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DETERMINATION TEMPERATURE
OF A BACKWARD HEAT EQUATION
WITH TIME-DEPENDENT COEFFICIENTS

NGuYEN Huy Tuan* — NGo VaN Hoa

(Communicated by Peter Takac)

ABSTRACT. We introduce the truncation method for solving a backward heat
conduction problem with time-dependent coefficients. For this method, we give
the stability analysis with new error estimates. Meanwhile, we investigate the
roles of regularization parameters in these two methods. These estimates prove
that our method is effective.

©2012
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Slovak Academy of Sciences

1. Introduction

A classical inverse problem in connection with heat equation is the backward
heat equation, which models the problem of determining the temperature in the
past from observation of the present distribution. In general, the solution of
ill-posed problems always leads to numerical problems. Therefore, to solve such
problems numerically, it is essential to find approximate solution of ill-posed
problems which are called regularization methods. The basic idea of regulariza-
tion is to replace the original equation by a close equation involving a small
parameter €, such that the changed equation can be solved in a stable way and
its solution is close to the solution of the original equation when ¢ is small.
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In this paper, we consider the problem of finding the temperature u(z,t),
(x,t) € (0,m) x [0, T], such that

a(t) gy = ug, (z,t) € (0,7) x (0,T)
u(0,t) = wu(m,t) =0, te(0,7) (1.1)
u(z,T) = g(z), xz € (0,m)

where a(t), g(x) are given. The problem is called the backward heat problem
with time-dependent coefficient. In the simple case a(t) = 1, the problem (L))
is investigated in many papers, such as Clark and Oppenheimer [3], Denche and
Bessila [0], Tautenhahn et al [24] Melnikova et al [15, [16], ChuLiFu [4l 10, 9],
Tautenhahn[24], Trong et al [21, 22], B. Yildiz et al |25 26]. Although there
are many papers on the backward heat equation with the constant coefficient,
there are rarely works considered the backward heat with the time-dependent
coefficient, such as ([LI)). A few works of analytical methods were presented for
this problem, for example [18]. However, the authors in [I8] only used numerical
computation method and the stability theory with explicitly error estimate has
not been generalized accordingly. One of the major object of this paper is to
provide a regularization method to establish the Holder estimates for (ILI]). The
truncated regularization method is a very simple and effective method for solving
some ill-posed problems and it has been successfully applied to some inverse heat
conduction problems [2, 7, I1]. However, in many earlier works, we find that
only logarithmic type estimates in L?-norm are available; and estimates of Holder
type on [0, T] are very rare (see some remarks for more detail comparisons). In
our method, corresponding to different levels of the smoothness of the exact
solution, the convergence rates will be improved gradually.

2. The ill-posed problem

We suppose that a(t): [0,7] — R is a continuous function on [0, T satisfying
0 <p<a(t) <gq,forall t € [0,T]. Throughout this article, we denote by || - ||
the L?-norm and (-, -) denote inner product on L?(0, 7).

THEOREM 2.1. The problem (L) has a unique solution u if and only if
T
a

Z exp{2m2/ (s) ds}’<g(m),sinmx)>’2 < 0. (2.1)
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Proof. Suppose the Problem (1)) has an exact solution u € C ([0, T]; H (0,))
NC((0,7); L*(0,7)), then u can be formulated in the frequency domain

T

t) = Z exp <m2 /a(s) ds) (9(x),sin(ma)) sin(maz). (2.2)

t
This implies that

(u(z,0),sin(mx)) = exp <m2/a ds) (g(x),sin(mz)). (2.3)

Then

|u(-,0)|* = Z eXp{2m2/a(s) ds}|<g(x),sinmx)>|2 < 0.

If we get (21)), then define v(z) as the function

T

= Z exp{m2/a(s) ds}<g(x),sinm:r)>sinm:r € L0, 7).

Consider the problem

up — a(t)ugy =0,
u(0,t) = u(m,t) =0, te(0,7) (2.4)
u(z,0) = v(x), xz e (0,m)

It is clear to see that (Z4) is the direct problem so it has a unique solution u
(See [6]). We have

- ¢
x,t) = Z exp (—mQ/a(s) ds) (v(x),sinmz) sin ma. (2.5)
m=1 0
Let ¢t =T in (2.1]), we obtain

T)= Z (g(),sin(mz)) sinmz = g(z).

Hence, u is the unique solution of (L.J).

939

Unauthenticated
Download Date | 2/3/17 10:53 AM



NGUYEN HUY TUAN — NGO VAN HOA

THEOREM 2.2. The Problem (L) has at most one solution C ([0, T]; Hj(0,))
NCH((0,7); L*(0,7)).

