — 2’ is an antitone involution such that z’
is a complement of z), and an orthomodular lattice is an ortholattice satisfying
the orthomodular law © <y = z V (2’ Ay) = y. Now, orthomodular lattices
and lattice-ordered orthoalgebras are equivalent:

n fact, a condition weaker than cancellativity is sufficient for < to be a partial order; namely,
it suffices to assume that a + b = b implies a = 0 (cf. Proposition [Z3)).
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e Given (L;V,A,,0,1) an orthomodular lattice, let + be the restriction of
V to the pairs (a,b) with a < b'. Then (L;+,0,1) is a lattice-ordered
orthoalgebra. Thus we obtain an orthoalgebra if we define a +b=a Vb
fora <V?.

o If (A;+4,0,1) is a lattice-ordered orthoalgebra with the induced lattice
operations V and A, then (4;V,A,,0,1) is an orthomodular lattice.

2. Pre-effect algebras

As we have already pointed out, we cannot describe ortholattices in the setting
of lattice effect algebras because when (A; +,0,1) is a lattice effect algebra such
that (A;V,A,,0,1) is an ortholattice, then (A4;+,0,1) is an orthoalgebra and
it follows that (A4;V,A,”,0,1) is an orthomodular lattice. Therefore, we modify
the definition of effect algebras so that we could characterize ortholattices in a
similar way in which orthomodular lattices are characterized within lattice effect
algebras.

DEFINITION 2.1. A pre-effect algebra is a structure (A;+,",0,1) where (A; +,0)
is a partial abelian monoid, 1 is an element of A and ’ is a unary operation such
that a’ +a =1 for all a € A, and the relation < given by the rule

a<b iff a+V is defined (1

)
is a partial order. A pre-effect algebra satisfying the condition that a = 0
whenever a + a is defined (i.e. a =0 if a < d') is called a pre-orthoalgebra.

Comparing unital partial abelian monoids and pre-effect algebras, it is evident
that every pre-effect algebra is a unital partial abelian monoid (it need not be
cancellative, but it is positive by Lemma [2.2(vii)). The difference is that in a
pre-effect algebra, for each a we fix one of the elements z with the property
a+ 2z =1, and this is done in such a way that (Il) defines a partial order.

Pre-effect algebras generalize effect algebras. The axiom (E3) says that to
each a € A there corresponds a unique a’ € A such that a +a’ = 1, hence we
may extend the signature of effect algebras with a unary symbol ' to denote
the operation of taking orthosupplements. In other words, every effect algebra
(A;+,0,1) can be regarded as the structure (A;+,",0,1) which apparently is a
pre-effect algebra.

LEMMA 2.2. For any pre-effect algebra (A;+,",0,1), the poset (A; <) is bounded,
0 and 1 being the least and the greatest element, and for all a,b € A we have:

(i) 0 =1,

(i) a” = a,
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(iii) 1/ =

(iv) a<bzﬁ“b’<a

(v) a+1 is defined iff a =0,

(vi) ifa+b=0, thena =0,
)

(vii) ifa+b=0, thena=>b=0.

Proof. First, 0 is the least element of (A; <) because 0+ a’ is defined for every
a€cA

(i) Trivially, 0’ =0"+0 = 1.

(ii) Since @’ + a’ =1, we have o’ < a for all a € A. Replacing a respectively
with a’ and a”, we get @’ < a’ and o”” < a” < a, which means that o’ +a’ is
defined, and so a’ < a'”’. Thus @’ = a"”’ whence 1 =a’ +a=d"" +a,s0a <a".

(iii) Clearly, 1’ = 0” = 0. Notice that this shows that 1 is the greatest element

n (A; )sincea<1iffa+1’:a+OiSdeﬁned

(iv) By definition, &’ < o’ iff ¥’ + " is defined iff b' + a is defined iff a < b.

(v) The existence of a 4+ 1 implies a < 1" =0, i.e. a = 0.

(vijIfa+b=>b,thenl=b+b =a+b+b =a+1, whence a = 0.

(vii) If a+b=0,thena’ =a'+a+b=1+b,andsob=0anda=0. O

In addition to the partial order <, which is specified by + and ’, pre-effect
algebras have another partial order that is induced solely by + as follows:

PROPOSITION 2.3. Let (A;+,,0,1) be a pre-effect algebra. The relation C
defined by

alb iff b=a+c forsomece A (2)

is a partial order such that, for all a,b € A, a E b implies a < b. The two orders
coincide if and only if (A;+,,0,1) is an effect algebra.

