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ABSTRACT. For a space X, let Ek(X), Es
k(X) and E◦

k(X) denote respectively
the set of Euler classes of oriented k-plane bundles over X, the set of Euler classes

of stably trivial k-plane bundles over X and the spherical classes in Hk(X;Z).
We prove some general facts about the sets Ek(X), Es

k(X) and E◦
k(X). We also

compute these sets in the cases where X is a projective space, the Dold manifold
P (m, 1) and obtain partial computations in the case that X is a product of
spheres.
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1. Introduction

Given a topological space X, we address the question of which classes x ∈
Hk(X;Z) can be realized as the Euler class e(ξ) of an oriented k-plane bundle
ξ over X. We also look at the question of which integral cohomology classes are
spherical. It is convenient to make the following definition.

���������� 1.1� For a space X and an integer k ≥ 1, the sets Ek(X), Es
k(X)

and E◦
k(X) are defined to be

Ek(X) =
{
e(ξ) ∈ Hk(X;Z) | ξ is an oriented k-plane bundle over X

}
Es

k(X) =
{
e(ξ) ∈ Hk(X;Z) | ξ is a stably trivial k-plane bundle over X

}
E◦

k(X) =
{
x ∈ Hk(X;Z) | there exists f : Sk −→ X with f∗(x) �= 0

}
.

Note that we always have an inclusion Es
k(X) ⊆ Ek(X) and the inclusion can

be strict. The classes in E◦
k(X) are called spherical classes. Clearly, spherical
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classes are of infinite order and are indecomposable as elements of the integral
cohomology ring.

In recent times there has been some interest in understanding the sets Ek (see
[5], [6], [14]). Besides being a natural question to study, part of the motivation
for studying the sets Ek and E◦

k comes from the following result.

�	��
�� 1.2� ([5, Theorem 1.3, p. 378]) Let ξ be an oriented k-plane bundle
over a CW -complex X. If the Euler class e(ξ) is spherical, then the holonomy
group of any Riemannian connection on ξ acts transitively on the sphere bundle
S(ξ) of ξ.

There are isolated results in the literature about the set Ek(X) (see [5], [6],
[14]). The most general result about realizing cohomology classes as Euler classes
seems to be the following theorem of Guijarro, Schick and Walschap [5].

�	��
�� 1.3� ([5, Theorem 1.6, p. 379]) Given k, n ∈ N with k even, there
is an integer N(k, n) > 0 such that for every CW -complex X of dimension n
and every cohomology class x ∈ Hk(X;Z), there is an oriented k-plane bundle
ξ over X with e(ξ) = 2N(k, n) · x.

Thus, in our notation, under the hypothesis of the above theorem

2N(k, n)Hk(X;Z) ⊆ Ek(X).

Note that, with the hypothesis as in the above theorem, we are guaranteed that
(for k even) if E◦

k(X) �= ∅, then E◦
k(X) ∩ Ek(X) �= ∅. Thus the existence of a

spherical class implies that some spherical class is also the Euler class of some
oriented k-plane bundle. In this paper we shall show that the hypothesis that k
is even is essential (see Theorem 1.5 below).

In this paper we shall compute the sets Ek(X), E◦
k(X) and Es

k(X) for the
cases when X is a projective space, a product Sm × Sn of spheres for certain
values of k,m, n (see Theorem 1.4 below) and the Dold manifold P (m, 1) with
m > 1. The paper is organized as follows.

In Section 2 we discuss some general properties of the sets Ek, E
◦
k and Es

k.

Section 3 contains the computational part of the paper. We first describe the
sets Ek(X), E◦

k(X) and Es
k(X) when X is a projective space. The description of

these sets when X is the real projective space is arrived at by looking at certain
canonical bundles over X. The case when X is a complex projective space
follows from a general result that we prove about spaces whose cohomology ring
is generated by the second cohomology (see Proposition 3.2).

Section 3.3 deals with the computation of the sets Ek(X), E◦
k(X) and Es

k(X)
when X = Sm × Sn is a product of two spheres with restrictions on k,m, n (see
Theorem 1.4 below for the precise statement). It is a classical result of Milnor [9]
and Atiyah-Hirzebruch [1] that if n �= 2, 4, 8 is even, then En(S

n) = 2Hn(Sn;Z)
(see also [14, Theorem 1.2] for a geometric proof of this fact). In particular, in
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these cases a generator of Hn(Sn;Z) is never an Euler class. The main theorem
of this section is the following.

�	��
�� 1.4� Let X = Sm × Sn.

(1) If m,n ≡ 3 (mod 8), then Ek(X) = 0 for 1 ≤ k < m+ n and
Es

m+n(X) = Em+n(X) = 2Hm+n(X;Z).

(2) If n is even, and n �= m, then

En(X) =

{
2Hn(X;Z) if n �= 2, 4, 8
Hn(X;Z) if n = 2, 4, 8

(3) If m = 1 and n ≡ 5 (mod 8), then Es
n+1(X) = En+1(X) = 2Hn+1(X;Z).

Note that the conclusion 2Hm+n(X;Z) = Em+n(X) in the cases (1) and
(3) in the above theorem are not true in general. Indeed, if X = S3 × S5,
then the inclusion 2H8(X;Z) ⊆ E8(X) is strict. We shall make a more general
observation later (see Example 2.10 below).