Proof. Let u(x,t), v(z,t) be two solutions of Problem (1)) such that u,v €
C([0,T); H3(0,m)) N CH((0,T); L*(0,7)). Put w(x,t) = u(x,t) — v(z,t). Then
w satisfies the equation

wy — a(t)wyy =0 (z,t) € (0,7) x (0,7,

w(0,t) = w(m,t) =0, te(0,7)
w(z,T) =0, z € (0,m).
Now, setting G(t fw z,t)dx (0 <t <T), and by direct computation we
get
G'(t) = 2/w(x,t)wt(fv,t) dz = 2a(t) /w(x,t)wm(x,t) dz.
0 0

Using Green formula, we obtain

= —2a(t / (2.6)

Taking the derivative of G’(t) with respect to t, one has

™

G"(t) = —4a(t) /wx(x,t)th(fv,t) dz.
0
By a simple calculation and using the integration by parts, we get

s

G"(t) = 4a(t) /wm(x,t)wt(x,t) dz

0
™

= 4a2(t)/wi(x,t) dz. (2.7)
0
Now, from (2.6 and applying the Holder inequality, we have
/wi(fv,t) dz = —/w(x,t)wm(fv,t) dz
0 0
n 2 /o >
< /w2(x,t) dz /wix(x,t) dz | . (2.8)
0 0
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Thus 2:6)—-(2Z710)—(2.8) imply
(G'(1)* < GEG"(1).

Hence by [0, Theorem 11, p. 65], which gives G(t) = 0. This implies that
u(x,t) = v(x,t). The proof is completed. d

3. Error estimates with the main results

Let p, g be positive numbers. Let a: [0,7] — R be a continuous function such
that 0 < p < a(t) < g. Let ¢° be a measured data which satisfies ||g° — g| < e.
Suppose the Problem (L)) has an exact solution u € C([0,7T]; H:(0,7)) N
C1((0,T); L?(0, 7)), then from (23] and Theorem B2l the solution u can be
formulated in the frequency domain

T

u(x,t) = Z exp <m2 /a(s) ds) (g(), sin(mz)) sin(maz) (3.1)

where (-, -) is the inner product in L?(0,7). From (B.I)), we note that the term
T

exp (m2 f a(s) ds) tends to infinity as m tends to infinity, then in order to guar-
t

antee the convergence of solution u given by (B, the coefficient (u,sinmax)

must decay rapidly. Usually such a decay is not likely to occur for the measured

data g°. Therefore, a natural way to obtain a stable approximation solution w is

to eliminate the high frequencies and consider the solution u for m < N, where

N is a positive integer. We define the truncation regularized solution as follows
T

N
uf(x,t) = Z exp <m2 /a(s) ds) (g(x), sin(mz)) sin(mz) (3.2)

and
T

N
v (x,t) = Z exp <m2 /a(s) ds) (g° (), sin(ma)) sin(maz) (3.3)

where the positive integer N plays the role of the regularization parameter.

DEFINITION 1. Let 0 < r < 0o. By H"(0, 7) we denote the space of all functions
g € L?(0,7) with the property

(1+ mQ)T|<g(JI:),sin(mar;)>|2 < 00, where g, = /g(x) sin(mz) dx.
m=1 0
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We also define the norm of H"(0,7) as follows

o0
9120 = > (1 +m2) | {g(z),sin(ma))|”.

m=1
Noting that if 7 = 0 then H"(0,7) is also L*(0, ).

THEOREM 3.1. The solution u® given in [B.2) depends continuously on g in
L?(0,7). Furthermore, we have

[0 (2, 1) — u®(z, t)|| < exp{q(T — t)N*}e.

Proof. Let u® and w® be two solutions of ([B.2)) corresponding to the final values
g and h. From (3.2)), we have

T

t) = Z exp <m2 /a(s) ds) {(g(x), sin(mz)) sin(maz), (3.4)

N T
w® (z,t) = Z exp <m2 / a(s) ds) (h(z),sin(mz)) sin(mz), (3.5)
m=1 +
for all 0 <t < T. This follows that
N z 2
luf (-, t) —w(-, 0)|* = 2 exp (mz/a ds) (9(x) ), sinma)
m=1 +
T o0
< exp{2N2/a } ZKQ(Q:) - h(a:),sinm:vﬂ2
m=1
— exp{29(T — N }lg — I (36)
Hence
lu(-,t) — (-, )| < exp{q(T — t)N?}|lg — A (3.7)

Since (3.7) and the condition ||g° — g|| < e, we have

[0 (2, 1) — u®(z, t)|| < exp{q(T — t)N?}e. (3.8)
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THEOREM 3.2. Assume that there exists the positive number I such that
lu(-,0)] < I. Let N = [k] where [-] denotes the largest integer part of a real

number with k = \/qlT ln(i), then the following convergence estimate holds for
every t € [0, T

[0 (2, t) — u(, )| < (I + 1)ear. (3.9)
where v¢ is defined in ([B.3).

