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ABSTRACT. In this paper, a generalized vector equilibrium problem is intro-

duced and studied. A scalar characterization of weak efficient solutions for the

generalized vector equilibrium problem is obtained. By using the scalarization

result, the existence of the weak efficient solutions and the connectedness of the

set of weak efficient solutions for the generalized vector equilibrium problem are

proved in locally convex spaces.
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1. Introduction

In recent years, the vector equilibrium problem has received much attention by

many authors due to the fact that it provides a unified model including vector

optimization problems, vector variational inequality problems, vector comple-

mentarity problems and vector saddle point problems as special cases. A great

deal of papers have been devoted to the existence of solutions for various kinds
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of vector equilibrium problems (see, for example, [1, 3, 5, 6, 9, 10, 13, 15, 19]
and the references therein).

It is well known that one of the most important problems of vector varia-

tional inequalities and vector equilibrium problems is to investigate the topo-

logical properties of the solutions set. Among the topological properties of the

solutions set, the connectedness is of interest, as it provides the possibility of

continuously moving from one solution to any other solution. Lee et al. [14]

discussed the path-connectedness of the set of weakly efficient solutions and the
set of efficient solutions for vector variational inequalities in finite-dimensional

spaces. Cheng [7] obtained the connectedness of the set of weakly efficient solu-

tions for weak vector variational inequalities in finite-dimensional spaces by using

scalarization method. Gong [10] discussed the connectedness of the set of Henig

efficient solutions and the set of weak efficient solutions to the vector-valued

Hartman-Stampacchia variational inequality in normed spaces. Recently, Gong

[11] introduced the concepts of f -efficient solution, Henig efficient solution, glob-
ally efficient solution, weakly efficient solution and superefficient solution, and

discussed the connectedness of the Henig efficient solution set, globally efficient

solution set, weakly efficient solution and superefficient solution set for mixed

vector equilibrium problems in locally convex spaces. Very recently, by virtue

of a density result and scalarization technique, Gong and Yao [12] discussed

the connectedness of the set of efficient solutions for mixed vector equilibrium
problems in locally convex spaces. Concerned with the connectedness and path-

connectedness of the solution sets for symmetric vector equilibrium problems,

we refer to the recent work of Zhong, Huang and Wong [21].

Motivated and inspired by the works mentioned above, the purpose of this

paper is to discuss the connectedness of the set of weakly efficient solutions for a

generalized vector equilibrium problem by using scalarization method in locally

convex spaces due to Gong [11]. The results presented in this paper generalize

and improve some corresponding results due to Gong [10].

2. Preliminaries

Throughout this paper, let X and Y be two real Hausdorff topological vector

spaces, and let Z be a real locally convex Hausdorff topological vector space. Let

K be a nonempty closed convex subset of X and D be a nonempty subset of Y .

Let C ⊂ Z be a pointed closed convex cone with its interior intC �= ∅. Let Z∗ be

the topological dual space of Z and C∗ =
{
f ∈ Z∗ : f(x) ≥ 0, for all x ∈ C

}
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be the dual cone of C. We also suppose that T : K → 2D is a set-valued mapping
and F : K ×K ×D → Z is a vector-valued mapping.

In this paper, we consider the following generalized vector equilibrium prob-

lem (for short, GVEP): finding x ∈ K such that there exists z ∈ T (x) satisfying

F (x, y, z) /∈ − intC for all y ∈ K.

We call this x a weak efficient solution for (GVEP). Denote by Sw(K,F ) the set

of all weak efficient solutions to (GVEP).

Some special cases of (GVEP):

(1) Let ϕ : K × K → Z and ψ : K → Z be two vector-valued mappings. Let
F (x, y, z) = ϕ(x, y) + ψ(y) − ψ(x). Then (GVEP) reduces to the mixed

vector equilibrium problem considered in [11, 12].

(2) Let X = Y , K = D and L(X,Z) be the space of all bounded linear

mappings from X into Z. Let T : K → Z and q : K → Z be two vector-

valued mappings. Let F (x, y, T (x)) = 〈T (x), y − x〉 + q(y) − q(x). Then

(GVEP) reduces to the mixed vector variational inequality problem con-

sidered in [10].

(3) Let X = Y = Rn, K = D, Z = Rp and C = Rp
+. Let Ti : K → Rn be

vector-valued mappings for i ∈ {1, 2, . . . , p}. Let
F (x, y, T (x)) =

(〈T1(x), y − x〉, 〈T2(x), y − x〉), . . . , 〈Tp(x), y − x〉),
where 〈·, ·〉 denotes the inner product in the Euclidean space. Then (GVEP)
reduces to the vector variational inequality problem considered in [7].