Finally, in Section 3.9 we discuss the computation of the sets Ek, E
◦
k and

Es
k when X is the Dold manifold P (m, 1) with m > 1. We give a complete

description of the sets Ek(P (m, 1)) except in the case when m is even and
k = m+2 (see Proposition 3.13). The computations depend upon the existence
of certain canonical bundles over the Dold manifolds (see [12], [13]). It follows
from our computations that the assumption that k is even in Theorem 1.3 is
essential. The main theorem of this section is the following.

�	��
�� 1.5� Let m > 1 be an odd integer. Then we have

E◦
m(P (m, 1)) �= ∅, Em(P (m, 1)) �= 0 and E◦

m(P (m, 1)) ∩ Em(P (m, 1)) = ∅.

2. Generalities

In this section we prove some general facts about the sets Ek, E
s
k and E◦

k .
Throughout, we follow the notations in [10].

Recall that if ξ is an oriented k-plane bundle over X, then its Euler class e(ξ)
is an element of Hk(X;Z). Let uξ ∈ Hk(E(ξ), E(ξ)0;Z) be the Thom class of ξ
and ϕ : Hk(X;Z) −→ H2k(E(ξ), E(ξ)0;Z) be the Thom isomorphism, then the
Euler class e(ξ) of ξ is by definition e(ξ) := ϕ−1(uξ � uξ). If k is odd, then
the (graded) commutativity of the cup product shows that 2e(ξ) = 0. For an
oriented k-plane bundle ξ, the mod 2 reduction of the Euler class e(ξ) equals
the top Stiefel-Whitney class wk(ξ) of ξ.

Given a space X, we have inclusions Es
k(X) ⊆ Ek(X) ⊆ Hk(X;Z) and in

general all the inclusions can be strict. The set Ek(X) is inverse closed as
changing the orientation changes the sign of the Euler class. Also, 0 ∈ Ek(X)
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and hence the set Ek(X) is non empty. On the other hand, as E◦
k(X) consists of

spherical classes, 0 /∈ E◦
k(X). It is well known that a real line bundle is orientable

if and only if it is trivial. Thus for any space X the set E1(X) is trivial (meaning
E1(X) = {0}, which will simply be denoted by E1(X) = 0).

We first note what is known about the set Ek(S
n). We begin by recalling the

following result.

�	��
�� 2.1� ([1], [9], [14, Theorem 1.2]) If n �= 2, 4, 8 is even, then the
Euler class of any n-plane bundle over Sn is an even multiple of a generator of
Hn(Sn;Z).

In particular, the above theorem implies that if n is even and n �= 2, 4, 8, then
En(S

n) ⊆ 2Hn(Sn;Z). The set Ek(S
n) for the spheres can now be described

completely.

Example 2.2. If n is odd then clearly En(S
n) = 0. It is known that Euler

classes (of the underlying real bundle) of the canonical (complex, quaternionic
and octonionic) line bundles over S2 = CP1, S4 = HP1 and S8 = OP1 are
generators of H2(S2;Z), H4(S4;Z), and H8(S8;Z) respectively. Since there are
maps f : Sn −→ Sn of arbitrary degrees and as the Euler class is natural, it
follows that En(S

n) = Hn(Sn;Z) if n = 2, 4, 8. It is well known (see [10]) that if
n is even, then the Euler class of the tangent bundle of Sn is twice a generator.
Thus if n is even, then every element of 2Hn(Sn;Z) is the Euler class of some
n-plane bundle over Sn. In other words, 2Hn(Sn;Z) ⊆ En(S

n). Together with
Theorem 2.1, this implies that En(S

n) = 2Hn(Sn;Z) if n is even and n �= 2, 4, 8.
Thus, in this case, the generator of Hn(Sn;Z) does not occur as an Euler class
of some bundle over Sn.

We begin by making some easy observations. First note that if f : X −→ Y is
a continuous map, then as the Euler class is natural it follows that f∗(Ek(Y )) ⊆
Ek(X) and f∗(Es

k(Y )) ⊆ Es
k(X).

����
 2.3� Let X be a topological space and A a retract of X.

(1) If X is paracompact, then we have E1(X) = 0 and E2(X) = H2(X;Z).

(2) If Ek(A) �= 0, then Ek(X) �= 0.

P r o o f. As noted before, the equivalence of orientability and triviality for line
bundles implies E1(X) = 0. Let Vect1C(X) denote the group of isomorphism
classes of complex line bundles over X. That E2(X) = H2(X;Z) follows from
the fact that the first Chern class map

c1 : Vect1C(X) −→ H2(X;Z)

is an isomorphism. This completes the proof of (1).

To proof of (2) is routine and is therefore omitted. �
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Part (2) of the above lemma remains true with Ek replaced by Es
k and E◦

k .

The nature of the sets En(S
n) of the spheres forces similar restrictions on

the sets En(X) of n-manifolds and more generally on that of n-dimensional
CW -complexes.

Recall ([7, Corollary 3.28, p. 238]) that if X is a connected closed orientable
n-manifold, then Hn−1(X;Z) is torsion free and hence the top dimensional inte-
gral cohomology is infinite cyclic, whereas if X is nonorientable, then Hn(X;Z)
= 0 and the torsion subgroup of Hn−1(X;Z) is cyclic of order two and hence
the top dimensional integral cohomology is also cyclic of order two.

�	��
�� 2.4� Let X be a connected, closed n-manifold.

(1) Let X be orientable. Then En(X) = 0 if n is odd. If n ∈ {2, 4, 8} then
En(X) = Hn(X;Z). If n is even and n �= 2, 4, 8, then 2Hn(X;Z) ⊆
En(X), and in this case, equality holds if and only if for any oriented
n-plane bundle ξ over X, the top Stiefel-Whitney class wn(ξ) = 0.

