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ABSTRACT. By using the variant version of Mountain Pass Theorem, the ex-
istence of homoclinic solutions for a class of second-order Hamiltonian systems is
obtained. The result obtained generalizes and improves some known works.
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1. Introduction

Consider the second-order non-autonomous Hamiltonian system
i(t) + VF(t,u(t)) =0, (1.1)

where t € R, u € R, F € C'(R x R",R). As usual, we say that a solution u
of (LI) is a nontrivial homoclinic (to 0) if u # 0, u(t) — 0 and a(t) — 0 as
t — +oo.

The existence of homoclinic solutions for Hamiltonian systems is a classical
problem and its importance in the study of the behavior of dynamical systems
has been recognized by Poincaré [15]. Up to the year of 1990, a few of isolated
results can be found, and the only method for dealing with such problem was
the small perturbation technique of Melnikov.
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Assuming that F(t,x) = —J (L(t)z,z) + W (t,z), where L(t) is a positive def-
inite symmetric matrix-valued function for all £ € R and W is superquadratic at
infinity, many authors investigated the existence and multiplicity of homoclinic
solutions for Hamiltonian systems by critical point theory. For example, see
1 3L @ (51 [6l O 10, 11, 12) [13] [14] 16, [17] for second-order systems and [2] 22]
for first order systems. When L(t) and W (¢, z) are either independent of ¢ or
periodic in ¢, Rabinowitz [16] had proved the existence of homoclinic orbits as
the limit of solutions of a certain sequence of boundary value problems. By the
same method, several results for general Hamiltonian systems were obtained by
Izydorek and Janczewska [9], Ding and Lee [7], Tang and Xiao [18] 19} [20].

If L(t) and W (t,z) are neither autonomous nor periodic in ¢, the problem
of existence of homoclinic solutions for (I.1)) is quite different from the periodic
systems, because of the lack of compactness of the Sobolev embedding. In [17],
Rabinowitz and Tanaka studied the existence of homoclinic solutions for (L)
without periodicity assumption both for L and W. More precisely, they assumed
that the smallest eigenvalue of L(t) tends to +00 as |t| — oo, and using a variant
of the Mountain Pass Theorem without (PS) condition, obtained the following
theorem of the existence of a nontrivial homoclinic solution for (1)

THEOREM 1.1. (See [I7].) Suppose that L and W satisfy the following condi-
tions:

(L) L(t) is positive definite symmetric matriz for all t € R and there exists
l € C(R,(0,400)) such that I(t) — +oo as |t| = oo and

(L(t)x,z) > 1(t)|z|? forall teR and zeR";
(W1) W(t,z) € CH(R x R™,R) and there exists a constant 0 > 2 such that
0<OW(t,x) < (VW(t,z),z) forall teR and zeR"\{0};

(W2) |[VW (¢, x)| = o(|z|) as |z| = 0 uniformly with respect to t € R;
(W3) There exists W € C(R™,R) such that

W (t,x)| + VW (t,z)| < |W(z)| forall teR and zeR™
Then problem (1)) has a nontrivial homoclinic solution.

Recently, inspired by the papers [13| 17], Wan and Tang [21] considered the
case that F(t,z) = —K(¢,x)+ W (t, z) and obtained the following theorem which
generalized the corresponding results in [I3] and [17].
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THEOREM 1.2. (See [2I].) Suppose that (W1)—(W3) hold and the following
conditions hold:

(H1) K € C'(R x R",R) and there exists a positive constant \ such that

1
2(L(t)1:,:v) < K(t,x) < ;(L(t)m,x) forall teR and zeR",

where L(t) is a positive definite symmetric matriz-valued function for all
teR;

(H2) K‘Sl’f) — 400 as [t| = oo uniformly in x € R™"\{0};

(H3) There exists a constant Cy > 0 such that
0 <2K(t,z) — (VK(t,z),z) < Colz|? forall teR and z€R"™

Then problem (1)) has at least one nontrivial homoclinic solution.

Motivated mainly by the ideas of [17, 21], we will consider the case
F(t,x) = —K(t,z) + W(t,x)

and further study the existence of homoclinic solutions for (I]) under more
general conditions. Here is our main result.

