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ABSTRACT. We study neighborhoods with respect to a categorical closure op-
erator. In particular, we discuss separation and compactness obtained from neigh-
borhoods in a natural way and compare them with the usual closure separation
and closure compactness. We also introduce a concept of convergence based on
using centered systems of subobjects, which naturally generalizes the classical
filter convergence in topological spaces. We investigate behavior of the conver-
gence introduced and show, among others, that it relates to the separation and
compactness in natural ways.
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1. Introduction

The theory of categorical closure operators was founded by D. Dikranjan and
E. Giuli in [15] and then developed by these authors and W. Tholen in [16]. Cat-
egories with a closure operator generalize the category Top of topological spaces
and continuous maps and, therefore, there is a natural problem of extending
classical topological concepts from topological spaces to objects of these cate-
gories. A number of recent papers on the theory of categorical closure operators
are devoted to the study of these extended concepts. For example, separation
and compactness are studied in [6], [10], [12] and [17], connectedness in [3], [7],
[9] and [11], openness in [23] and quotient maps in [13]. In the present paper
we study another concept with respect to a categorical closure operator, namely
neighborhoods.
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Many topological concepts may simply be defined with the help of the Ku-
ratowski closure operator, without using open sets or neighborhoods. But, on
the other hand, neighborhoods may be used as a basic concept for introducing
and studying topological spaces — cf. [14]. And neighborhoods become even
needed when, for instance, we want to introduce convergence in a natural way.
For this reason, a concept of a neighborhood with respect to a categorical clo-
sure operator was defined in [21] and then studied in [22]. In [22], concepts of
separation and compactness obtained from neighborhoods in a natural way are
introduced and studied. In the present paper, we continue the study from [22] an
compare the separation and compactness with the usual closure separation and
closure compactness. We then use neighborhoods for introducing convergence
in a natural way. The convergence is expressed with the help of centered sys-
tems of subobjects and we show that it behaves analogously to the topological
convergence of filters. We also show that the convergence relates the separation
and compactness in the usual way.

2. Preliminaries

The present paper is a continuation of [22]. To make it self-contained, we
repeat definitions of all concepts used and recall all relevant results (without
proofs) and examples from [22].

For the general categorical terminology used see [1] and for that concerning
categorical closure operators see [4] and [18]. The lattice-theoretic concepts and
results used are taken from [24] and the topological ones from [19]. Let X
be a finitely complete category with a proper (E ,M )-factorization structure
for morphisms (here, the properness means that E is a class of epimorphisms
and M is a class of monomorphisms in X ). For simplicity, X is assumed to
have the properties that multiple pullbacks of arbitrary large families of M -mor-
phisms with a common codomain exist (and hence belong to M ) and that E
is stable under pullbacks along M -morphisms. Given an X -object X, each
M -morphism with the codomain X is called a subobject of X. We denote by
subX the subobject lattice of X, i.e., the possibly large complete lattice of all
(isomorphism classes of) subobjects of X. As usual, we identify isomorphism
classes of subobjects of X with their representatives. So, each subobject of X is
considered to be an element of subX, and we write m = n instead of m � n for
subobjects m,n of X. In the same way, by saying that m and n are different,
in symbols m �= n, we mean that m and n are not isomorphic. The joins and
meets in subX are denoted by the usual symbols ∨, ∨ and ∧, ∧, respectively.
The least element of subX is denoted by oX (of course, the identity morphism
idX is the greatest element of subX). If idX = oX , then the X -object X is
called trivial.
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For any m ∈ subX, m denotes the pseudocomplement of m — provided
it exists. Recall that, in a (possibly large) lattice L with a least element 0,
an element x ∈ L is said to be a pseudocomplement of an element x ∈ L if
x∧ y = 0 ⇐⇒ y ≤ x is valid whenever y ∈ L. It immediately follows that x ≤ x

and that x ≤ y =⇒ y ≤ x, hence x = x whenever x, y ∈ L and the corresponding
pseudocomplements exist. An element x ∈ L is said to be pseudocomplementable
if it has a pseudocomplement, and the lattice L is called pseudocomplemented
provided that all of its elements are pseudocomplementable. If L is pseudocom-
plemented and such that x = x for every x ∈ L, then L is a Boolean algebra
(with x the complement of x) — see [24]. Recall also that a lattice L with a least
element 0 is said to be atomic if, for each element x ∈ L, x �= 0, there is an atom
p of L such that p ≤ x, and it is said to be atomistic provided that each element
of L is even a join of a class of atoms of L. Note that every atom p ∈ subX has
the property p ≤ m or p ≤ m whenever m ∈ subX is a pseudocomplementable
subobject (because p �≤ m =⇒ p ∧m = oX =⇒ p ≤ m).

