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ABSTRACT. We extend the V BG∗ property to the context of vector-valued

functions and give some characterizations of this property. Necessary and suf-

ficient conditions for vector-valued V BG∗ functions to be continuous or weakly

continuous, except at most on a countable set, are obtained.
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1. Introduction

This paper discusses the continuity properties of some classes of functions

that occur in the theory of vector-valued integration. The familiar result states

that in the scalar case a function of bounded variation on an interval has all

the unilateral limits at each point of the interval. In the vector case similar
properties of functions of weakly bounded variation were studied in connection

with some problems in the theory of stochastic differential equations (see [9] and

the references therein). Other contributions to this subject were made in [2] and

[3]. Among the results, established in those papers, the following two come close

to ours:

• a separably-valued function of weakly bounded variation is weakly contin-

uous, except at most on a countable set [2];

• a Banach space X does not contain an isomorphic copy of c0 if and only

if each X-valued function of weakly bounded variation is regulated [3].

The class of functions of generalized weakly bounded variation in the restricted
sense (the V BG∗ class, in short), introduced in [12], is associated with the
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Henstock-Stieltjes integration process and has applications, for example, in prov-
ing integration-by-parts type theorems for this integral. In the present paper

we give additional characterizations of V BG∗ functions and demonstrate that

both the afore mentioned results can be extended in a natural way to the V BG∗

class. More recent papers to which our ideas may be relevant are [4] and [13].

For the most part our notation and terminology are standard, or can be found

in [7].

Throughout this paper [a, b] will denote a fixed non-degenerate interval of the

real line and I its closed non-degenerate subinterval. X denotes a real Banach

space and X∗ its dual. The closed unit ball of X is denoted by BX . Given

f : [a, b] → X and A ⊂ X, ∆f(I) and absco(A) denote the increment of f on I
and the absolutely convex hull of A. If E is a subset of the real line, then IntE,

E, and ∂E will denote the interior of E, the closure of E, and the boundary of

E, respectively. Finally, C and L will refer to the classes of at most countable

and Lebesgue negligible subsets of the real line, respectively.

2. V B∗ functions

We begin with the notion of weakly bounded variation on a set.

���������� 2.1� Let f : [a, b] → X and let E be a non-empty subset of [a, b].

f is said to be of weakly bounded variation in the restricted sense (V B∗) on E

if there exists a positive number M such that

∥∥∥∥
K∑

k=1

λk∆f(Ik)

∥∥∥∥ ≤ M

for each finite collection of pairwise non-overlapping intervals {Ik}Kk=1 with
∂Ik ∩ E �= ∅ and for each finite collection of scalars {λk}Kk=1 with max

k
|λk| ≤ 1.

We denote by W∗(f, E) the lower bound of those M .

It follows from Definition 2.1 that a V B∗ function f on E is necessarily

bounded on [a, b]. We should observe at this point that in the case where X = R

this notion is equivalent to the classical notion of a V B∗ function on a set

under the hypothesis that the function involved is bounded on [a, b] (see [10,

Lemma 5.3.8]).
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���������� 2.2� Let Λ ⊂ BX∗ .

(a) Λ is said to be w∗-λ-norming for some λ ≥ 1 (or w∗-norming, in short) if

inf
‖x‖=1

sup
x∗∈Λ

|x∗(x)| ≥ λ−1;

(b) Λ is said to be w∗-thin if Λ =
∞⋃

n=1
Λn so that Λ1 ⊂ Λ2 ⊂ . . . and Λn is

w∗-non-norming, that is

inf
‖x‖=1

sup
x∗∈Λn

|x∗(x)| = 0 for all n;

(c) Λ is w∗-thick if Λ is not w∗-thin.

Remark 1� By the Hahn-Banach Separation Theorem [7, Theorem 3.18], Λ is

w∗-norming if and only if absco
w∗

(Λ) ⊃ rBX∗ for some positive r.

As an illustration, if X contains no isomorphic copy of c0, then any James

boundary of X is w∗-thick [8]. The reader should refer to Nygaard’s survey [15]

for an extensive study of thick sets. Now we make the following definition.