(2) If X is nonorientable, then, En(X) = Hn(X;Z) if and only if there exists
an orientable n-plane bundle ξ over X with wn(ξ) �= 0.

P r o o f. Assuming X is orientable, Hn(X;Z) = Z. If n is odd, it is clear
that En(X) = 0 as Hn(X;Z) is torsion free. So assume that n is even. Let
f : X −→ Sn be a degree 1 map, then the homomorphism f∗ : Hn(X;Z) −→
Hn(S

n;Z) is an isomorphism. As Hn−1(X;Z) is torsion free the top dimen-
sional cohomology is the dual of the top dimensional homology and hence the
homomorphism f∗ : Hn(Sn;Z) −→ Hn(X;Z) in cohomology is also an isomor-
phism. In view of Example 2.2, if n ∈ {2, 4, 8} it follows that

En(X) ⊇ f∗(En(S
n)) = f∗(Hn(Sn;Z)) = Hn(X;Z).

If n is even and n /∈ {2, 4, 8}, then
En(X) ⊇ f∗(En(S

n)) = f∗(2Hn(Sn;Z)) = 2Hn(X;Z)

as f∗ is an isomorphism. Finally, it is clear that 2Hn(X;Z) = En(X) if and
only if for any oriented n-plane bundle ξ, wn(ξ) = 0. This proves (1).

Finally if X is a closed, nonorientable n-manifold, then Hn(X;Z) ∼= Z2∼= Hn(X;Z2). Thus, En(X) = Hn(X;Z) if and only if there exists an orientable
n-plane bundle ξ with wn(ξ) �= 0. This completes the proof of the theorem. �

A similar statement holds in the case when X is an even dimensional
CW -complex. The proof is an application of the classical Hopf classification
theorem.
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�
��������� 2.5� Suppose X is an n-dimensional CW -complex with n even. If
n ∈ {2, 4, 8}, then En(X) = Hn(X;Z). In all other cases 2Hn(X;Z) ⊆ En(X).

P r o o f. It is well known, by the Hopf classification theorem, for example, that
there is an bijection [X,Sn] ↔ Hn(X;Z) given by [f ] 
→ f∗(u) where u ∈
Hn(Sn;Z) is a generator. Thus, given a cohomology class e ∈ Hn(X;Z), there
exists a map fe : X −→ Sn with f∗

e (u) = e. If n ∈ {2, 4, 8}, then u = e(ξ)
for some orientable n-plane bundle over Sn and hence e = f∗

e (u) = f∗
e (e(ξ)) =

e(f∗
e (ξ)). Consequently, En(X) = Hn(X;Z).

Now suppose that n /∈ {2, 4, 8} is even. Let e ∈ Hn(X;Z). As 2Hn(Sn;Z) =
En(S

n), it follows that 2u ∈ En(S
n) and hence 2e = f∗

e (2u) ∈ En(X). Thus
2Hn(X;Z) ⊆ En(X). This completes the proof. �

Remark 2.6� The inclusions 2Hn(X;Z) ⊆ En(X) above can be strict. For
example, if X is a smooth, closed oriented n-manifold with the top Stiefel-
Whitney class wn(X) �= 0, then the inclusion 2Hn(X;Z) ⊆ En(X) is always
strict in view of Theorem 2.4(1). As a concrete example consider X = CP

n with
n even. Then w2n(X) �= 0 and hence the inclusion 2H2n(X;Z) ⊆ E2n(X) is
strict.

Recall that a k-plane bundle ξ is stably trivial if the Whitney sum ξ ⊕ εn is
trivial for some n. Here εn denotes the trivial n-plane bundle.

�
��������� 2.7� Let X be a topological space.

(1) Let ξ be a stably trivial k-plane bundle over X. Then e(ξ) ∈ 2Hk(X;Z).
Thus, if every orientable k-plane bundle ξ over X is stably trivial, then
Es

k(X) = Ek(X) ⊆ 2Hk(X;Z).

(2) If X is compact and K̃O(X) = 0, then Es
k(X) = Ek(X) ⊆ 2Hk(X;Z) for

all k ≥ 1.

P r o o f. As ξ is stably trivial the Whitney sum ξ⊕εn is trivial for some n. Thus,
by the Whitney product theorem, the total Stiefel-Whitney class w(ξ) = 1.
Hence the top Stiefel-Whitney class wk(ξ) = 0. As the Euler class e(ξ) reduced
mod 2 is wk(ξ), it follows that e(ξ) ∈ 2Hk(X;Z). This proves (1).

Now if X is compact, then the stable equivalence classes of vector bundles

over X can be identified with the reduced (real) K-theory K̃O(X) of X [8].

Thus if K̃O(X) = 0, then every vector bundle over X is stably trivial and (2)
follows from (1). �

Remark 2.8� We remark that the converse to Proposition 2.7(2) is not true. Let

X = S16. Note that Ek(X) ⊆ 2Hk(X;Z) for all k ≥ 1. However, K̃O(X) ∼= Z.
Lemma 2.9(3) below shows that Es

k(X) = Ek(X).
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����
 2.9� Let X be a space. Then

(1) Es
k(X) ⊆ 2Hk(X;Z).

(2) If X is a closed, connected, nonorientable n-manifold, then Es
n(X) = 0.