THEOREM 1.3. Suppose that (H2), (H3) hold and the following conditions hold:

(W2)” VW (t,z) — 0 as |x| — 0 uniformly with respect to t € R;

(H1) K € CY(R x R™,R) and there erist positive constants a and b such that
a(L(t)z,z) < K(t,x) < b(L(t)z, x) forall teR and xeR",

where L(t) is a positive definite symmetric matriz-valued function for all
t € R;

(H4) There exist constant ¢ > 0, d € L*(R,R") and v > 2 such that
W(t,z) < clz|” +d(t) forall teR and zeRY
(H5) There exist a >0, B € L*(R,RT) and p > v — 2 such that
(VW (t,z),z) — 2W(t,z) > a|z|* — B(t) forall teR and zeR".
Then problem (L)) has at least one nontrivial homoclinic solution.

Remark 1.1. As pointed out in [2I], there are functions which can not be writ-

ten in the form F (¢, z) = —J (L(t)z,z)+ W (t, ), then the result here is different.

It is also remarked that the function K (¢,x) is not necessarily homogeneous of

1
degree 2 with respect to z and so | [(|&(t)]* + K(t,2))dt]? is not a norm in

R
general. From this point, our result is different from the previous ones.
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Remark 1.2. It is easy to see that (H1)’ is more general than (H1) and (W2)’
is weaker than (W2). As is known, (W1) is the so-called global Ambrosetti-
Rabinowitz condition on W which implies that W (¢, x) is superquadratic growth
at infinity, i.e.,

Wit
im V) _ L uiformlyin teR.
|z| =00 ’%’2

This kind of superquadratic condition is very important in many proofs, however,
this condition is somewhat restrictive. Here we use other weaker superquadratic
conditions (H4) and (H5) instead of (W1). We also note that the condition (W3)
is not necessary in our proof and we drop it. So we generalize and improve [21]
Theorem 1.2].

2. Proof of Theorem 1.3

Let

E= {u e H'(R,R") : H{[|u(t)|2 + (L()ult), u(t))] dt < +oo}.

Then FE is a Hilbert space with the norm given by

full = f1aae+ [ @, ua)

Further, we denote by C; positive constants. Since that £ C LP(R,R"™) for all
p € [2,00] with the imbedding being continuous, there exist positive constants
(1 and C5 such that

1
2

lulloo < Cillull, ||ullze < Caollull, forall we&FE. (2.1)

Here LP(R,R™) (2 < p < c0) denotes the Banach spaces of functions on R with
values in R™ under the norm

fuller = ([ titorr ) g

L>(R,RR™) is the Banach space of essentially bounded functions from R into R"
equipped with the norm

Julloe = esssup{[u®)] : ¢ € R}.
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For any u € F, let
1
=, /|u(t)|2 dt+/[K(t,u(t)) — W(t,u(t))] dt. (2.2)
R R
Then one can easily check that I € C1(E,R) and

(I’(u),v>=/[(u(t)vv(t))+(VK(t7u(t))7v(t))—(VW(LU(t))av(t))] di (2.3)
R

for u,v € E. It is well known that the critical points of I are classical solutions
of (LI). The following lemma is useful in our proof.

LEMMA 2.1. (See [8].) Let E be a real Banach space with its dual space E* and
suppose that I € C1(E,R) satisfies

max{1(0),I(e)} <no<n< Hulrllfpl(u)

for someny <mn, p>0 and e € E with |le|| > p. Let C > n be characterized by

€=t uas (0())

where ' = {T € C([0,1],E) : T(0) =0, Y(1) = e} is the set of continuous
paths joining 0 to e, then there exists {un}nen C E such that

I(up) = C and (1 + ||un DI (un)|| = — 0 as mn — 0o.