Let f ∈ C∗\{0}. A vector x ∈ K is called a f -efficient solution to (GVEP) if

there exists z ∈ T (x) satisfying

f(F (x, y, z)) ≥ 0 for all y ∈ K.

Denote by Sf (K,F ) the set of all f -efficient solutions to (GVEP).

We now recall some definitions and lemmas which will be used in the sequel.

���������� 2.1� ([8]) A set-valued mapping G : X → 2X is called KKM-map-

ping if for any finite subset {x1, x2, . . . , xn} of X, co{x1, x2, . . . , xn} is contained

in
n⋃

i=1

G(xi), where coA denotes the convex hull of the set A.

��		
 2.1� ([8]) Let M be a nonempty subset of X. Let G : M → 2X be a

KKM-mapping such that G(x) is closed for any x ∈ M and is compact for at

least one x ∈M . Then
⋂

y∈M

G(y) �= ∅.
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���������� 2.2� A vector-valued mapping h : K → Z is said to be C-convex
on K if, for any x1, x2 ∈ K and λ ∈ [0, 1], one has

λh(x1) + (1− λ)h(x2) ∈ h(λx1 + (1− λ)x2) + C.

Remark 2.1�

(i) It is easy to see that h is C-convex on K if and only if for any xi ∈ K and

λi ∈ [0, 1] (i ∈ {1, 2, . . . , n}) with
n∑

i=1

λi = 1 holds

n∑
i=1

λih(xi) ∈ h

( n∑
i=1

λixi

)
+ C.

(ii) If h is C-convex on K, then F (K) + C is a convex set.

(iii) h is said to be C-concave on K if, −h is C-convex on K.

(iv) If f ∈ C∗\{0} and h is C-convex on K, then f ◦ h : K → R is convex.

���������� 2.3� ([16]) A vector-valued mapping h : K → Z is said to be
C-lower (C-upper) semicontinuous at x0 ∈ K if, for any neighborhood U of 0,

there exists a neighborhood U (x0) of x0 such that

h(x) ∈ h(x0) + U + C for all x ∈ U (x0) ∩K.
(h(x) ∈ h(x0) + U − C for all x ∈ U (x0) ∩K.)

h is said to be C-lower (C-upper) semicontinuous onK if it is C-lower (C-upper)

semicontinuous at each x0 ∈ K.

Remark 2.2� ([3]) If f ∈ C∗\{0} and h is C-lower (C-upper) semicontinuous

on K, then f ◦ h : K → R is lower (supper) semicontinuous on K.

���������� 2.4� Let f ∈ C∗\{0}. F (x, y, ·) is said to be f -hemicontinuous

with respect to T if, for any x, y ∈ K, α ∈ [0, 1], the mapping α→ f(F (x, y, tα))

is upper semicontinuous at 0+, where tα ∈ T (x+ α(y − x)), i.e.,

lim
α↓0

f(F (x, y, tα)) = f(F (x, y, z)) for all z ∈ T (x).

���������� 2.5� F is said to be pseudomonotone with respect to T if, for any

x, y ∈ K, f ∈ C∗\{0} and for any z ∈ T (x), t ∈ T (y), one has

f(F (x, y, z)) ≥ 0 =⇒ f(F (x, y, t)) ≥ 0.

���������� 2.6� A set-valued mapping h : K → 2Z is said to be

(i) upper semicontinuous at x ∈ K if, for any open set V containing h(x),

there exists an open set U containing x such that, for all t ∈ U , h(t) ⊂ V ;

h is said to be upper semicontinuous on K if it is upper semicontinuous at

each x ∈ K.
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(ii) closed if Graph(h) =
{
(x, y) : x ∈ K and y ∈ h(x)

}
is a closed set in

K × Z.

��		
 2.2� ([2]) Let h : K → 2Z be a set-valued mapping. If h is closed and Z

is compact, then h is upper semicontinuous.

��		
 2.3� ([17]) If A is a nonempty compact convex subset of a topological

vector space, B is a nonempty convex subset of a vector space and the function
f : A×B → R is concave-convex on A×B and upper semicontinuous on A for

every b ∈ B. Then,

max
a∈A

inf
b∈B

f(a, b) = inf
b∈B

max
a∈A

f(a, b).