Proof. Since (B.2), we have
T

u(z, t) —u(z,t) = Z exp <m2 /a(s) ds) (9(z),sin(ma)) sin(mx)

oo
= Z (u(z,t),sinmaz) sinmaz.
m=N
Thus, using the inequality (a + b)? < 2(a? + b?) and Holder inequality, we have
T

lu(-,t) —us (-, )] 72r Z exp{2m2/a(s) ds}|<g(x),sinmx>|2
m=N +

t

72r g exp{—2m2/a(s) ds|{u(z, 0),sinmx>’2}

0
exp{ 2ptN2}||u ||2

< exp{—2tpN?}I°. (3.10)
Combining (3.8) and [B.I0) then
[0° (2, ) =z, O < o7 (1) = w* GOl + Jus (5 1) = ul 1]

2 2
L elT—HON"c 4 o=tPN7

N

t
From N = \/ L ln ) and gar >eT we get the following convergence estimate

[v° (2, 1) — u(z, t)|| < eT tear]
T(I+1).
g

Remark 1. From Theorem 2.1} we find that v® is an approximation of exact
solution u. The approximation error depends continuously on the measurement
error for fixed 0 < ¢t < T. However, as ¢t — 0 the accuracy of regularized

943

Unauthenticated
Download Date | 2/3/17 10:53 AM



NGUYEN HUY TUAN — NGO VAN HOA

solution becomes progressively lower. This is a common thing in the theory of
ill-posed problems, if we do not have additional conditions on the smoothness of
the solution. To retain the continuous dependence of the solution at ¢t = 0, we
introduce a stronger a priori assumption.

THEOREM 3.3. Assume that there exist the positive numbers r, J such that

lu(, Ol 0,7 < J,
for allt € [0,T]. Let N = [k] where |.] denotes the largest integer part of a real

number with
1 1
k= |
\/Q<T ta) <€>

for a > 0. Then the following convergence estimate holds

05 (2, t) — u(z, t)|| < \/7;] <q<T1+a) ln<i>>g +eTha, (3.11)

for every t € [0,T] and where v¢ is defined in ([3.3).

Proof. We have

lu(-,t) —us (- 1)||* = Z m~ 2T‘<u(m,t),sin(mx)>’2

<N S 2| (e ) sin(m))
m=1

< N*Q’";r mZ:lu +m?) | (u(x,t), sin(mz))|*
< N*Q’”;rj?. (3.12)
Combining (3.8) and (312)) then
[0 (z,t) — u(@, )| < [Jo° (1) = u ()l + [u (1) = ul- )|

< \/gNrJ + eq(Tft)N2E

From the definition of N in this theorem, the following convergence estimate
holds
T 1 1 T2 t+a
“(x,t) — t)] < 1 J Tta,
o et =t <[5 (51 m(L)) e
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Remark 2.

1. Denche and Bessila in [5], Trong and his group [22] gave the error estimates
in the form o
c 1
o0 w0l < ) S
In recently, Chu-Li Fu and his group [4, [0, [I0] gave the error estimates is of
logarithmic order, which is similar to (I3). If » = 2, the error (B11)) is the
same order as these above results.

2. By (B.I1), the first term of the right hand side of (B.I1) is the logarithmic
form, and the second term is a power, so the order of ([B.IT]) is also logarithmic
order. Suppose that E. = ||v® — u|| be the error of the exact solution and the

approximate solution. In most of results concerning the backward heat, then
—1

(3.13)

optimal error between is of the logarithmic form. It means that E. < C (ln Z)
where [ > 0. The error order of logarithmic form is investigated in many recent
papers, such as [3, [4] 5 8, @, 10, 2T, 22} 23]. This often occurs in the boundary
error estimate for ill-posed problems. To retain the Holder order in [0,7], we
introduce the following theorem with different priori assumption.

THEOREM 3.4. Assume that there exists the positive numbers 3, L such that

Z 202 (1) < L2 (3.14)

where uy,(t) = 2 f x,t)sinmx dx. Let N = [k] where [.] denotes the largest in-
teger part of a real number with k = \/T-1|-5 ln(i) then the following convergence

estimate holds ,
I[0F (2, £) — u(z, £)]| < (L+5w) eris, (3.15)

for every t € [0,T] and where v° is defined in ([B.3]).

Proof. Since
u(z,t) —u(z,t) = Z Xp( / (s) ds) (9(x),sin(mz)) sin(mz)

oo
E a: t ,sin m:v> sinmex.

we have
oo

lu(-,t) —us (-, t)||* = 72r Z exp{—?/j’mz}exp{25m2}’<u(:c,t),sinmx>‘2

m=N
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< 72r exp{—28N?} mgN exp{25m2}‘ (u(z,t),sinma) ’2

< exp{—2ﬁ]\72}72r Z exp{2ﬁm2}|<u(a;,t),sinmx>|2
m=1

< exp{—28N?}L>. (3.16)
Combining ([3:8)) and B.16]), we get
07, €) — (e, O < 07 8) = u (o ) + (-, 8) — (-, )]
< exp{—BN?}L + exp{q(T — t)N*}e.

\/q<T1+/3> () 1

then the following convergence estimate holds

From

B B B
|05 (2, 8) — u(z, t)|| < €70 L+ e74p = ers (L+5Tiﬁ).
(]

Remark 3. Note that the error B.I5) (8 > 0) is the order of Holder type for
all ¢t € [0,T]. It is easy to see that the convergence rate of €* (0 < a) is more
quickly than the logarithmic order (ln(i))ib (b > 0) when ¢ — 0. Comparing
BI5) with the results in [3, 4] 5] 8,9, 10, 21} 22] 23], we can see that the method
in this paper give the better approximation. This showed that our method is
effective.
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