Proof. It is easy to see that C is a partial order: reflexivity and transitivity
are trivial since (A;+,0) is a partial abelian monoid, and C is antisymmetric
owing to Lemma [2:2/(vi) and (vii), because if b = a + = and a = b + y for some
z,y € A, then a =a+ x +y yields £ +y = 0, whence x =y = 0 and so a = b.

Moreover, if a C b, then b = a+c for some ¢ € A, whence 1 = b’ +b =V +a+c.
Thus & +a = a + b is defined, showing a < b.

Let C and < coincide. We have to show that a’ is the only element with
a’ +a=1. For, assume x + a = 1. Then z < @/, which implies z C a’, so there
exists y € A such that @ =x+y. Thenl =a+2z+y =1+ y whence y =0
proving a’ = x. Therefore (A4;+,",0,1) is an effect algebra.
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On the other hand, if (A;+,,0,1) is an effect algebra, then it follows from
basic properties of effect algebras that we have already mentioned above that
a+ b is defined iff b = a + ¢ for some ¢ (in fact, ¢ = (a +')’, see e.g. [2
Lemma 1.2.5(i)]), thus C and < coincide. O

LEMMA 2.4. Let (A;+,',0,1) be a pre-effect algebra and a,b,c,d € A. If a <'b,
c <d and b+d is defined, then a+ c is defined too, and a+c < b+d. The same
holds true for C.

Proof. Since 1 = b+ d+ (b+d)’, we have a < b < (d + (b+ d)’), thus
a+d+ (b+d) is defined and a + d < b+ d. Similarly, a + ¢ < a + d, and hence
a+c<b+d.

Let now a C band c C d, i.e., b =a+ x and d = ¢ + y for some z,y € A.
Thenb+d=a+2x+c+y=a+c+x+y,soa+cCb+d. O

We now turn our attention to ortholattices.

LEMMA 2.5. Let (A;+,',0,1) be a pre-effect algebra. Then (A;+,,0,1) is a
pre-orthoalgebra if and only if for every a € A, o' is a complement of a in
(A; <). In this case, a’ is a complement of a in (A;C).

Proof. Let (A;+4,/,0,1) be a pre-orthoalgebra. If x < a and x < o/, then by
Lemma 24 x4+ x is defined, which is possible only if x = 0. Thus inf{a,a’} = 0.
Consequently, if x > a and = > d/, then 2’ < o and 2/ < d’ = a by
Lemma 22(iv), so 2/ = 0 and = 2’7 = 1, proving sup{a,a’} = 1. Since
the order < exceeds C (i.e. z C y implies z < y), it follows that inf{a,a’} =0
and sup{a,a’} =1 in (A;C).

Conversely, assume that for every a € A, o’ is a complement of a in (A; <).
If a 4 a is defined, then a < @’ and hence a = inf{a,a’} = 0. Thus (4;+,/,0,1)
is a pre-orthoalgebra. O

Before the next definition, it is worth emphasizing that in view of Proposi-
tion 23] if a + b is defined, then it is a common upper bound of a,b in (A;C)
as well as in (4; <). In orthoalgebras, where C and < coincide, a + b is even a
minimal one, but this need not be the case for pre-orthoalgebras.

DEFINITION 2.6. We say that a pre-effect algebra (A4;+,",0,1) is a strong pre-
orthoalgebra if for all a,b € A for which a + b is defined, a + b is a minimal
common upper bound of a,b in the poset (4; <).

The definition is correct because when a + a is defined, then the condition
guarantees a = a + a, whence a = 0 by Lemma [Z2](vi), i.e., every strong pre-
orthoalgebra is a pre-orthoalgebra.
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The following theorem gives the promised characterization of ortholattices
within pre-effect algebras: there is a one-to-one correspondence between ortho-
lattices and those strong pre-orthoalgebras which are lattice-ordered under <.
Recalling Lemma [2Z5], the proof of the theorem is straightforward, hence we
omit it.

THEOREM 2.7. Let (A;+,,0,1) be a pre-orthoalgebra such that (A;<) is a
lattice with the associated lattice operations \V and A\. Then (A;V, A, ,0,1) is an
ortholattice. Conversely, let (L;V,A,,0,1) be an ortholattice. If we define +
by stipulating that a + b is defined iff a < V' in which case a +b = a V b, then
(Ly+,",0,1) is a strong pre-orthoalgebra.

We cannot skip the adjective “strong” since two (or more) distinct pre-
orthoalgebras can determine the same ortholattice.

PROPOSITION 2.8. Let (L;V, A\, ,0,1) be an ortholattice. Let L be equipped with
+ as follows: a+0 =0+ a = a for every a € A, and if a,b € A\ {0}, then
a+b=>b+a is defined iff a < V', in which case a +b = b+ a = 1. Then
(L;+,",0,1) is a pre-orthoalgebra which induces the ortholattice (L;V, A, ,0,1).