��		
 2.4� ([20]) Let X and Y be two topological vector spaces, S be a con-

nected subset of X, F : S → 2Y be a set-valued mapping. If F is upper semi-

continuous on S and F (x) is connected subset of Y for each x ∈ S, then,

F (S) =
⋃
x∈S

F (x) is a connected subset of Y .

Next, we establish the following scalarization result for the set of weakly

efficient solutions to (GVEP).

��		
 2.5� For any x ∈ K and z ∈ T (x), F (x,K, z) + C is a convex set.

Then,

Sw(K,F ) =
⋃

f∈C∗\{0}
Sf (K,F ).

P r o o f. Let x ∈ ⋃
f∈C∗\{0}

Sf (K,F ). Then there exist f ∈ C∗\{0} and z ∈ T (x)

such that

f(F (x, y, z)) ≥ 0 for all y ∈ K. (2.1)

Now, we claim that

F (x, y, z) /∈ − intC for all y ∈ K.

In fact, if there exists some y ∈ K such that

F (x, y, z) ∈ − intC.

Then, for f ∈ C∗\{0}, we have

f(F (x, y, z)) < 0,

which contradicts (2.1). Hence, x ∈ Sw(K,F ) and so
⋃

f∈C∗\{0}
Sf (K,F ) ⊆

Sw(K,F ).
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Conversely, let x ∈ Sw(K,F ). Then there exists z ∈ T (x) such that

F (x, y, z) /∈ − intC for all y ∈ K.

It follows that

F (x,K, z) ∩ (− intC) = ∅,
and so

(F (x,K, z) + C) ∩ (− intC) = ∅.
Since F (x,K, z) + C is a convex set, by the separation theorem of convex sets
[18], there exists some f ∈ Z∗\{0} such that

inf
{
f(F (x, y, z) + c) : y ∈ K, c ∈ C

} ≥ sup
{
f(c) : c ∈ − intC

}
. (2.2)

Since C is a cone, f(c) ≤ 0 for all c ∈ − intC. Hence, f(c) ≥ 0 for all c ∈ C,

that is f ∈ C∗. This fact together with (2.2) yield f ∈ C∗\{0} and

f(F (x, y, z)) ≥ 0 for all y ∈ K.

This means x ∈ Sf (K,F ). It follows that Sw(K,F ) ⊆
⋃

f∈C∗\{0}
Sf (K,F ). This

completes the proof. �

3. Connectedness of the solutions set

In this section, we discuss the connectedness of the set of weakly efficient so-

lutions to the generalized vector equilibrium problem by the scalarization result.

First, we have the following existence results for (GVEP).

���
������� 3.1� Suppose that the following conditions are satisfied:

(i) for any x ∈ K, F (x, x, ·) = 0;

(ii) for any x ∈ K and z ∈ T (x), F (x, ·, z) is C-convex on K;

(iii) F is pseudomonotone with respect to T ;

(iv) for any y ∈ K, t ∈ D, F (·, y, t) is C-upper semicontinuous and C-concave
on K;

(v) F is f-hemicontinuous with respect to T ;

(vi) for any x, y ∈ K, F (x, y, ·) is C-upper semicontinuous and C-concave

on D;

(vii) there exist a nonempty compact convex subset E of K and y0 ∈ E such

that for any x ∈ K\E and t ∈ T (x) satisfying

F (x, y0, t) ∈ − intC.
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(viii) for any x ∈ K, T (x) is a nonempty compact convex set.

Then, for any f ∈ C∗\{0}, Sf (F,K) is a nonempty convex subset of E.

P r o o f. Let f ∈ C∗\{0}. Define two set-valued mappings A,B : K → 2K as

follows:

A(y) =
{
x ∈ K :

(∃z ∈ T (x)
)(
f(F (x, y, z)) ≥ 0

)}
.

B(y) =
{
x ∈ K :

(∀t ∈ T (y)
)(
f(F (x, y, t)) ≥ 0

)}
.

For any y ∈ K, by condition (i), we have y ∈ A(y). This means A(y) �= ∅ for
any y ∈ K. The proof of the Theorem is divided into the following four steps.

(I) A : K → 2K is a KKM-mapping.