Proof.
Step 1.
From (W2)’, there exists py > 0 such that
VW (t,z)| < 03 lz|  forall teR and || < po, (2.4)
2

where C5 = min{},a}. From Z4), we have

1
‘/ (VW (t, sx),z)ds
0
1
/|VW (t,sx)||z|ds
0

C C
§/C§|x|23d322522]x]2 forall teR and |z|<po. (2.5)
0
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Let p= £ and S = {u€ E: |ju|| = p}, then we have
lu]loo < po,  |ullLz < Cap forall uwe S,
which together with (2.5) and (H1)’ implies that

uwzi/mwﬁm+/Kmuma—/W@mma
R R R

v

;/W@Fm+/qummmm»a—/wmmma
R R R

(1 C
mind 5. bl = 3% ol

Cs Cs
> Cyllul® = P ul? = )l = s,

v

Step 2.
From (H1)’, we have

Hm:;/m@ﬁa+/K@mma—/W@mmm

gé/m®ﬁm+/uummmm»a—/wmwmm
R

R R

1 e B y
§nmx{yb}!huﬁﬂ + (L(t)u(t), u(t))] dt !ﬁvu,(o)m

:@MW—/Wmmmm. (2.6)
R

Set ¢(s) = sT2W (t, sx) for s > 0. Then it follows from (H5) that
¢ (s) = s [-2W(t, sz) + (VW (t, 52), sz)]
> as 3|sz|t — B(t)s™3
= as' 3|zt — B(t)s™ for all (t,z) e RxR" and s> 0.

Integrating the above inequality from 1 to £ > 1, we have

B(t)

W) 2 EW )+ 7€ =@ =T E - 2)
We have by Lagrange mean-value theorem:
1
L@ =) =me e @p). (28)
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Let ug € F such that |up(t)] > 1 on a closed and non-empty interval A C R.

Then, from (2.6), (Z7) and (2.8), we have
I6w) < Cillwl¢* ~ [ Wt gun(0)
A

< Cylluo|?€® — / EW (¢, uo(t)) dt
A

- [ e = [P @ - na
A A

< Cylluo|?€® — / EW (¢, uo(t)) dt
A

= (e — €y meas(4) + C5(62 - )

< C’4||u0||2£2 —€E2C6 — "

@
-2
= &3(Cylug|* — Cs + Cs) — ameas(A)§91 In¢ — Cs,

(6" — %) meas(A) + Cs(£2 - 1)

where C5 is a positive constant and Cs = min [ W (¢, uo(t)) dt. Since p > 2,
A
01 € (2, 1), we can choose & > p; sufficiently large such that
I(€up) <0 for ||€uo|| > &o-

Step 3.
From Step 1, Step 2 and Lemma 2.1, we know that there is a sequence
{tn}nen C E such that

I(up) = C and (1 + ||un DI (un)||z+ — O as m — 0o, (2.9)

where E* is the dual space of E. In the following, we will prove that {u,}nen
is bounded in E. It follows from (22), (23)), Z9), (H3) and (H5) that

Cr > 21(up) — (I'(un), un)

= / (VW (£, tn (£)), wn (£)) — 2W (£, un (£))] dt

/ 2K (£, un () — (VE(t, n (1)), un (£))]

R

/(aun B(t))dt = /aun(t)|”dt - Cs. (2.10)
R

R
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From (2.1)), (22)), 210) and (H4), we have

;/]un(t)|2dt+/K(t,un(t))dt
R R
= I(up) + [ W(t,uy(t))dt
/

< C’9+/C|un(t)|”dt+/d(t) dt

R R
< Co+ Cro + cllun]l " / fun (£)]"

CCIViH(C% + Cg)

< Cy+Cio+ (|| (2.11)

On the other hand, from (H1)’, we have

/]un |2dt+/Kt U (t

> 2/|un(t)|2dt+/a(L(t)un(t),un(t))dt
R R

> min{ ;a} <R/[|un(t)|2 (L) un (t), un(t)) dt})

= C3|un||* (2.12)
It follows from (211 and (ZI2) that

Cslun||® < Cy + +Cho +

v—p
«Cr MO+ G8) (2.13)
(e

Since p > v — 2, we obtain from ([2Z.I3) that ||u,| is bounded in E.
Going to a subsequence if necessary, we may assume that there exists u € F

such that u,, — u as k — oco. In order to prove our theorem, it is sufficient to
show that I’(u) = 0. For w € C§°(R,R"™), we have