Proof. It is obvious that the only thing we have to check is associativity of
+. Trivially, if 0 € {a,b,c}, then (a + b) + ¢ is defined iff so is a + (b + ¢), and
(a+b)+c=a+(b+c). Let 0 ¢ {a,b, c}. In this case, if (a+b) + ¢ were defined,
then 1 = a+b < ¢ and we would get ¢ = 0. Also, if a + (b + ¢) were defined,
then a < (b+¢) =1 =0, so a = 0. Thus neither (a +b) 4+ ¢ nor a + (b+¢) is
defined when 0 ¢ {a,b, c}. d

THEOREM 2.9. Let (A;+,,0,1) be a pre-orthoalgebra such that (A;C) is a
lattice with the associated lattice operations U and M. If (A;U,M,,0,1) is an
ortholattz’ceE then it is an orthomodular lattice.

Proof. Suppose by way of contradiction that the ortholattice (A;LI,,,0,1)
is not orthomodular, so it contains a subalgebra {0,a,b,a’,b’,1} where a C b,
VCd,z2U0y=1and 2Ny =0 for x € {a,b}, y € {a’,b'}. Since a C b, there
exists ¢ € A such that b=a + ¢, and hence 1 =0 +b=b +a+c. Thusd +a
is defined and is equal to 1 because b’ + a is a common upper bound of a, b’ and
aUb =1. Hence 1 = 1+ ¢, which is possible only if c=0. Then b = a + ¢ = a,
a contradiction. O

Remark. After submitting the paper, thanks to the referee’s comments, we
found out that in the literature, there already exist structures that generalize

2By Lemma [ZH, (A;U,M,,0,1) is a lattice with complementation, but we don’t know if the
de Morgan laws hold, hence we assume that it is an ortholattice.
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effect algebras and have most of the features that we wanted our pre-effect al-
gebras to have. Namely, in [I], quasi effect algebras are defined as structures
(A;<,+,/,0,1) where (A;</,0,1) is a bounded poset with an antitone involu-
tion (i.e., the map x — 2’ is an antitone involution) and + is a partial binary
operation on A such that:

i) a+b= b+ a when one side is defined,

iv) if a + 1 is defined, then a = 0,
v) if a <band a+ ¢,b+ c are defined, then a + ¢ < b+ c.

It is obvious by Lemmata and 24 that if (A;+,,0,1) is a pre-effect al-
gebra, then (A4;<,+,,0,1) where < is given by (I is a quasi effect algebra.
On the other hand, if (A4;<,+,/,0,1) is a quasi effect algebra, then the reduct
(A;+,,0,1) is a pre-effect algebra if and only if the conditions (E2) and () are
satisfied.

Besides associativity /non-associativity, the difference between pre-effect alge-
bras and quasi effect algebras is that in the latter case the partial order < cannot
be eliminated from the signature because it need not be specified by + (or by
+ and ') as it is in pre-effect algebras. This is demonstrated by the following
simple example.

Let (A;V,A,,0,1) be the 4-element Boolean lattice with A = {0,a,b,1}. If
we make it a lattice effect algebra, we get

(
(
(ii) @' +a =1,
(
(

+ 0 a b 1
0 0 a b 1
a a . 1
b b 1

1 1

because a’ = b and b’ = a, and the underlying lattice order < obeys both ()
and (2)). Let us equip A with the linear order < such that 0 < a < b < 1. Then
(A;=<,4,7,0,1) is a quasi effect algebra in which < obeys neither (1)) nor ([2)). In
other words, (A4; <,+,’,0,1) and (A; <,+,",0, 1) are non-isomorphic quasi effect

algebras, though the reduct (A;+,",0,1) is the same.

In the rest of this section we present pre-difference posets, the “pre-version”
of difference posets (D-posets), and prove that they are equivalent to pre-effect
algebras. Observe that if (A4;<,—,1) is a D-poset and if we add the constant
0 = 1 — 1 to the signature, then (A;<,—,0,1) is a pre-difference poset in the
sense of the following definition.
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DEFINITION 2.10. By a pre-difference poset we mean a structure (A; <, —, 0, 1),
where (A; <) is a poset with greatest element 1 and — is a partial binary op-

eration such that a — b is defined iff b < a, satisfying the following conditions
(for all a,b,c € A):

(QD1) a—a =0,
(QD2) 1—-(1—a)=a,
(QD3) ifa>band a—b > ¢, thena > cand a—c > b, and (a—b)—c = (a—c)—b.