���������� 2.3� Let Λ ⊂ BX∗ , f : [a, b] → X and let E be a non-empty subset

of [a, b]. f is V B∗
Λ on E if x∗f is V B∗ function on E for each x∗ ∈ Λ.

Remark 2� A standard argument shows that f is V B∗
Λ on E if and only if for

each x∗ ∈ Λ there exists a positive number M such that

K∑
k=1

|∆(x∗f)(Ik)| ≤ M

for each finite collection of pairwise non-overlapping intervals {Ik}Kk=1 with

∂Ik ∩ E �= ∅.

Lemma 2.1 below states that in the case where Λ is w∗-thick all the above

sums are uniformly bounded. Note that Alexiewicz actually proved this fact,

cf. [2, Theorem 3], by using a different characterization of the w∗-thickness [14,

Theorem 3.5]. Our proof based on Definition 2.2 is included for completeness.

��		
 2.1� Let f : [a, b] → X and let Λ ⊂ BX∗ be w∗-thick. If f is V B∗
Λ on

E ⊂ [a, b], then

sup
x∗∈BX∗

W∗(x∗f, E) < ∞.

P r o o f. For each positive integer m let Λm =
{
x∗ ∈ Λ : W∗(x∗f, E) ≤ m

}
.

Then Λ =
⋃
m
Λm and Λ1 ⊂ Λ2 ⊂ . . . . As Λ is w∗-thick, there exist M and r > 0

such that absco
w∗

(ΛM ) ⊃ rBX∗ . It is evident that W∗(x∗f, E) ≤ M for each
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x∗ ∈ absco(ΛM ). We next show that the same inequality is fulfilled for each

x∗ ∈ absco
w∗

(ΛM ).

Let {x∗
α} be a net in absco(ΛM ) w∗-convergent to x∗. Fix a finite collection

of non-overlapping intervals {Ik}Kk=1 with ∂Ik ∩ E �= ∅ and compute

K∑
k=1

|∆(x∗f)(Ik)| = lim
α

{ K∑
k=1

|∆(x∗
αf)(Ik)|

}
≤ M.

Finally, for each x∗ ∈ BX∗ we have W∗(x∗f, E) ≤ Mr−1. �

The converse of Lemma 2.1 reads:

����
�	 2.1� Let Λ ⊂ BX∗. If f is V B∗
BX∗ on [a, b] whenever f : [a, b] → X

is V B∗
Λ on [a, b], then Λ is w∗-thick.

P r o o f. On the contrary, assume Λ is w∗-thin. By [1, Corollary 2.4], there
exists a series

∑
n
xn in X such that

∑
n
|x∗(xn)| < ∞ for each x∗ ∈ Λ and∑

n
|x∗

0(xn)| = ∞ for some x∗
0 ∈ BX∗ .

Let {bn} be a fixed sequence such that a = b1 < b2 < . . . and lim
n

bn = b.

Define a function f : [a, b] → X by f =
∞∑

N=1

( N∑
n=1

xn

)
χ[bN ,bN+1). Then for each

x∗ ∈ Λ we have W∗
(
x∗f, [a, b]

) ≤ ∑
n
|x∗(xn)| < ∞ which means that f is V B∗

Λ

on [a, b]. On the other hand, W∗
(
x∗
0f, [a, b]

) ≥ ∑
n
|x∗

0(xn)| = ∞. This is the

desired contradiction. �

���������� 2.4� Let f : [a, b] → X and let E be a non-empty subset of [a, b].

f is said to be of outside bounded variation in the restricted sense (outside V B∗)
on E if there exists a positive number M such that

∥∥∥∥
K∑

k=1

∆f(Ik)

∥∥∥∥ ≤ M

for each finite collection of pairwise non-overlapping intervals {Ik}Kk=1 with

∂Ik ∩ E �= ∅. We denote by V∗(f, E) the lower bound of those M .
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In fact three function classes, namely V B∗
Λ in the case where Λ is w∗-thick,

V B∗ and outside V B∗, coincide. We present complete proof of this important

fact for the reader’s convenience.