(3) If n is even and X is a connected, closed, oriented n-manifold,
then Es

n(X) = 2Hn(X;Z).

P r o o f. (1) follows from Proposition 2.7. Part (2) follows from (1) since for
such a manifold Hn(X;Z) ∼= Z2.

To prove (3), we first look at the case when X = Sn. By (1), Es
n(S

n) ⊆
2Hn(Sn;Z). The tangent bundle τ of Sn is stably trivial and its Euler class
e(τ) is twice a generator. Pulling back the tangent bundle by a self map of
degree d gives us a stably trivial bundle over Sn with Euler class 2d times a
generator. Thus for an even dimensional sphere Sn, Es

n(S
n) = 2Hn(Sn;Z).

Now suppose that X is a connected, closed, oriented n-manifold. Let
f : X −→ Sn be a degree 1 map. Then as f∗ : Hn(Sn;Z) −→ Hn(X;Z) is
an isomorphism we see that

2Hn(X;Z) = f∗(2Hn(Sn;Z)) = f∗(Es
n(S

n)) ⊆ Es
n(X).

Thus, by (1), Es
n(X) = 2Hn(X;Z). This completes the proof. �

Note that if n is odd, then Es
n(S

n) = En(S
n) = 0. The following example

shows that the sets Ek(X) and Es
k(X) need not be equal when k is even.

Example 2.10. Let X be a closed, connected orientable n manifold with n ∈
{2, 4, 8}. Then, by Theorem 2.4 and Lemma 2.9

En(X) = Hn(X;Z) �= 2Hn(X;Z) = Es
n(X).

We do not know of such an example in the cases n /∈ {2, 4, 8}.
We shall consider computations of the sets Ek, E

s
k and E◦

k in the next section.
It turns out that whenever we have a complete description of the set Ek, it is
always a subgroup of Hk. We do not know of a single example where it is not. In
this context we mention the proposition below. Although the proof is elemental,
the result is not needed in the paper, and therefore not proved.

�
��������� 2.11� Let X be a pointed space with a pointed co-multiplication
µ : X −→ X ∨X. Then, Ek(X) is a subgroup of Hk(X;Z) for all k ≥ 1.

It would be interesting to decide whether or not Ek(X) is always a subgroup
of Hk(X;Z).

We end this section by proving some general results about spherical classes.
Given a k-plane bundle ξ over X, let

Sk−1 ↪→ S(ξ) −→ X
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denote the associated sphere bundle with fiber the sphere Sk−1. The following
is implicit in the results of [5].

�
��������� 2.12� Let X be a n-dimensional CW -complex and k ∈ N a fixed
even integer. If the homotopy group πk(X) is finite, then E◦

k(X) = ∅.
P r o o f. If x ∈ E◦

k(X), then by Theorem 1.3, 2N(k, n) · x = e(ξ) for some
oriented k-plane bundle ξ over X. Note that, in this case, e(ξ) is also spherical.
As πk−1(S

k−1) ∼= Z, the connecting homomorphism in the exact homotopy
sequence

· · · −→ πk(S
k−1) −→ πk(S(ξ)) −→ πk(X) −→ πk−1(S

k−1) −→ · · ·
of the associated sphere bundle Sk−1 ↪→ S(ξ) −→ X is clearly zero. Therefore,
for any map f : Sk −→ X, we have f∗(e(ξ)) = 0. This contradiction completes
the proof. �
Remark 2.13� The above idea is used in [5] to prove that whether k is even or
odd, and whether πk(X) is finite or infinte, if the connecting homomorphism

πk(X) −→ πk−1(S
k−1)

in the exact homotopy sequence of the associated sphere bundle of an oriented
k-plane bundle ξ is zero, then e(ξ) is not spherical. Thus, under these assump-
tions, we always have E◦

k(X) ∩ Ek(X) = ∅. As an extreme situation consider
X = CP

n, where E◦
2n(X) = ∅ but E2n(X) = H2n(X;Z) (see Proposition 3.2).

����
 2.14� Let X be a space with finitely generated integral homology in
dimensions k and (k − 1) for some k ≥ 1.

(1) If Hk(X;Z) is torsion, then E◦
k(X) = ∅,

(2) If the Hurewicz homomorphism

ϕ : πk(X) −→ Hk(X,Z)

is the zero homomorphism, then E◦
k(X) = ∅.

(3) If Hk(X;Z) is not torsion and the Hurewicz homomorphism

ϕ : πk(X) −→ Hk(X;Z)

has finite cokernel, then E◦
k(X) equals the elements of infinite order in

Hk(X;Z).

P r o o f. If Hk(X;Z) is torsion, then by the universal coefficient theorem, so is
Hk(X;Z). Since spherical classes are of infinite order (1) follows. Next, let
e ∈ Hk(X;Z) and let f : Sk −→ X be any map. We compute

〈f∗(e), σ〉 = 〈e, f∗(σ)〉 = 〈e, ϕ[f ]〉 = 〈e, 0〉 = 0,

where σ ∈ Hk(Sk;Z) is a generator. This shows that f∗(e) = 0. This proves (2).
Finally, note that as Hk(X;Z) is not torsion, Hk(X;Z) has elements of infinite
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order. Given e ∈ Hk(X;Z) of infinite order, find x ∈ Hk(X;Z) with 〈e, x〉 �= 0.
Let n be such that nx ∈ im(ϕ). If nx = f∗(σ) for some f : Sk −→ X then the
computation

〈f∗(e), σ〉 = 〈e, f∗(σ)〉 = 〈e, nx〉 �= 0

shows that f∗(e) �= 0. This proves (3). �

In particular, if X is (k − 1)-connected with k ≥ 2, then the Hurewicz map
ϕ : πk(X) −→ Hk(X;Z) is an isomorphism and if πk(X) is not torsion then
E◦

k(X) equals the elements of infinite order in Hk(X;Z).