Given an X -morphism f : X → Y and subobjects m ∈ subX and n ∈ sub Y ,
we denote by f(m) the M -part of the (E ,M )-factorization of f ◦ m and by
f−1(n) the inverse image of n (given by the corresponding pullback) along f .

Throughout the paper, we assume that every X -morphism f : X → Y satis-
fies f−1(oY ) = oX (or, equivalently, ∀m ∈ subX : f(m) = oY =⇒ m = oX).
This assumption and the stability of E under pullbacks along M -morphisms
result in the following lemma:

����� 2.1� ([22]) Let X =
∏
i∈I

Xi be a product in X and pi ∈ subXi be an

atom for each i ∈ I. If all pi, i ∈ I, have the same domain (up to isomorphisms),
then 〈pi; i ∈ I〉 ∈ subX is an atom, too.

Further, we suppose there is given a concrete category K over X with the
corresponding underlying functor | | : K → X . As usual, we do not distinguish
notationally between K -morphisms and their underlying X -morphisms (i.e.,
we write f instead of |f | whenever f is a K -morphism). Given a K -object K,
by a subobject of K we will always mean a subobject of |K| and, correspondingly,
we will write briefly subK and oK instead of sub |K| and o|K|, respectively. This
will cause no confusion because only the category X , and not K , is assumed
to have a subobject structure. The category K is also supposed to have finite
concrete products, and by a (not necessarily finite) product in K we always
mean a concrete one.

Recall that a closure operator on K (with respect to (E ,M )) is a family of
maps c = (cK : subK → subK)K∈K with the following properties that hold for
each K -object K and each m, p ∈ subK:

(1) m ≤ cK(m),

(2) m ≤ p =⇒ cK(m) ≤ cK(p),

(3) f(cK(m)) ≤ cL(f(m)) for each K -morphism f : K → L.
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In fact, the closure operator introduced is a so-called closure operator with
respect to the underlying functor | | — see [5]. It is more general than the
classical closure operator introduced in [15], which is obtained when K = X
and | | is the identity functor. Using the above concept of a closure operator,
we substantially reduce the restriction given by the assumption that f−1(oY ) =
oX for every X -morphism f : X → Y . For example, the category TopGrp of
topological groups does not satisfy this assumption and, therefore, we cannot
consider the classical Kuratowski closure operator on TopGrp in our setting. But
we may work with the more common Kuratowski closure operator on TopGrp
with respect to the forgetful functor | | : TopGrp → Set.

The closure operator c is called

(a) grounded if cK(oK) = oK for each K ∈ K ,

(b) idempotent if cK(cK(m)) = cK(m) for each K ∈ K and each m ∈ subK,

(c) additive if cK(m ∨ p) = cK(m) ∨ cK(p) for each K ∈ K and each
m, p ∈ subK.

A K -morphism f : K → L is called c-preserving if f(cK(m)) = cL(f(m))
wheneverm ∈ subK. Thus, if f is c-preserving, then it maps c-closed subobjects
to c-closed subobjects, and vice versa provided that c is idempotent.

Given a K -object K, a subobject m ∈ subK is said to be

(α) c-closed if cK(m) = m,

(β) c-dense if cK(m) = idK ,

(γ) c-separated if the diagonal morphism δK : |K| → |K| × |K| is c-closed,
(β) c-compact if the projection prL : K × L → L is c-preserving for every

K -object L.

Throughout the paper, we assume there is given a closure operator c =
(cK)K∈K on K .

Example 2.2. Basic examples of the above introduced category K with a closure
operator are certain topological constructs with X = Set where | | : K → Set is
the forgetful functor and the (surjections, injections)-factorization structure for
morphisms is considered in the base category Set. A number of such examples
are given in [4], [5], [11], [12], [18]. Among them, of course, the most natural
one is K = Top, i.e., the construct of topological spaces and continuous maps,
with c the Kuratowski closure operator. In what follows, if K = Top or a (full)
subconstruct of Top is taken as an example of K , we always mean that c is just
the Kuratowski closure operator (of course, there are also other closure operators
on Top — see [18]). Further examples can be found among concrete categories
over topological constructs (with a singleton fibre of the empty set) which always
have the (surjections,embeddings)-factorization structure for morphisms. Such
an example is given by the category TopGrp of topological groups (and continu-
ous homomorphisms) when considering the forgetful functor | | : TopGrp → Top
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(that forgets the group structure) and taking the (classical) Kuratowski closure
operator on Top.

3. Neighborhoods

������	�
� 3.1� ([22]) Let K be a K -object. A subobject n ∈ subK is called a
c-neighborhood of a given subobject m ∈ subK if n is pseudocomplementable (in
subK) and m ∧ cK(n) = oK . We denote by NcK (m) the class of all c-neighbor-
hoods of m. A subclass B ⊆ NcK (m) is called a base of c-neighborhoods of m
if, for every n ∈ NcK (m), there exists p ∈ B such that p ≤ n.