THEOREM 2.11. For every pre-effect algebra (A;+,,0,1), the structure
(A; <, —,0,1), where < is given by () and a — b = (a’ +b)" for b < a, is a
pre-difference poset.

Proof. We know that (A; <) is a poset whose bounds are 0 and 1. Clearly,
a—0b = (a +0b) is defined iff @’ + b is defined iff b < a. We also have
a—a=(@+a)) =1 =0and1l—-a = (1"+a) = (0+a) =d, and
hence 1 — (1 —a) = a” = a for all a € A. There remains to verify (QD3).
By definition, @ > b and a — b = (a’ +b) > c iff (¢’ + b) + ¢ is defined iff
(o' +¢)+bis defined iff a > ¢ and a — ¢ = (a’ 4+ ¢)’ > b. If this is the case, then
(a—b)—c=((a+b)+¢c)=((a"+¢)+b) =(a—c)—b. O

For the reverse passage we need a technical lemma:

LEMMA 2.12. In any pre-difference poset (A;<,—,0,1), for all a,b € A we have:
(a) 0<aanda—0=a;
(b) a>biff l —a<1-—0, in which case a —b= (1 —->b) — (1 —a).

Proof.

(a) Using (QD3), since a > a and a —a > 0, we have a > 0 and a — 0 > a.
Then a > 0 together with a —0 > a — 0 implies a > a — 0 again by (QD3). Thus
a—0=a.

(b) Wehave 1 >1—aand 1 — (1 —a) =a > b, hence 1 —b > 1 — a and
a—b=(1-(1-a))—b=(1-0)—(1—a) by (QD3). O

THEOREM 2.13. Let (A;<,—,0,1) be a pre-difference poset. If we define o' =
1—aanda+b=(a’" —0b) fora >0, then (A;+,',0,1) is a pre-effect algebra.
Moreover, the partial order defined by (Il) coincides with <.

Proof. We prove that (A;+,0) is a partial abelian monoid. Obviously, a + 0
= (a'—0) =d" =a for every a € A. We have @’ > b and o/ —b = (¢’ — b)”
=(a+b) >ciffa’ >candd —c=(d' —¢)" =(a+c¢) >b. So(a+b)+c=
(@' —b) + b is defined iff (a +¢) +b = (¢’ — ¢)' + b is defined, and we have
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(a+b)+c=((a’=b)—c) =((a" —c)—b) = (a+c)+ b, which proves both
commutativity and associativity of +.

Moreover, it is easily seen that a’ +a = (¢” —a)’ = 0/ = 1. Finally, the
relation < defined by (), i.e. a = biff a + b exists, is a partial order because <
is exactly the initial partial order <. (I

3. Generalized pre-effect algebras

Positive cancellative partial abelian monoids are sometimes called generalized
effect algebras (see e.g. [2]). We have already mentioned in Section 1 that the
stipulation a < b iff b = a + ¢ for some ¢ defines a partial order, but there is
no upper bound in general, and a generalized effect algebra which has greatest
element is nothing but an effect algebra. Furthermore, like in effect algebras,
a partial subtraction is implicitly determined by +; namely, if a < b, then
b — a is the only ¢ such that b = a + ¢. Unfortunately, in pre-effect algebras
or pre-difference posets, + and — are related via the unit 1 (see Theorems [2Z.11]
and [ZT3), and hence if we want to generalize pre-effect algebras by dropping
units, we have to work with both + and —.

DEFINITION 3.1. A generalized pre-effect algebra is a structure (A;+,—,0)
where + and — are partial binary operations on A such that

(GQE1) + is commutative, i.e., a + b = b+ a if one side is defined,
(GQE?)

(GQE3) the relation < defined by a < b iff b — a exists is a partial order,
( )

GQE4) for all a,b,c € A,a>band a—0b > ciff b+ cis defined and a > b+ ¢,
in which case (a —b) —c=a— (b+¢).

a—a=0foralla€ A,

We first show that both generalized effect algebras and pre-effect algebras are
special cases of generalized pre-effect algebras:

PROPOSITION 3.2. Let (A;+4,0) be a generalized effect algebra. For a,b € A,
let a — b be defined iff there exists ¢ € A such that a = b+ ¢, and in this case
a—b=c. Then (A;+,—,0) is a generalized pre-effect algebra.

Proof. The definition of — is correct because + is cancellative. Also, a — b is
defined iff b < a, where < is the natural order of (A;+,0), hence we only have
to check the condition (GQE4). If a > band a —b > ¢, thena = (a —b) + b =
((a—b) —¢) 4+ c+ b, so b+ cis defined and a > b+ ¢. Conversely, if a > b+ ¢,
thena=(a—(b+c¢))+b+candsoa>banda—b=(a—(b+c¢))+c>c In
this case we obviously have a — (b+¢) = (a — b) — c. O
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PRrOPOSITION 3.3. Let (A;+,,0,1) be a pre-effect algebra and let — be defined
as in Theorem [211), i.e., a —b = (a’ + b)" when b < a. Then (A;+,—,0) is a
generalized pre-effect algebra.