Example 2.15. Let k > 1 be an odd integer. It is easy to check that the Hurewicz
homomorphism

ϕ : πk(RP
k) −→ Hk(RP

k;Z)

is multiplication by 2 between two infinite cyclic groups. Thus, by part (3)
of the above proposition, E◦

k(RP
k) equals the nonzero elements in the group

Hk(RPk;Z) ∼= Z.

Example 2.16. Let Vk(R
2k) denote the Stiefel manifold of orthonormal k-frames

in R
2k. Let k be even, then by [8, Proposition 11.2, p. 91], Vk(R

2k) is (k − 1)-con-
nected and πk(Vk(R

2k)) ∼= Z. Hence by the Hurewicz isomorphism theorem, the
Hurewicz homomorphism

ϕ : πk(Vk(R
2k)) ∼= Z −→ Hk(Vk(R

2k);Z)

is an isomorphism.

Thus, E◦
k(Vk(R

2k)) equals the nonzero elements in Hk(Vk(R
2k);Z) ∼= Z.

Walschap [14] has shown that a generator of Hk(Vk(R
2k);Z) ∼= Z (with k even

and k �= 2, 4, 8) cannot be the Euler class of any oriented k-plane bundle over
Vk(R

2k).

3. Computations

In this section we shall determine the Ek, E
s
k and E◦

k of real and complex pro-
jective spaces and the Dold manifolds P (m, 1). We begin with the real projective
spaces.

�
��������� 3.1� Let n ∈ N ∪ {∞}, then for real projective space RPn,

(1) if n is even, then Ek(RP
n) = Hk(RPn;Z), Es

k(RP
n) = 0 and E◦

k(RP
n) = ∅

for all k ≥ 1,

(2) if n is odd, then Ek(RP
n) = Hk(RPn;Z) and E◦

k(RP
n) = ∅ for 1 ≤ k < n,

En(RP
n) = 0, Es

k(RP
n) = 0, and E◦

n(RP
n) equals the non trivial elements

of Hn(RPn;Z).

(3) if n = ∞, then Ek(RP
∞) = Hk(RP∞;Z), Es

k(RP
∞) = 0 and E◦

k(RP
∞) = ∅

for all k ≥ 1.
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P r o o f. Suppose n is even. Then the integral cohomology groups of the projec-
tive space are given by

Hk(RPn;Z) =

⎧⎨
⎩

Z if k = 0
Z2 if k is even and 1 < k ≤ n
0 otherwise.

Thus if k is odd, then clearly Hk(RPn;Z)=0, so that the assertions about Ek,
Es

k and E◦
k are obvious. So assume that k is even. Let γ1

n denote the canonical
line bundle over RPn and kγ1

n denote the k-fold Whitney sum of γ1
n with itself.

Then clearly kγ1
n is an orientable k-plane bundle over RPn and

wk(kγ
1
n) = ak �= 0

if k ≤ n. Here a ∈ H1(RPnZ2) ∼= Z2 is the unique nonzero element. Thus
e(kγ1

n) �= 0. By Lemma 2.9, Es
k(RP

n) = 0 for all k ≥ 1. Since all the cohomology
groups are finite, E◦

k(RP
n) = ∅ for all k ≥ 1. This proves (1).

Now assume that n is odd. Then

Hk(RPn;Z) =

⎧⎨
⎩

Z if k = 0, n
Z2 if k is even and 1 < k < n
0 otherwise.

The proofs in this case are similar to the case (1). That En(RP
n) = 0 follows

from the fact Hn(RPn;Z) ∼= Z. Example 2.15 shows that E◦
n(RP

n) has the
required form. This proves (2).

Finally, for the infinite real projective space we have

Hk(RP∞;Z) =

⎧⎨
⎩

Z if k = 0
Z2 if k is even and k > 1
0 otherwise.

The proof now is similar to the cases above. Indeed, we now work with the
canonical line bundle γ1 = γ1(R∞) over G1(R

∞) = RP
∞. �

We now prove a general fact about Ek(X) and E◦
k(X) for spaces X whose

cohomology ring is generated by the second cohomology.

�
��������� 3.2� Let X be a simply connected space with H2(X;Z) finitely
generated. If the integral cohomology ring H∗(X;Z) is generated by H2(X;Z),
then

(1) Ek(X) = Hk(X;Z) for all k ≥ 1;

(2) E◦
k(X) = ∅ for k > 2 and E◦

2 (X) equals the elements of infinite order in
H2(X;Z).
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P r o o f. Assume that k = 2r is even and let c ∈ Hk(X;Z). Let c = x1 · · ·xr

where xi ∈ H2(X;Z). Let Li, 1 ≤ i ≤ r be complex line bundles over X with
c1(Li) = xi. Then it is clear that

c = e
(
(L1 ⊕ · · · ⊕ Lr)R

)
.

This proves (1).