����
�	 2.2� Let f : [a, b] → X, E ⊂ [a, b] and let Λ ⊂ BX∗ be w∗-thick. The

following statements are equivalent.

(i) f is V B∗
Λ on E;

(ii) f is V B∗ on E;

(iii) f is outside V B∗ on E.

P r o o f.

(i) =⇒ (ii). Fix a finite collection of pairwise non-overlapping intervals

{Ik}Kk=1 with ∂Ik ∩ E �= ∅ and a finite collection of scalars {λk}Kk=1 with

max
k

|λk| ≤ 1. Choose x∗
0 ∈ X∗ so that ‖x∗

0‖ = 1 and

x∗
0

( K∑
k=1

λk∆f(Ik)

)
=

∥∥∥∥
K∑

k=1

λk∆f(Ik)

∥∥∥∥.

Then we have

∥∥∥∥
K∑

k=1

λk∆f(Ik)

∥∥∥∥ =

∣∣∣∣
K∑

k=1

λk∆(x∗
0f)(Ik)

∣∣∣∣

≤
K∑

k=1

|∆(x∗
0f)(Ik)| ≤ W∗(x∗

0f, E) ≤ sup
x∗∈BX∗

W∗(x∗f, E).

Now it follows from Lemma 2.1 that W∗(f, E) ≤ sup
x∗∈BX∗

W∗(x∗f, E) < ∞.

(ii) =⇒ (iii). This implication is obvious.

(ii) =⇒ (i). Fix a finite collection of pairwise non-overlapping intervals

{Ik}Kk=1 with ∂Ik ∩ E �= ∅ and x∗ ∈ BX∗ . We let λk denote sgn{∆(x∗f)(Ik)}
and have

K∑
k=1

|∆(x∗f)(Ik)| =

∣∣∣∣
K∑

k=1

λk∆(x∗f)(Ik)

∣∣∣∣

≤ ‖x∗‖ ·
∥∥∥∥

K∑
k=1

λk∆f(Ik)

∥∥∥∥ ≤ W∗(f, E).
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(iii) =⇒ (i). Fix a finite collection of pairwise non-overlapping intervals
{Ik}Kk=1 with ∂Ik ∩ E �= ∅ and x∗ ∈ BX∗ . Then we have

K∑
k=1

|∆(x∗f)(Ik)|

=
∣∣∣ ∑
k:∆(x∗f)(Ik)>0

∆(x∗f)(Ik)
∣∣∣ +

∣∣∣ ∑
k:∆(x∗f)(Ik)<0

∆(x∗f)(Ik)
∣∣∣

≤ ‖x∗‖ ·
(∥∥∥ ∑

k:∆(x∗f)(Ik)>0

∆f(Ik)
∥∥∥ +

∥∥∥ ∑
k:∆(x∗f)(Ik)<0

∆f(Ik)
∥∥∥
)

≤ 2V∗(f, E).

�
Remark 3� It is useful to note that

V∗(f, E) ≤ W∗(f, E) = sup
x∗∈BX∗

W∗(x∗f, E) ≤ 2V∗(f, E),

where f is a V B∗ function on a set E.

��
���

� 2.2.1� Let f : [a, b] → X and E ⊂ [a, b]. Then f is V B∗ on E if

and only if f is V B∗ on E.

P r o o f. The corollary follows easily from Theorem 2.2 and [10, Lemma 5.3.9].

�
���������� 2.5� Let f : [a, b] → X and let E be a non-empty subset of [a, b].
f is said to be of generalized weakly bounded variation in the restricted sense

(V BG∗) on E if E can be written as a countable union of sets on each of which

f is V B∗.

Remark 4� It follows from Corollary 2.2.1 that if f is V BG∗ on an Fσ-set E,

then E can be written as a countable union of closed sets on each of which f

is V B∗.