Proof. (GQEL), (GQE2) and (GQE3) are obviously satisfied. Further, a > b
and (¢’ +b) =a—b> ciff (' +b) + ¢ is defined iff @’ + (b + ¢) is defined iff
b+ c is defined and a > b+ ¢, and then we have a — (b+¢) = (o' + (b+¢)) =
((a+b)+c) = ((a/ +b)" +¢) = (a—0b) —c. Thus the condition (GQE4) is
fulfilled too. g

We now prove some properties of generalized pre-effect algebras. Notice that
by (v) and (viii), generalized pre-effect algebras are positive abelian monoids.

LEMMA 3.4. Let (A;+,—,0) be a generalized pre-effect algebra. Then for all
a,b,ce A:
(i) a>banda—b>ciffa>cand a—c>0b, and in this case (a —b) —c =
(a—c)—0;

)

)

) if a+ b is defined, then a+b>0b and (a+b) —b > a;

) ifa+b=0, thena=b=0;
(vi) ifa+b=10, thena=0;

) ifa>b, thena>a—b,a—(a—b)>banda> (a—"0b)+b;

) + is associative (in the sense of the axziom (E2));

) if a > b and a + ¢ is defined, then b+ c is defined, a + ¢ > b+ ¢ and
(a+c)—(b+c)>a—b;
(x) ifa>b>c, thena—c> (a—b)+ (b—c).

Proof.

(i) This follows from (GQE4) and commutativity of +.

(ii) Using the item (i), @ > a and a — a > 0 implies a > 0 and a — 0 > a.
Analogously, a > 0 and ¢ — 0 > a — 0 implies a > a — 0, hence a — 0 = a.

(iii) By (GQE4), from a > a and a — a > 0 we get that a + 0 is defined and
a > a+0. Then a+0 > a+0 implies a+0 > a again by (GQE4), thus a+0 = a.

(iv) If a + b is defined, then a + b > a+b = b+ a yields a + b > b and
(a4+b) —b>aby (GQE4).

(v) Since a + b is a common upper bound of a,b whenever a + b is defined,
a+b =0 implies a = b= 0.

(vi)If a4+ b=, then 0 = (a+b) —b > a by (iv), so a = 0.
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(vii) If @ > b, then a — b > a — b implies a > a — b, a — (a — b) > b and
a>(a—0b)+bby (GQE4) and (i).

(viii) Let (@ + b) + ¢ be defined. Then by (iv) we have (a +b) +¢ > ¢
and ((a+b)+¢)—c>a+b=>b+a, and so ((a +b) +¢) —c > b and
(((a+b) +¢c)—c) —b > aby (GQE4). On the other hand, again by (GQE4),
((a+0b)+c) — ¢ > b entails the existence of ¢+ b and (a+b) + ¢ > ¢+ b, whence
((a+b)+¢c)—(c+b) = (((a+b)+c)—c)—b> a. But this means that (c+b)+a
is defined and (a+b)+c¢ > (c+b)+a =a+ (b+c¢). Thus (a+b)+c>a+(b+c)
whenever the left side is defined. Further, by what we have just shown, and since
+ is commutative, we have a+ (b+c¢) = (c+b)+a>c+ (b+a) = (a+b) + ¢

(ix) If @ + c is defined and a > b, then (a +c¢) —¢ > a > b, and so b+ c is
defined and we have a + ¢ > b+ c¢. Therefore, since a > (a — b) + b, we have
a+c>(a—b)+b+c, whence (a+c¢)—(b+c¢)>a—b.

(x) Let @ > b > ¢c. Since a > (a —b) +b and b > (b — ¢) + ¢, the sum
(a—10b) + (b —c) + c is defined and a > (a — b) + (b — ¢) + ¢, which entails
a—c>(a—>b)+ (b—c).

O

Now, like in pre-effect algebras, it can easily be shown that the relation
defined by @), i.e., a C b iff b = a + ¢ for some ¢, is a partial order such that
exceeds C (i.e., if a C b, then also a < b).