Finally, as spherical cohomology classes cannot be the cup product of lower
dimensional classes, we have E◦

k(X) = ∅ for k > 2. As X is simply connected,
the Hurewicz homomorphism

ϕ : π2(X) −→ H2(X;Z)

is an isomorphism. Lemma 2.14 now completes the proof of (2). �

There is a large class of spaces which satisfy the conditions of the above propo-
sition. Indeed, it is well known that complex projective spaces, flag manifolds
and quasi-toric manifolds [2] satisfy the conditions of the above proposition.

3.3. Products of spheres

In this section we obtain partial computations of the sets Ek for products
of spheres and give a proof of Theorem 1.4. As a consequence we show that
cohomology generators of certain products of spheres cannot be realized as an
Euler class.

As a motivation for the results of this section we begin by considering the
following example.

Example 3.4. Suppose m,n ≥ 3 are odd integers with m ≤ n. Let X = Sm×Sn.
Then clearly,

Es
m(X) = Em(X) = 0 = En(X) = Es

n(X).

The integral cohomology ring structure of X shows that the cohomology group
Hm+n(X;Z) is generated by the cup product ab where a ∈ Hm(X;Z) and
b ∈ Hn(X;Z) are generators. Hence E◦

m+n(X) = ∅. The sequence of maps

Sm ↪→ Sm ∨ Sn ↪→ Sm × Sn π1−→ Sm,

for example, shows that E◦
m(X) equals the elements of infinite order in

Hm(X;Z). Similarly for E◦
n(X). Now, as m + n is even, Theorem 2.4 implies

that

2Hm+n(X;Z) ⊆ Em+n(X).

We shall show that this is actually an equality if m,n ≡ 3 (mod 8).

Recall that if f : X −→ Y is a map between spaces, then f∗(Ek(Y )) ⊆ Ek(X)
for all k. We first exhibit a sufficient condition for this inclusion to be an equality.
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����
 3.5� Let f : X −→ Y and g : Y −→ X be maps between spaces. Assume
that

f∗ : Hn(Y ;Z) −→ Hn(X;Z)

is an isomorphism for some n ≥ 1 and (f∗)−1 = g∗. Then f∗(En(Y )) = En(X).

P r o o f. Note that g∗(En(X)) ⊆ En(Y ). The sequence of inclusions

En(X) = f∗g∗(En(X)) ⊆ f∗(En(Y )) ⊆ En(X)

forces the equality f∗(En(Y )) = En(X). �
����
 3.6� Let n be an integer with n ≡ 5 (mod 8) or n ≡ 6 (mod 8). Then
every orientable vector bundle over S1 × Sn is stably trivial.

P r o o f. A nonorientable vector bundle is never stably isomorphic to a trivial
bundle. If π1 : S

1 × Sn −→ S1 denotes the projection, then the pullback π∗
1(γ

1
1)

is clearly a nonorientable bundle over S1×Sn. Here γ1
1 denotes the canonical line

bundle over S1 = RP
1. The lemma now follows from the fact that K̃O(S1×Sn)

∼= K̃O(S1) ∼= Z2. �

We are now in a position to prove Theorem 1.4

P r o o f o f T h e o r e m 1.4. We first prove (1). Note that m and n are both
odd. As Sm × Sn has cohomology only in dimensions 0, m, n and m + n it
follows that Ek(S

m × Sn) = 0 if 1 ≤ k < m+ n. As (m+ n) ≡ 6 (mod 8), Bott
periodicity in real K-theory implies that

K̃O(Sm) ∼= K̃O(Sn) ∼= K̃O(S3) = 0

and
K̃O(Sm+n) ∼= K̃O(S6) = 0.

By Theorem 2.4,

2Hm+n(Sm × Sn;Z) ⊆ Em+n(S
m × Sn).

The fact that this is an equality will follow from Proposition 2.7 once we check

that K̃O(Sm × Sn) = 0. The sequence of maps

Sm ∨ Sn ↪→ Sm × Sn −→ Sm+n = (Sm × Sn)/(Sm ∨ Sn)

gives rise to an exact sequence (see [8])

K̃O(Sm+n) −→ K̃O(Sm × Sn) −→ K̃O(Sm ∨ Sn)

in reducedK-theory. As noted earlier, K̃O(Sm+n) = 0. There is an isomorphism

K̃O(Sm ∨ Sn) −→ K̃O(Sm) ⊕ K̃O(Sn). This shows that K̃O(Sm × Sn) = 0.
This completes the proof of (1).

We now prove (2). Fix a point in Sm and consider the corresponding in-
clusion Sm ↪→ Sm × Sn. This clearly induces an isomorphism in cohomology
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in dimension n. The inverse of this isomorphism in cohomology is induced on
the space level by the projection Sm × Sn −→ Sn. Lemma 3.5 together with
Theorem 2.4 now completes the proof of (2).

Finally, (3) follows from Theorem 2.4, Proposition 2.7, and Lemma 3.6. This
completes the proof of the theorem. �

��
���

� 3.7�

(1) If m,n ≡ 3 (mod 8), then a generator of Hm+n(Sm × Sn;Z) cannot be
realized as an Euler class of an oriented bundle over Sm × Sn.

(2) If n is even, n �= 2, 4, 8, and n �= m, then a generator of Hn(Sm × Sn;Z)
cannot be realized as an Euler class of an oriented bundle over Sm × Sn.

(3) If m = 1 and n ≡ 5 (mod 8), then a generator of Hn+1(S1×Sn;Z) cannot
be realized as an Euler class of an oriented bundle over S1 × Sn.

Example 3.8. Let m,n ∈ N be integers that are either both even or both odd.
Then, by Lemma 2.9, Es

m+n(S
m × Sn) = 2Hm+n(Sm × Sn;Z).