/(un(t),w(t))dt—>/(u(t),u'}(t))dt as n — oo.
R

R

Noting that
(VK (t, un), w)| < sup(VK(E, z))l|lw]

for te€suppw and |x| < sup||unl,
n
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where suppw = {t eR: w(t) # O}, it follows from (H1)’ and Lebesgue domi-
nated convergence theorem that

/(VK(t,un(t)),w(t))dt N /(VK(t,u(t)),w(t))dt as - oo.
Similarly,

/(VW(t,un(t)),w(t))dt = /(VW(t,u(t)),w(t))dt as - 0.

Hence, we have
(I'(w),w) = lim (I'(uy,),w) = 0.

n—o0
Since C§°(R,R™) is dense in E, we get I'(u) = 0, i.e., u is a critical point of I.
Step 4.
We will prove that u is a nontrivial solution. Since u, — w in L{S (R, R"™),
Uy, — u in L?([-B, B],R") for all B < 4+o00. Hence, it is sufficient to show that
there is B > 0 such that u,, /4 0 in L?([-B, B],R"). If not, we can assume that
u, — 0 in L?([-B, B],R") for all B > 0, then, there exists § > 0 independent

of B such that 5

v(B)’

> 0. Indeed, since {u,} is bounded, we have from

Jim_sup ||un||i2(R’Rn) < (2.14)

— 3 K(tvx)
where v(B) = \t|21§,fz;£0 a2
II) that [ K(t,uy,)dt is bounded. Let § = sup [ K(t,u,(t))dt. Hence, we

R n R

have

B
ey = [ fun(@P e+ [ i)
-B R\[- B, B]
B

) 1
</|un(t)| dt+7(B) / K(t,un(t))dt
-B R\[

—B,B]

B
4]

S_é )Pt

Letting n — oo, then (2ZI4]) holds. Let M = sup ||uy,]|, then from (W2)’, there
exists Cy1 > 0 such that

VW (t,z)| < Ciilz|, |W(t,x)| < Chilz)? forall teR and |z| <M.
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Hence, we have
(VW (t,x),x) — 2W (t,x)| < |VW(t,x)||z| + 2|V (L, x)]|
< Cplz? +2C1|z)? = 301 |=|?,
which together with (22)), (Z:3) and (H3) implies that

2C = lim | [2K(t,un) — (VE(t, un), un) + (VW (E un), un) — 2W (¢, uy)] di
n—oo 2
(Co + 3011)5
WB)
From (H2), we know that v(B) — 400 as B — +oo, but then ([ZI7) is a
contradiction. Hence, there exists B > 0 such that u, /4 0 in L?([-B, B],R"),
ie., u#0.

Finally, we prove that the critical points of I satisfying u(¢) — 0 and @(t) — 0
as |t| — +oo. Let C°(R,R™) be the space of continuous functions « on R such
that u(t) — 0 as || — +o00, then we have E C C°(R,R™). Moreover, it is easy
to check that 4(¢) — 0 as |¢| = 4+00. The proof of Theorem 1.3 is complete. O

< (C(] + 3011) nli)r{:o ||un||%2(R7Rn) < (215)

3. An example

Let
1
F(t,z) = — <1 +* + 22 + 1) z|? + ez In(1 + |2]),

L(t) = diag(1 + *,..., 1+ t?),

where
1
K(t,x) = (1 +t* + 22 + 1) |z|?, W(t,z) = e 1|z In(1 + |z).

It is easy to check that K satisfies conditions (H1)’, (H2), (H3). An easy com-
putation shows that W (¢, x) satisfies (W2)’. Since

e1—|t||x|3
1+ x|’
then W satisfies (H4) and (H5) with » = 3 and p = 2. Hence, K(t,z) and

W (¢, x) satisfy all the conditions of Theorem 1.3 and then problem (L)) has at
least one nontrivial homoclinic solution.

W(t,z) <e|z|?, (VW (t,x),z) — 2W (t,z) =
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