PropPOSITION 3.5. Let (A;+,—,0) be a generalized pre-effect algebra. Then
< and C coincide if and only if (A;+,0) is a generalized effect algebra. (Cf.
Proposition [2.3])

Proof. We have to show that + is cancellative if < and C coincide. To this
end,letd=a+b=a+c. Thend—a >b, henced—a dJbandsod—a=b+x
for some z € A. Tt follows that d > (d—a) +a=b+xz+a=d+ z > d by (vii)
and (iv) of Lemma B4l thus d = d + x which yields x = 0 by Lemma [B4{(vi),
and so d — a = b. Similarly, we get d —a = c. O

Ezxample 3.6. Let A = {0,a,b,¢,d, e} be equipped with the partial operations
+, — as follows:

+ 0 a b ¢ d e — 0 a b ¢ d e
0 0 b ¢ d o o . . .
a a c a a 0 0 0
b b c b b . 0 .

c ¢ c ¢ a a 0 . a
d d . d d 0 0 0
e e ¢ c c e e 0
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Then (A; +, —, 0) is a generalized pre-effect algebra; the Hasse diagrams of (4; <)
and (A;C) are:

c d
c
a
. b a b d
0 0

It is known that every generalized effect algebra can be embedded into an
effect algebra (see [6], [2]). This construction is called wunitization and we now
show that it works for our generalized pre-effect algebras too.

Let (A;+4,—4,04) be a generalized pre-effect algebra (the underlying order
given by (GQE3) is denoted by <4). Let A* = {a*: a € A} be a disjoint copy
of A. We can make A U A* into a pre-effect algebra as follows:

a + b is defined iff a +4 b is defined, and a + b =a + 4 b;

a + b* is defined iff b* + a is defined iff a <4 b, and in this case a + b* =
b*+a=(b—4aa)*;

a* + b* is not defined;

a =a* and (a*) = q;

0=04 and 1 =0%.

Thus for the order < on A U A* we have:

(i) a <biff a <4 biff b* < a*,
(ii)) @ < b* iff b < a* iff a +4 b is defined, and
(iii) a* £ b for all a,b € A.

THEOREM 3.7. For every generalized pre-effect algebra (A;+a,—a,04), the
structure (AU A*;+.,0,1) is a pre-effect algebra.

The proof is straightforward. The unitization of the generalized pre-effect
algebra from Example is shown in the following figure:
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1=0*

b*
{
e
e
/
b
0

4. Principal and central elements

In this section, we describe two-factor direct product decompositions of pre-
effect algebras. It turns out that they are determined by the so-called central
elements which are defined just as in effect algebras (see [2], [4]). We also prove
that the central elements form a Boolean subalgebra.

DEFINITION 4.1. Let (A;+,,0,1) be a pre-effect algebra. We call an element
a € A principal if the interval [0, a] is closed under +, i.e., for all z,y € A such
that z,y < a and z +y is defined we have z +y < a. Further, we say that a € A
is a central element if

(i) both a and a are principal elements,
(ii) for every x € A there exist y,z € A such that y <a, 2 <d’ and z =y + z.
In what follows, (A;+,",0,1) is a fixed but arbitrary pre-effect algebra.

LEMMA 4.2. If a € A is a principal element, then a A (x —a) = 0 for every
r € A with x > a. In particular, a Aa’ = 0.

Proof If y <aand y <z —a, then y + a is defined and y + a < z. Since a
is principal and y < a, we have y + a < a, which yields y + a = a, and hence
y = 0. ‘:\

LEMMA 4.3. Let a € A be central. If v = y+ z where y < a and z < d’, then
y=xzAaandz=xANd.
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Proof. Assume that v < z and u < a. Then u < y iff u + v is defined, so
we aim at showing that u + 3 exists. We can write ¥y’ = p + ¢ for some p < a
and ¢ < a’. Then p < 3’ and so p + y is defined. Also, since p,y < a, we have
p+y < a < 2’ which entails the existence of p+y+2 = p+z. Since u < z, p+u
is defined too. Moreover, p+u < a < ¢’ because p,u < a. Thus p+u+q =19y +u
is defined, proving v < y. Hence y = z A a.

In an analogous way we can show that z =z A d'. [

LEMMA 4.4. Let a € A be a central element. If v > a, then v = a+ (x —a) and
r—a=xzANd. Ifr<a,thena=(a—z)+2z anda— (a—x)=z.

Proof. Let x > a. By Lemma [£3] we know that z = (x Aa) + (x Ad') =
a+ (x ANd'), whence x —a > x ANd  andsox >a+ (x—a) >a+ (xANd) =z
Thus z = a+ (x —a). Since x —a =da’ — 2’ < d/, we conclude z —a =z Ad’ by
Lemma [£3]

Now, let z < a. Since a’ is central and x’ > a/, by the first part of the lemma
we have 2’ = a'+ (' —d') = a4+ (a—x). Then 1 = z+2' = x+a’'+ (a—x) where
z+(a—x) < a, and it follows that a« = 2+ (a—x). Furthermore, 2’ = '+ (a— 1)
impliessz=1—-2'=1—-(d'+(a—z))=1-d)—(a—z)=a—(a—2x). O

LEMMA 4.5. Let a € A be central. For all x,y < a, x <y iff  + (a — y) is
defined.