3.9. Dold manifolds

Recall that the Dold manifold P (m,n) is a (m + 2n)-dimensional mani-
fold defined as the quotient of Sm × CP

n by the fixed point free involution
(x, z) 
→ (−x, z̄). This gives rise to a two-fold covering

Z2 ↪→ Sm × CP
n −→ P (m,n),

and via the projection Sm × CPn −→ Sm, a fiber bundle

CP
n ↪→ P (m,n) −→ RP

m

with fiber CPn and structure group Z2. In particular, for n = 1, we have a fiber
bundle

S2 ↪→ P (m, 1) −→ RP
m.

The mod-2 cohomology ring of P (m,n) is given by [3]

H∗(P (m,n);Z2) = Z2[c, d]/(c
m+1 = dn+1 = 0)

where c ∈ H1(P (m,n);Z2) and d ∈ H2(P (m,n);Z2). The total Stiefel-Whitney
class w(P (m,n)) of P (m,n) is given by (see [13, Theorem 1.5])

w(P (m,n)) = (1 + c)m(1 + c+ d)n+1.

Thus the Dold manifold P (m,n) is orientable if and only if m+ n+ 1 is even.

The integral cohomology groups of the Dold manifolds are also well under-
stood [4]. We concentrate on Dold manifolds P (m, 1) below with m > 1. The
integral cohomology of P (m, 1) is described by the following cases:
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• If m is even, then

Hk(P (m, 1);Z) =

⎧⎨
⎩

Z k = 0,m+ 2
0 k = 1
Z2 2 ≤ k ≤ m+ 1

• If m is odd and m �= 1, then

Hk(P (m, 1);Z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z k = 0
0 k = 1
Z2 2 ≤ k ≤ m− 1
Z⊕ Z2 k = m
0 k = m+ 1
Z2 k = m+ 2

Remark 3.10� The paper of Fujii ([4, Proposition 1.6]) describing the integral
cohomology of P (m,n) has a typographical error. When m is odd, the indexing
set for i should be i = 1, 2, . . . , [m

2
] + 1 and not just i = 1, 2, . . . , [m

2
].

We now describe the sets Ek, E
s
k and E◦

k for the Dold manifold P (m, 1). We
shall make use of the fact that over P (m,n) there exist certain canonical vector
bundles.

�
��������� 3.11� ([12, p. 86], [13, Proposition 1.4]) Over P (m,n),

(1) there exists a line bundle ξ with total Stiefel-Whitney class w(ξ) = 1 + c;

(2) there exists a 2-plane bundle η with total Stiefel-Whitney class
w(η) = 1 + c+ d.

Note that all the bundles in the above proposition are nonorientable.

Remark 3.12� The Dold manifold X = P (1, 1) is a compact nonorientable
3-manifold. By the remarks preceeding Theorem 2.4, it follows that H3(X;Z)
= Z2. By Lemma 2.3, E1(X) = 0 and E2(X) = H2(X;Z). Let ξ and η be the
bundles overX as in Proposition 3.11. Then, as w1(ξ⊕η) = 2c = 0, the Whitney
sum ξ⊕η is an orientable 3-plane bundle over X and w3(ξ⊕η) = cd �= 0. Hence,
by Theorem 2.4(2), E3(X) = H3(X;Z).

����������� Throughout the rest of the paper m will be assumed to be greater
than 1.

�
��������� 3.13� For the Dold manifold P (m, 1),

(1) if m is even, then for all k, 1 ≤ k ≤ m + 1, we have Ek(P (m, 1)) =
Hk(P (m, 1);Z);

(2) if m is odd, then Ek(P (m, 1)) = Hk(P (m, 1);Z) for 1 ≤ k ≤ m + 2 and
k �= m. When k = m, Ek(P (m, 1)) = Z2;
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(3) if m is even, then Es
k(P (m, 1)) = 0 for k �= m + 2 and Es

m+2(P (m, 1)) =
2Hm+2(P (m, 1);Z);

(4) if m is odd, then Es
k(P (m, 1)) = 0 for all k, 1 ≤ k ≤ m+ 2.

P r o o f. Let m be even. For k = 1, 2, the claim follows from Lemma 2.3. Since
in the range 2 ≤ k ≤ m+1 the cohomology groups Hk(P (m, 1);Z) are of order 2,
we only have to exhibit an orientable k-plane bundle over P (m, 1) with nonzero
Euler class. Let ξ and η be the bundles in Proposition 3.11. Clearly, both ξ and
η are nonorientable. If k is even and 2 ≤ k ≤ m, then the k-fold Whitney sum
kξ of ξ with itself is clearly orientable and w(kξ) = (1 + c)k. In particular,

wk(kξ) = ck �= 0.

This forces the Euler class e(kξ) of the orientable bundle kξ to be nonzero.
Finally, if k = 2t+ 1 is odd, then the k-plane bundle (2t− 1)ξ ⊕ η is orientable
and clearly

wk((2t− 1)ξ ⊕ η) = c2t−1d �= 0.

In this case too the Euler class e((2t− 1)ξ ⊕ η) �= 0. This proves (1).

The proof of (2) when k �= m is similar to the above case. When m = 2t+ 1
is odd, then for the m-plane bundle (2t− 1)ξ ⊕ η we have, as before,

wm((2t− 1)ξ ⊕ η) = c2t−1d �= 0.