3. Strong continuity of V BG∗ functions

In order to study the continuity properties of V BG∗ functions, we first intro-

duce some standard notation. Let f : [a, b] → X. The oscillation of f at a point

t ∈ [a, b] is defined by

ωf(t) = lim
δ→0+

ωf
(
[t− δ, t + δ] ∩ [a, b]

)
,

where ωf(I) represents sup
{‖f(u) − f(v)‖ : u, v ∈ I

}
. It is easy to verify that

the set Dα(f) =
{
t ∈ [a, b] : ωf(t) ≥ α

}
is closed for each real number α.
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Further denote by D(f) the set of discontinuities of f on [a, b]. We make note

of the fact that D(f) =
∞⋃

n=1
D 1

n
(f).

Recall that a vector-valued function defined on I is said to be regulated on

I, if it has discontinuities of the first kind only. In other words, such a function

has all the unilateral limits at each point of I. That a real-valued function of

bounded variation on I is regulated on I is well-known. However, in the vector

case the situation changes.

We begin with a simple example, showing that there exists a V B∗ function f

on [0, 1] which is discontinuous everywhere on [0, 1].

Example 1. Let {rn} be a listing of the rational numbers in [0, 1] and define

f : [0, 1] → c0 by f(rn) = en and f(t) = 0 if t is irrational. It is clear that f is

discontinuous everywhere on [0, 1] while W∗(f, [0, 1]) = 1.

In [3], the following theorem was established.

����
�	 A� (O. Blasco et al., 2000) X does not contain an isomorphic copy

of c0 if and only if each V B∗ function f : [a, b] → X is regulated on [a, b].

The proof of Theorem A is based on the Bessaga-Pe�lczyński Theorem (see

e.g. [11, Proposition 2.e.4]). As to the continuity properties of real-valued V BG∗

functions, a classical result states that the set of discontinuities of a real-valued

V BG∗ function on [a, b] is at most countable (see, e.g., [6, Theorem 2.10.1]).

In the vector case we present Theorem 3.1 which extends the necessity part of
Theorem A to the class V BG∗.

����
�	 3.1� Suppose that X does not contain an isomorphic copy of c0 and

let f : [a, b] → X be V BG∗ on E ⊂ [a, b]. Then the set D(f) ∩ E is at most

countable.

P r o o f. Only the case where E is uncountable is interesting. It follows from

Corollary 2.2.1 that E ⊂
∞⋃

n=1
En so that f is V B∗ on each En and En = En.

On the contrary, assume the set D(f) ∩ E is uncountable, then so is the set

Dα(f)∩En0
for some positive number α and n0 ∈ N. This set is closed. Hence,

by the Cantor-Bendixson Theorem, we have Dα(f) ∩ En0
= P ∪ Q where P

is a perfect set and Q is at most countable. Fix a point c ∈ P and a positive

number δ. Choose an interval I1 ⊂ (c−δ, c+δ) so that c ∈ ∂I1, ((c−δ, c+δ)\I1)

∩ P �= ∅, and ‖∆f(I1)‖ > α/4. We continue this process for infinitely many

steps and arrive at an infinite sequence of mutually disjoint intervals {Ik} for
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which ∂Ik ∩ P �= ∅ and ‖∆f(Ik)‖ > α/4. We have

K∑
k=1

|x∗(∆f(Ik))| =

K∑
k=1

|∆(x∗f)(Ik)| ≤ W∗(f, P ) < ∞

for all x∗ ∈ BX∗ and for all K ∈ N. It follows that
∞∑
k=1

|x∗(∆f(Ik))| < ∞ for

all x∗ ∈ BX∗ and, by the Bessaga-Pe�lczyński Theorem, the series
∞∑
k=1

∆f(Ik)

converges. Thus, we obtain a contradiction with ‖∆f(Ik)‖ > α/4 for all k. �

��
���

� 3.1.1� Suppose that X is weakly sequentially complete (in partic-
ular, reflexive) and let f : [a, b] → X be V BG∗ on E ⊂ [a, b]. Then the set

D(f) ∩ E is at most countable.