Proof. If x <y, then x+y’ is defined. But 1 > a > y impliesy’ = 1—y > a—y,
hence x + (a —y) is defined too. Conversely, assume that  + (a — y) exists. We
have z,a—y < a and hence z+ (a—y) < a, which yieldsy = a—(a—y) > z. O

PROPOSITION 4.6. Leta € A be a central element. The structure {[0,a]; +,°,0, a),
where x° = a — x, is a pre-effect algebra.

Proof. ([0,a];+,0) is evidently a partial abelian monoid. For all z € [0, a] we
have #° 4z = (a — ) + 2 = a. Likewise, the relation < defined by = < y iff
x+y’ =x+ (a—y) is defined in [0, a], is a partial order on [0, a]; in fact, < is
just the restriction to [0, a] of <. O

LEMMA 4.7. Let a € A be central. Assume that v = y1 + 21 and ' = yo + 2o
where y1,y2 < a and 21,20 < a’. Theny1 =a —ys and yo = a — y1.

Proof. Wehave l =z + 2’ = y1 +21 +y2 + 22 = y1 + y2 + 21 + 2o where
y1 +1y2 < aand 21 + 29 < a, hence y1 +y2 = a and 27 + 25 = o’ by Lemma [£.3]
Then a — y2 > y1 and a — y; > ys, so it remains to show that a — yo < y; and
a—y1 < Yo.

Since (a—y2)+y2 = a < 25 by Lemmall4] we have a+z3 = (a—y2)+ya+22 =
(a —y2) + ', and hence a — yo < x. Analogously, a + 21 = (a —y1) +y1 + 21 =

1059

Unauthenticated
Download Date | 2/3/17 10:53 AM



IVAN CHAJDA — JAN KUHR

(a—wy1)+x,80x<(a—y;). Then a —ys <z < (a —y;1)" and hence (a — y2)
+(a—y1) is defined. Moreover, (a—y2)+(a—y1) < a and so (a—y2)+(a—y1)+a’ is
defined. But ¢} = a'+ (v} —d’) = @’ + (a —y1) by Lemma L4l thus (a —y2) + v}
is defined and we conclude a — yo < y;. Analogously, vy, = o’ + (v5 —d') =
a' + (a —y2), so y5 + (a — y1) is defined, showing a — y1 < ys. O

THEOREM 4.8. Let a € A be a central element. The map ¢: x — (x ANa,z Na)
is an isomorphism of (A;+,",0,1) onto the direct product of ([0, a); +,”,0,a) and
([0,a']; +.,%,0,a), where 2” = a — x and 2% = a’ — x.

Proof. In view of Lemma [£3] the map v is a well-defined bijection because,
for each € A, x Aa and = A @' exist, and z = (z Aa) + (z A d’). Clearly,
$(0) = {0,0) and 9(1) = (a,a’).

Let z,y € A. If £ 4+ y is defined in A, then z+y = (zAa)+ (zAd)+ (yAa)
+wANd)=(xNa)+(yANa)+(xAd)+(yAd). Since (xAa)+(yAa) <a
and (x A d') + (y ANa') < d, it follows that (x +y) Aa = (z Aa) + (y Aa)
and (z Ay)ANd = (zAd)+ (yAd) by Lemma L3 Thus ¢(z) + ¢(y) =
(xANa,zNad)+(yNa,yNd') = ((zANa)+ (yNa),(xAa’)+ (yAa')) is defined in
[0,a] x [0,a’]. Conversely, let 1(z) 4+ ¥ (y) be defined. Then (zAa)+ (yAa) and
(z ANa')+ (yAa') are defined in [0, a] and in [0, a'], respectively. But then also
(xANa)+(yAa)+(xAd)+(yAd) = (zAha)+(xzAd)+ (yAa)+(yAd) =z+y
is defined in A. In either case, we have ¥(z +y) = ((r+y) ANa, (z+y) ANad') =
$(@) + D).

It remains to show that ¢(z') = 1 (z)’, i.e. (z'Aa,z'Ad’) = ((zNa)’, (zA)?),
for all z € A. We have 2/ = (2’ Aa)+ (2 Aa') and x = (xAa)+ (zAa’), hence by
Lemma@7 2’ Aa = a—(zAa) = (xAa)’ and ' Ad’ = o/ —(zAd') = (zAad’)E. O

Thus there is a one-to-one correspondence between direct product decompo-
sitions and central elements.