The fact that m is odd and Hm(P (m, 1);Z) = Z⊕ Z2 now implies that

0 �= e((2t− 1)ξ ⊕ η) ∈ Z2 ⊆ Z⊕ Z2,

which completes the proof of (2).

The cases (3) and (4) follow from Lemma 2.9 and the case (2). This completes
the proof of the proposition. �

Although this result fully computes the set Em+2(P (m, 1)) for m odd, we do
not have a complete description for even m. Note that when m is even, the Dold
manifold P (m, 1) is orientable and if (m + 2) �= 2, 4, 8, then by Theorem 2.4,
2Hm+2(P (m, 1);Z) ⊆ Em+2(P (m, 1)). We shall show that Em+2(P (m, 1)) is
strictly larger than 2Hm+2(P (m, 1);Z) when m is even. We first prove the
following.

�
��������� 3.14� There exists an orientable (m + 2)-plane bundle µ over
P (m, 1) with top Stiefel-Whitney class wm+2(µ) = cmd �= 0.

P r o o f. First assume that m is even. In this case P (m, 1) is an orientable
(m + 2)-dimensional manifold. Let τ denote the tangent bundle of RPm and
π : P (m, 1) −→ RP

m the sphere bundle with fiber S2. The total Stiefel-Whitney
class of the pullback π∗(τ) is evidently

w(π∗(τ)) = (1 + c)m+1.
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Hence, for the Whitney sum µ = π∗(τ)⊕ η,

wm+2(θ) = wm+2(π
∗(τ)⊕ η) = cmd �= 0.

Here η is the 2-plane bundle over P (m, 1) of Proposition 3.11 with w(η) =
1 + c+ d. Note that the Whitney sum π∗(τ)⊕ η is orientable.

If m is odd, it suffices to consider the Whitney sum µ = mξ⊕ η. Clearly, this
Whitney sum is orientable and

wm+2(µ) = wm+2(mξ ⊕ η) = cmd �= 0.

This completes the proof. �

The following is now an easy consequence of Theorem 2.4 and Proposi-
tion 3.14.

��
���

� 3.15� Let m be even. Then the inclusion 2Hm+2(P (m, 1);Z) ⊆
Em+2(P (m, 1)) is strict.

Note that P (2, 1) and P (6, 1) are orientable 4 and 8 dimensional manifolds
respectively, and hence by Theorem 2.4, the sets E4(P (2, 1)) and E8(P (6, 1))
equal the top dimensional cohomology groups. Finally, we describe the sets
E◦

k(P (m, 1)). We make use of the following fact about homotopy groups of the
spheres.

�	��
�� 3.16� ([11]) The homotopy groups πk(S
n) are all finite for k �=

n, 2n−1. If n is odd, then π2n−1(S
n) is also finite.

�
��������� 3.17� For the Dold manifold P (m, 1),

(1) if m is even, then E◦
k(P (m, 1)) = ∅ for all k ≥ 1;

(2) if m is odd, then E◦
m(P (m, 1)) equals the elements of infinite order in

Hm(P (m, 1);Z) ∼= Z⊕ Z2 while E◦
k(P (m, 1)) = ∅ if k �= m.

P r o o f. Assume that m is even. We only have to look at the case k = m + 2.
As there is a double covering

Z2 ↪→ Sm × S2 −→ P (m, 1),

it follows that

πi(P (m, 1)) ∼= πi(S
m × S2) ∼= πi(S

m)× πi(S
2)

for all i ≥ 2. The groups πm+2(S
m) and πm+2(S

2) are both finite and hence
πm+2(P (m, 1)) is also finite. We now appeal to Proposition 2.12 to conclude
that E◦

m+2(P (m, 1)) = ∅. This proves (1).
We now come to the proof of (2). First note that Hm(P (m, 1);Z) ∼= Z. This

follows from the Universal coefficients formula and the description of the coho-
mology groups of P (m, 1) at the beginning of this section. By Lemma 2.14(3),
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it is enough to check that the Hurewicz homomorphism

ϕ : πm(P (m, 1)) −→ Hm(P (m, 1);Z)

has finite cokernel. Note that

πm(P (m, 1)) ∼= πm(Sm)× πm(S2)

is either a free abelian group of rank two if m = 3 or is a direct sum of an infinite
cyclic group and a finite abelian group. It is therefore enough to check that the
Hurewicz homomorphism above is nonzero. Let π : Sm × S2 −→ P (m, 1) be the
double covering. Then

π∗ : πm(Sm × S2) −→ πm(P (m, 1))

is an isomorphism. It follows from the description of the CW -structure of
P (m, 1) ([4, pp. 50]) in that the homomorphism

π∗ : Hm(Sm × S2;Z) ∼= Z −→ Hm(P (m, 1);Z) ∼= Z

is multiplication by 2. The naturality of the Hurewicz homomorphism implies
that the Hurewicz homomorphism

ϕ : πm(P (m, 1)) −→ Hm(P (m, 1);Z)

is nonzero if and only if the Hurewicz homomorphism

ϕ : πm(Sm × S2) −→ Hm(Sm × S2;Z)

is nonzero. It is therefore enough to find a map f : Sm −→ Sm × S2 such that
the homomorphism

f∗ : Hm(Sm;Z) −→ Hm(Sm × S2;Z)

is nonzero. The composition

Sm ↪→ Sm ∨ S2 ↪→ Sm × S2

is evidently such a map. This completes the proof. �

P r o o f o f T h e o r e m 1.5. This is now immediate from the above observa-
tions. �
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