Indeed, suppose by contradiction that there exist a finite subset {y1, y2, . . . , yn}
of K and λi ≥ 0, i ∈ {1, 2, . . . , n} with

n∑
i=1

λi = 1 such that x =
n∑

i=1

λiyi �∈
n⋃

i=1

A(yi). Then, x /∈ A(yi), i ∈ {1, 2, . . . , n}. It follows that for any z ∈ T (x)

f(F (x, yi, z)) < 0, i ∈ {1, 2, . . . , n}. (3.1)

Since F (x, ·, z) is C-convex on K,

n∑
i=1

λiF (x, yi, z) ∈ F

(
x,

n∑
i=1

λiyi, z

)
+ C = F (x, x, z) + C = C.

Therefore, for any f ∈ C∗\{0}, we have

f

( n∑
i=1

λiF (x, yi, z)

)
≥ 0,

which contradicts (3.1). Thus, A is a KKM-mapping.

(II)
⋂

y∈K

A(y) =
⋂

y∈K

B(y).

Since F is pseudomonotone with respect to T , one has A(y) ⊂ B(y) for all y ∈ K.

It follows that
⋂

y∈K

A(y) ⊂ ⋂
y∈K

B(y). Now, we prove that
⋂

y∈K

B(y) ⊂ ⋂
y∈K

A(y).

Let x ∈ ⋂
y∈K

B(y). Then, for any y ∈ K, x ∈ B(y). And so for any y ∈ K and

t ∈ T (y), we have

f(F (x, y, t)) ≥ 0.

Let xε = x+ ε(y0 − x) and ε ∈ (0, 1). Then, xε ∈ K and for any tε ∈ T (xε),

f(F (x, xε, tε)) ≥ 0.
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Since F (x, ·, z) is C-convex on K, one has

εf(F (x, y, tε)) + (1− ε)f(F (x, x, tε)) ≥ 0.

This fact together with condition (i) yields

f(F (x, y, tε)) ≥ 0.

By condition (vi), passing to the limit when ε ↓ 0, we get

f(F (x, y, z)) ≥ 0 for all z ∈ T (x).

This means that x ∈ A(y). By the arbitrary of y, we have x ∈ ⋂
y∈K

A(y); i.e.,

⋂
y∈K

A(y) ⊃
⋂
y∈K

B(y).

(III) Sf (K,F ) �= ∅.
We now show that for any y ∈ K, A(y) is closed. Since

⋂
y∈K

A(y) =
⋂

y∈K

B(y),

we need only to prove that for any y ∈ K, B(y) is closed. In fact, for any fixed

y ∈ K, let {xα} ⊂ B(y) such that xα → x0. By the closedness of K, one has

x0 ∈ K. Since {xα} ⊂ B(y),

f(F (xα, y, t)) ≥ 0 for all t ∈ T (y).

By the C-upper semicontinuity of F with respect to the first argument,

f(F (x0, y, t)) ≥ lim sup
α

f(F (xα, y, t)) ≥ 0 for all t ∈ T (y).

This means x0 ∈ B(y). Thus, for any y ∈ K, B(y) is closed and so is A(y). From

condition (vii), we have A(y0) is closed, and A(y0) ⊂ E. Since E is compact,

A(y0) is compact. By Lemma 2.1, we get
⋂

y∈K

A(y) �= ∅. Therefore, there exists

x ∈ ⋂
y∈K

A(y). It follows that for any y ∈ K there exists z ∈ T (x) such that

f(F (x, y, z)) ≥ 0. Hence,

inf
y∈K

max
z∈T (x)

f(F (x, y, z)) ≥ 0.

By conditions (vi), (viii) and Lemma 2.3,

max
z∈T (x)

inf
y∈K

f(F (x, y, z)) ≥ 0.

It follows that there exist z ∈ T (x) such that

f(F (x, y, z)) ≥ 0 for all y ∈ K.
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Then x ∈ Sf (K,F ). This fact gives that
⋂

y∈K

A(y) ⊂ Sf (K,F ). Noting that

Sf (K,F ) ⊂ ⋂
y∈K

A(y). Therefore, Sf (K,F ) =
⋂

y∈K

A(y). It is easy to see that

Sf (K,F ) ⊂ E.

(IV) Sf (K,F ) is a convex subset.

Since Sf (K,F ) =
⋂

y∈K

A(y) =
⋂

y∈K

B(y), we need only to prove that for any

y ∈ K, B(y) is convex. In fact, for any fixed y ∈ K, let x1, x2 ∈ B(y) and

λ ∈ [0, 1]. Then, λx1 + (1− λ)x2 ∈ K and for any t ∈ T (y),

f(F (x1, y, t)) ≥ 0, f(F (x2, y, t)) ≥ 0.