COROLLARY 4.9. Let a € A be central. Then aVx and aNx exist for all x € A.
Moreover, a is a distributive element in (A; <), i.e. aV(zAy) = (aVz)A(aVy)
for all x,y € A for which x Ny exists.

Proof. We can represent a,z,y € A respectively as (a,0), (z1,22), (y1,y2) €
[0,a] x [0,a']. Then (a,z2) = (a,0) V (x1,22) and (x1,0) = (a,0) A (x1,22).
If (x1,22) A (y1,y2) exists, then it is equal to (x1 A y1,22 A y2) and (a,0) V
(1, 22) Ay1,92)) = (a,0) V(1 Ayr, 22 Ay2) = (@, 22 Aya) = (a,22) A(a, y2) =
({a,0) V (z1,22)) A ({a,0) V (y1,92))- 0
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LEMMA 4.10. Let aq,...,a, be principal elements of A such that a1 + -+ a,

exists. Assume that for every x € A there exist x1,...,x, € A such that z; < a;
(fori = 1,...,n) and x = x1 + -+ + x,. Then every element of the form
ai, + -+ a;,, where the indices iy, ...,ix € {1,...,n} are mutually distinct, is
central.

Proof. Due to commutativity, it is sufficient to prove that a = a1 + -+ - + ag,
with k£ < n is a central element. We first notice that any z < a can be written

as ¢ =x1 + -+ xy, for some z; < a; (i =1,...,k). Indeed, by our hypothesis,
r=x1+ - +x, where z; < a; fori=1,...,n. Sincex <a=ay+ -+ ag, it
follows that x+ag4+1+- - -+ay, is defined and equals 21 +- - -+ 2k + Tp41 + a1+
<o+ xp+a,. But x;+a; <ajfor j=Fk+1,...,n,since a;’s are principal, and

this is possible only if x; = 0. Hence x = x1 + - - - 4+ 2}, as claimed.

Now, we show that a is principal. Let z,y < a and let x + y be defined. We
can write t = x1+---+ax and y = y1 + - - +yr where z;,y; < a; (i =1,...,k).
Thusz+y=z14+y1+ -+ +yr < a1+ ---+ap=a.

Next, we show that a’ = agy1 +---+a,. We have a’ = 21 + -+ - + z,, for some
zi<a; (i=1,...,n). Thenl =a+ad =a1+21+ - +ax+zx+2p+1+ - -+2, and
the same argument as before yields z; = -+ =2, = 0,50a’ = 241+ *+2,. On
the other hand, it is clear that 1 = a1 +---+a, = a+ag+1+- - -+ an, and hence
ad=1—-a>ap1+ +ap>zk1+ -+2,=0ad. Thus @’ = agy1 +- -+ ay.
This also proves that a’ is principal.

Now, let x € A be arbitrary. There exist z; < a; (i = 1,...,n) such that
r=x1+ -+x, fweputy =21+ -+ and 2 = zpr1 + -+ + xp,
then obviously y < a, 2 < a’ and © = y + z, which proves that a is a central
element. U

By the center of a pre-effect algebra we mean the set of its central elements.

THEOREM 4.11. The center of a pre-effect algebra is a subalgebra which is a
Boolean algebra in its own right.

Proof. Let (A;+,,0,1) be a pre-effect algebra and B its center. B is a subal-
gebra iff 0,1 € B, a’ € B for each a € B, and a + b € B whenever a,b € B and
a + b is defined. We only have to check the last property.

Let a,b € Band put ¢ = aAb, co =aAl,c3g=ad Abandcy =a AV.
The elements c¢; exist by Corollary and they are principal (¢;’s are meets of
principal elements). Moreover, we have ¢1 + ¢y = a, ¢ +¢c3 = b, ¢3 + ¢4 = d
and ¢y + cq4 = b'. We show that the ¢;’s meet the conditions of Lemma 10l To
this end, let x € A be arbitrary. Since a € B, we can write x = y + z for some
y < aand z < a'. At the same time, since b € B, there exist x1,z3 < b and
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To, 14 < b such that y=x; +x0 and 2z =23 +24. Then x = 21 + 29 + T3 + 74
where z1,20 <y <a and x3,24 < z < d/, thus z; < ¢; fori =1,2,3,4.

Now, if a + b is defined, then a < ¥ and hence ¢ = a and c3 = b. Thus
a + b = ¢y + c3 which is a central element by Lemma [I0l This proves that B
is a subalgebra. In view of Corollary and Lemma 2] (B; <) is a Boolean
lattice. O
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