We will write briefly N (m) instead of NcK (m) if only one K -object K with
m ∈ subK is considered.

Example 3.2.

(1) Of course, if m,n ∈ subK and both n and cK(n) are pseudocomple-

mentable, then n ∈ N (m) if and only if m ≤ cK(n). Clearly, if K = Top, then
c-neighborhoods coincide with the usual neighborhoods (of subsets) in topolog-
ical spaces.

(2) Recall that a projection space is a pair (X, (αn)n∈N) where X is a set and
(αn)n∈N = (αn : X → X)n∈N is a sequence of maps such that αn◦αm = αmin(m,n)

— cf. [20]. Given projection spaces (X, (αn)n∈N) and (Y, (βn)n∈N), a map
g : X → Y is called a projection function of (X, (αn)n∈N) into (Y, (βn)n∈N)
provided that βn ◦ g = g ◦ αn for all n ∈ N. Projection spaces (X, (αn)n∈N)
with αn = f for all n ∈ N, where f : X → X is a map, coincide with idempotent
mono-unary algebras. Let K be the category of projection spaces and projection
functions.

(a) Let X = K , let | | : K → K be the identity functor, and consider the
(surjections,injections)-factorization structure for morphisms in K . With re-
spect to this factorization structure, there is a closure operator c = (cK)K∈K

on K given by cK(m) =
{
x ∈ X : (∀n ∈ N)

(
αn(x) ∈ m(M )

)}
whenever

K = (X, (αn)n∈N) is a projection space and m : M → K is a subobject of K.
This closure operator coincides with the closure operator c∞ from [20]. So, by
[20], c is idempotent, additive and hereditary. It can easily be seen that, given a
K -object K, subK is pseudocomplemented but need not be a Boolean algebra
(e.g., let K = (X, f) be the idempotent mono-unary algebra with X = {0, 1},
f(0) = 1 and f(1) = 1).

(b) Let X = Set, let | | : K → X be the forgetful functor and consider the
(surjections,injections)-factorization structure for morphisms in Set. With re-
spect to this factorization structure, there is a closure operator c = (cK)K∈K

on K given by cK(m) = m(M ) ∪ {
x ∈ X : (∀n ∈ N)

(
αn(x) ∈ m(M )

)}
when-

ever K = (X, (αn)n∈N) is a projection space and m : M → X is a subobject
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of K. Moreover, c is clearly idempotent and hereditary. It is a so-called non-
standard closure operator — see [5]. Of course, for those subobjects m of K
which coincide with (underlying sets of) subobjects of K in the sense of (a),
cK(m) coincides with (the underlying set of) cK(m) from (a).

(c) Let the situation be the same as in (b). Then, with respect to the factoriza-
tion structure considered, there is another closure operator c = (cK)K∈K on K
defined as follows: cK(m) = m(M )∪{αn(x) : x ∈ m(M ) and n ∈ N

}
whenever

K = (X, (αn)n∈N) is a projection space and m : M → X is a subobject of K.
Clearly, this closure operator is not only idempotent and hereditary, but also
additive. Therefore, it is more appropriate than the closure operator c from (b).
It is also obvious that cK-closed subobjects of a K -object K (i.e., subsets of K)
coincide with the subobjects of K from (a). In other words, c is a so-called hull
operator — see [5].

Now, let K ∈ K be the projection space K = (N, (αn)n∈N) where, for each
n, p ∈ N, αn(p) = min(n, p).

If c is the closure operator on K given in part (a), then n > oK =⇒ n∈N (m)
whenever m, n are subobjects of K (because the subobjects of K are c-closed
and coincide with the subsets of N having the form {x ∈ N : x < n} where
n ∈ N ∪ {∞}, so that n > oK =⇒ n = ok for each subobject n of K).

On the other hand, if c is the closure operator on K given in part (b), then cK
coincides with the discrete topology on N. Therefore, we have n ∈ N (m) ⇐⇒
m ≤ n whenever m, n are subobjects of K.

Finally, let c be the closure operator on K from part (c). Let m : M → N

be an arbitrary subobject of K with m > oK . Then one can easily see that
cK(m) = N if m(M ) is infinite, and cK(m) = {1, 2, . . . ,maxm(M )} if m(M )
is finite. Consequently, we have N (m) =

{
N ⊆ N : x ∈ N for each

x ∈ N with x ≥ minm(M )
}
. Thus, if x ∈ N is a point, then {y ∈ N : y ≥ x}

is the smallest neighborhood of x. It follows that (N, cK) is nothing but the
so-called right topology on (the linearly ordered set) N.