��
���

� 3.1.2� Suppose that X does not contain an isomorphic copy of c0
and let f : [a, b] → X be V BG∗ on E ⊂ [a, b]. Then f |E has a separable range.

4. Weak continuity of vector-valued functions

In this section we study the weak continuity properties of vector-valued func-
tions. Given f : [a, b] → X, f is said to be weakly continuous at a point

t ∈ [a, b] provided that x∗f is continuous at t for each x∗ ∈ X∗. In this case

Dw(f) =
⋃

x∗∈X∗
D(x∗f) is the set of weak discontinuities of f on [a, b].

Once again, we begin with a simple example, showing that there exists a V B∗

function f on the unit interval [0, 1] which is weakly discontinuous everywhere

on [0, 1]. Here R will denote the Banach space of regulated real-valued functions

defined on [0, 1] that are continuous on the right with the norm of a function

x(·) ∈ R defined by ‖x‖ = sup
t∈[0,1]

|x(t)|.

Example 2. Define f : [0, 1] → R by f(t) = χ[t,1] for each t ∈ [0, 1], x∗
s ∈ R∗ by

x∗
s(x) = x(s) for each s ∈ [0, 1], and x∗

1−0 ∈ R∗ by x∗
1−0(x) = x(1)− x(1− 0). It

is clear that W∗(f, [0, 1]) = 1. However, x∗
sf(t) = χ[0,s](t) for each s ∈ [0, 1] and

x∗
1−0f(t) = χ{1}(t). This, in turn, means that Dw(f) = [0, 1]. Note that R is

non-separable. As the set
{
x∗
s : s ∈ Q ∩ [0, 1]

}
is countable and w∗-1-norming,

R∗ is w∗-separable though.

Nevertheless a separably-valued V B∗ function is weakly discontinuous on at

most a countable set of points:
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����
�	 B� (A. Alexiewicz, 1951) Let X be separable and let f : [a, b] → X be
V B∗ on [a, b]. Then Dw(f) is at most countable.

The proof of this theorem presented in [2] depends in an essential way on the

fact that a V B∗ function on [a, b] is scalarly regulated. It is unclear whether a
result similar to Theorem B could be valid for V BG∗ functions. However, by

introducing some new definitions, we have been able in one or two respects to

prove more.

Let N denote a fixed class of subsets of the real line such that

(i) ∅ ∈ N ;

(ii) N ∈ N whenever N ⊂ N1 and N1 ∈ N ;

(iii)
⋃
i
Ni ∈ N whenever N1, N2, . . . ∈ N .

The elements of the class N will be named N -sets. C and L provide important

examples of such classes.

���������� 4.1� Let f : [a, b] → X and let E ⊂ [a, b].

(a) f is said to be N -scalarly continuous on E provided that D(x∗f)∩E is an
N -set for each x∗ ∈ X∗;

(b) f is said to be N -weakly continuous on E provided that Dw(f) ∩ E is an

N -set.

Note that an N -weakly continuous function on E is necessarily N -scalarly

continuous on E. On the other hand, Example 2 shows that a C -scalarly con-

tinuous function may not be C -weakly continuous. The next theorem will give

a simple sufficient condition for the N -weak continuity of bounded separably-

valued functions.

����
�	 4.1� (cf. [17, Lemma 1]) Suppose that X∗ is separable and

f : [a, b] → X is N -scalarly continuous on E ⊂ [a, b] and bounded on [a, b].

Then f is N -weakly continuous on E.

P r o o f. Let
{
x∗
n : n ∈ N

}
be a countable set dense in X∗. Write N for

⋃
n

(
D(x∗

nf) ∩E
)

and M for sup
t∈[a,b]