By the C-concavity of F with respect to the first argument,

f(F (λx1 + (1− λ)x2, y, t)) ≥ f(λF (x1, y, t)) + f((1− λ)F (x2, y, t)) ≥ 0,

It follows that λx1+(1−λ)x2 ∈ B(y). Therefore, for any y ∈ K, B(y) is convex

and so does Sf (K,F ). This completes the proof. �

Now we establish the connectedness of the set of weak efficient solutions to

(GVEP).

������	 3.1� Assume that conditions (i)–(vii) of Proposition 3.1 hold. If

W =
{
F (x, y, z) : x, y ∈ K, z ∈ D

}
is a bounded subset of Z, then Sw(K,F ) is a connected subset of K.

P r o o f. Define a set-valued mapping H : C∗\{0} → 2E by

H(f) = Sf (K,F ) for all f ∈ C∗\{0}.
By Proposition 3.1, for any f ∈ C∗\{0}, Sf (K,F ) ⊂ E is a nonempty convex

subset. It follows that for any f ∈ C∗\{0}, H(f) is a connected subset. It is

easy to see that C∗\{0} is convex, so it is a connected subset.

Now we show that H(f) is upper semicontinuous on C∗\{0}. Since E is

compact, by Lemma 2.2, we need only prove that H is closed. Let
{
(fα, xα) :

α ∈ I
}
be a net such that{

(fα, xα) : α ∈ I
} ⊂ Graph(H) =

{
(f, x) ∈ C∗\{0} ×E : x ∈ H(f)

}
and

(fα, xα) → (f, x) ∈ C∗\{0} ×E,

where fα → f means that {fα} converges to f with respect to the strong topol-

ogy β(Z∗, Z) in Z∗. From xα ∈ H(fα), α ∈ I, we have that there exists

zα ∈ T (xα) satisfying

fα(F (xα, y, zα)) ≥ 0 for all y ∈ K.
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By the condition (iii), we have

fα(F (xα, y, t)) ≥ 0 for all y ∈ K, t ∈ T (y). (3.2)

Note that W =
{
F (x, y, z) : x, y ∈ K, z ∈ D

}
is a bounded subset of Z, define

PW (z∗) := sup
{|z∗(s)| : s ∈ W

}
, z∗ ∈ Z∗.

It is easy to see that PW is a seminorm of Z∗. For arbitrary ε > 0,

U =
{
z∗ ∈ Z∗ : PW (z∗) < ε

}
is a neighborhood of zero with respect to β(Z∗, Z). Since fα → f , there exists

α0 ∈ I such that fα − f ∈ U , for all α ≥ α0. It follows that

PW (fα − f) = sup
{|(fα − f)(s)| : s ∈W

}
< ε whenever α ≥ α0.

Therefore, for any y ∈ K,

|(fα − f)(F (xα, y, t))| = |fα(F (xα, y, t))− f(F (xα, y, t))| < ε,

which implies

lim[fα(F (xα, y, t))− f(F (xα, y, t))] = 0. (3.3)

By the C-upper semicontinuity of F with respect to the first argument,

f(F (x, y, t)) ≥ lim sup f(F (xα, y, t)) for all y ∈ K, t ∈ T (y). (3.4)

From (3.2), (3.3) and (3.4), we have

0 ≤ lim sup fα(F (xα, y, t))

= lim sup[fα(F (xα, y, t))− f(F (xα, y, t)) + f(F (xα, y, t))]

≤ lim sup[fα(F (xα, y, t))− f(F (xα, y, t))] + lim sup f(F (xα, y, t))

≤ f(F (x, y, t)).

From the proof of Proposition 3.1, we have that there exists z ∈ T (x) such that

f(F (x, y, z)) ≥ 0 for all y ∈ K,

which implies

x ∈ Sf (K,F ) = H(f).

It follows that H is a closed mapping and so H is upper semicontinuous on

C∗\{0}. From Lemma 2.4 ⋃
f∈C∗\{0}

Sf (K,F )
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is connected. Furthermore, for any x ∈ K and z ∈ T (x), F (x, ·, z) is C-convex
on K, then F (x,K, z) + C is a convex set. By Lemma 2.5,

Sw(K,F ) =
⋃

f∈C∗\{0}
Sf (K,F )

is a connected subset of K. This completes the proof. �

Now we give an example to illustrate Theorem 3.1.