‖f(t)‖. Clearly, N is an N -set. Fix x∗ ∈ X∗, a point

t0 ∈ E\N , and a positive number ε. Now choose x∗
m so that ‖x∗−x∗

m‖ < ε/4M .
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Next, choose a positive number δ so that |x∗
mf(t) − x∗

mf(t0)| < ε/2 for all
t ∈ [a, b] ∩ (t0 − δ, t0 + δ). We have

|x∗f(t) − x∗f(t0)|
≤ |x∗f(t) − x∗

mf(t)| + |x∗
mf(t) − x∗

mf(t0)| + |x∗
mf(t0) − x∗f(t0)|

<
ε

4
+

ε

2
+

ε

4
= ε

for all t ∈ [a, b] ∩ (t0 − δ, t0 + δ). Thus, Dw(f) ∩ E = N and the theorem is

proved. �

��
���

� 4.1.1� Suppose that X∗ is separable and f : [a, b] → X is V BG∗

on E ⊂ [a, b]. Then f is C -weakly continuous on E.

In the situation in which X∗ is w∗-separable we establish a necessary and

sufficient condition for the N -weak continuity.

����
�	 4.2� (cf. [4, Lemma 2.1]) Suppose that X∗ is w∗-separable and let

f : [a, b] → X. Then the following statements are equivalent.

(i) f is N -weakly continuous on E ⊂ [a, b];

(ii) f is N -scalarly continuous on E and there exists an N -set N such that

for each sequence {tn} in [a, b] that converges to a point t ∈ E \ N the

sequence {f(tn)} contains a weakly convergent subsequence.

P r o o f.

(i) =⇒ (ii). It is clear that the set N = Dw(f)∩E has the desired properties.

(ii) =⇒ (i). Let {x∗
k : k ∈ N} be a countable set w∗-dense in X∗. Note

that the set {x∗
k : k ∈ N} separates points of X. Write N1 for

⋃
k

(D(x∗
kf) ∩E).

Clearly, N1 is an N -set. Fix t ∈ E \ (N ∪ N1). We claim that f is weakly

continuous at t. Choose {tn} convergent to t arbitrarily. It is evident that

x∗
kf(tn) → x∗

kf(t) as n → ∞ for all k. As the set {x∗
k : k ∈ N} separates

points of X, each subsequence of {f(tn)} contains a further subsequence weakly

convergent to f(t). It follows that {f(tn)} is weakly convergent to f(t). Thus we
have Dw(f) ∩E ⊂ N ∪N1. This in turn means that f is N -weakly continuous

on E. �

��
���

� 4.2.1� Suppose that X∗ is w∗-separable and let f : [a, b] → X be

N -scalarly continuous on E ⊂ [a, b]. If there exists a closed N -set N such that

f |[a,b]\N has a relatively weakly compact range, then f is N -weakly continuous

on E.
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P r o o f. Fix a point t ∈ E \N and a sequence {tn} in [a, b] that converges to t.
As the set N is closed, with no loss of generality we may assume tn /∈ N for all n.

It therefore follows that the set
{
f(tk) : k ∈ N

}
is relatively weakly compact.

Thus the sequence {f(tn)} contains a weakly convergent subsequence and (ii) of

the previous theorem holds. �

��
���

� 4.2.2� (cf. [5, Theorem 3]) Suppose that X∗ is w∗-separable and

let f : [a, b] → X be V BG∗ on E ⊂ [a, b]. If there exists a closed countable set

C such that f |[a,b]\C has a relatively weakly compact range, then f is C -weakly
continuous on E.

In conclusion it is worth remarking that a C -weakly continuous function nec-

essarily has a separable range.

Remark 5� Suppose that f : [a, b] → X is C -weakly continuous on E ⊂ [a, b].
Then f |E has a separable range. Indeed, as the set Dw(f) ∩ E is at most

countable, it suffices to show that f(E \Dw(f)) is separable. It is clear that f is

weakly continuous on the separable set E \Dw(f). Hence, the set f(E \Dw(f))

is w-separable. Let S be at most countable and w-dense in f(E \Dw(f)). By

the Mazur Theorem, we have span(S) = spanw(S) ⊃ f(E \ Dw(f)) which is

what we desired.

The above discussion reveals the following open question.

�
����	� Suppose that X is separable and let f : [a, b] → X be V BG∗ on

E ⊂ [a, b]. Is f necessarily C -weakly continuous on E?
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