Example 3.1. Let X = Y = R, Z = R2, C = R2
+ and K = D = [0, 1]. Then

C∗ = R2
+. Let T (x) = [0, x] and

F (x, y, z) =
(
z(y2 − x2) + y2 − x2, z(y2 − x2) + y2 − x2

)
for all x, y ∈ K and z ∈ T (x). It is easy to see that all assumptions of The-

orem 3.1 are satisfied. Thus, by Theorem 3.1, we conclude that Sw(K,F ) is a

connected subset of K.

From Theorem 3.1, it is easy to have the following corollaries.

������
�� 3.1� Let ϕ : K × K → Z and ψ : K → Z be two vector-valued

mappings. Let F (x, y, z) = ϕ(x, y) + ψ(y) − ψ(x). Suppose that the following

conditions are satisfied:

(i) ψ is C-lower semicontinuous and C-convex on K;

(ii) for any x ∈ K, ϕ(x, x) = 0, and ϕ is pseudomonotone with respect to ψ,

i.e., for any x, y ∈ K, f ∈ C∗\{0}, f(ψ(y)) + f(ϕ(x, y)) ≥ f(ψ(x)) =⇒
f(ψ(y))− f(ϕ(y, x)) ≥ f(ψ(x));

(iii) for any y ∈ K, ϕ(·, y) are C-upper semicontinuous and C-concave on K;

(iv) for any x ∈ K, ϕ(x, ·) is C-convex on K;

(v) ψ(K) and W =
{
ϕ(x, y) : x, y ∈ K

}
are bounded subsets of Z;

(vi) there exist a nonempty compact convex subset E of K and y0 ∈ E such

that for any x ∈ K\E satisfying ϕ(x, y) + ψ(y)− ψ(x) ∈ − intC.

Then, Sw(K,F ) is a connected set.

Remark 3.1� The conditions of Corollary 3.1 are different from [11, Theo-

rem 4.5].

������
�� 3.2� Let X = Y , K = D and L(X,Z) be the space of all bounded

linear mappings from X into Z. Let T : K → Z and q : K → Z be two vector-

valued mappings. Let F (x, y, T (x)) = 〈T (x), y − x〉+ q(y)− q(x). Suppose that

the following conditions are satisfied:
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(i) T is f-hemicontinuous on K, i.e., for any x, y ∈ K, the mapping

G(t) = f
(〈T (ty + (1− t)x), y − x〉), t ∈ [0, 1]

is upper semicontinuous at 0+;

(ii) T is pseudomonotone with respect to q, i.e., for any x, y ∈ K, f ∈ C∗\{0},
f(〈T (x), y − x〉) + f(q(y)) − f(q(x)) ≥ 0 =⇒ f(〈T (y), y − x〉) + f(q(y))

− f(q(x)) ≥ 0;

(iii) q is C-lower semicontinuous and C-convex on K;

(iv) q(K) is a bounded subset of Z;

(v) there exist a nonempty compact convex subset E of K and y0 ∈ E such
that for any x ∈ K\E satisfying 〈T (x), y − x〉+ q(y)− q(x) ∈ − intC.

Then, Sw(K,F ) is a connected set.

Remark 3.2� Corollary 3.2 improves [10, Theorem 4.2] in the following two

aspects:

(i) The compactness of K is dropped;

(ii) The monotonicity of T is replaced by the pseudomonotonicity of T .

4. Conclusions

In this paper, we study the connectedness of the set of weak efficient solutions

for GVEP in locally convex spaces. By using the scalarization method due to

Gong [11], we show the existence of weak efficient solutions and the connected-

ness of the set of weak efficient solutions for GVEP without the compactness.

We also give an example to show that the assumptions of Theorem 3.1 hold true.

It is well known that the scalar equilibrium problem is a special case of the

vector equilibrium problem (see, for example, [5, 9] and the references therein).

Furthermore, it is easy to see that the generalized vector equilibrium problem

considered in this paper includes many scalar and vector equilibrium problems

as special cases, such as the scalar equilibrium problem studied by Blum and

Oettli [4]. As pointed out by the authors of paper [4], the optimization, saddle
points, Nash equilibria in noncooperative games, fixed points, convex differen-

tiable optimization, variational operator inequalities, complementarity problems

and variational inequalities with multivalued mappings could be considered as

special cases of the scalar equilibrium problem. Therefore, the results presented

in this paper can be applied to all the problems mentioned above.
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