(3) Let Alg(2) be the construct of algebras of type (2) (and the usual alge-

braic homomorphisms). Let | | : Alg(2) → Alg(2) be the identity functor. One

can easily show (cf. [18, Exercise 2.D(a)]) that, with respect to the (surjections,
injections)-factorization system for morphisms in Alg(2), there is a closure op-

erator c on Alg(2) given as follows: For every algebra X of type (2) and every
subalgebra M of X,

cX(M ) =

{
∅ if M = ∅,⋂{N : M ≤ N �X} if M �= ∅

where M ≤ N stands for “M is a subalgebra of N” and N � X for “N is a
left ideal of X”. Recall that, when using the multiplicative denotation for the
binary operation of X, a left ideal of X is a nonempty subalgebra N of X such
that xa ∈ N whenever x ∈ X and a ∈ N . Let G = {a, b, c} be the three-element
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commutative and idempotent algebra of type (2) with ab = c, ac = b and
bc = a. Then the subobject lattice of G is a diamond (see [24]), hence only the
least and the greatest elements have pseudocomplements. Clearly, cG(M ) = G
for each nonempty subalgebra M of G and cG(∅) = ∅. Further, we clearly have
N (∅) = {∅, G} while N (M ) = {G} for each nonempty subalgebra M of G.

����� 3.3� ([22]) Let K be a K -object and m, p ∈ subK. Then

(1) idK ∈ N (m) if c is grounded,

(2) N (oK) =
{
n ∈ subK : n pseudocomplementable},

(3) if m > oK , then n > oK for each n ∈ N (m),

(4) n ∈ N (m) implies m ≤ n provided that
(a) m is an atom or
(b) subK is pseudocomplemented and n = n,

(5) if n ∈ N (m) and p ∈ subK is pseudocomplementable with p ≥ n, then
p ∈ N (m),

(6) p ≤ m =⇒ N (m) ⊆ N (p),

(7) if m > oK and n1, n2, . . . , nk ∈ N (m) (k ∈ N), then m ∧ n1 ∧ n2 ∧ . . .
· · · ∧ nk > oK ,

(8) if m > oK and n1, n2, . . . , nk ∈ N (m) (k ∈ N), then n1∧n2∧· · ·∧nk > oK ,

(9) if n1, n2 ∈ N (m), then n1 ∧ n2 ∈ N (m) provided that c is additive and
subK is a Boolean algebra.

(10) If f : K → L is a K -morphism and q ∈ N
(
f(m)

)
, then f−1(q) ∈ N (m).

����� 3.4� ([22]) Let K be a K -object and m, p ∈ subK, m > oK , and let
B ⊆ N (m) be a base of c-neighborhoods of m. If m ≤ cK(p), then n ∧ p > oK
for each n ∈ B, and vice versa provided that m is an atom of subK and p, p,
cK(p) are pseudocomplementable with p = p.

4. Separation and compactness

If K is a (large) complete lattice with the smallest element 0, then a subclass
T ⊆ K is said to be centered if

∧
S > 0 for every finite subclass S ⊆ T .

������	�
� 4.1� ([22]) A K -object K is said to be

(a) separated (with respect to c) provided that, whenever m, p ∈ subK are
different atoms, there are n ∈ N (m) and q ∈ N (p) with n ∧ q = oK ,

(b) compact (with respect to c) if
∧

T > oK for every centered class T ⊆
subK of c-closed subobjects of K.
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Example 4.2.

(1) If K = Top, then the above defined concepts of separation and compact-
ness coincide with the well-known separation and compactness of topological
spaces. For separation, this is true also in the case when K is the construct of
Čech closure spaces [8].

(2) Let Algτ be the construct of algebras of a given type τ (with the usual
homomorphisms as morphisms) and let | | : Algτ → Set be the forgetful func-
tor. Then, with respect to the (surjections,injections)-factorization structure for
morphisms in Set, there is an idempotent closure operator c = (cA)A∈Algτ

on
Algτ given by cA(X) = 〈X〉A for every algebra A of type τ and every subset
X ⊆ A where 〈X〉A denotes the subalgebra of A generated by X. It is evident
that every object of Algτ is compact. An object A ∈ Algτ is separated if, for
instance, A is a projection algebra (i.e., all operations of A are projections).

The concepts of separation and compactness are studied in [22]. In this
section, we complete the study by discussing relationships of the concepts to
the well known c-separation and c-compactness.

���

�� 4.3� Let K be a K -object such that sub(K×K) is atomistic and both

δK and cK×K(δK) are pseudocomplementable with δK = δK and cK×K(δK) =
cK×K(δK). Let, for every atom m ∈ sub(K × K), both the projections
pri : |K| × |K| → |K|, i = 1, 2, fulfill pri ◦m ∈ M and let from p ∈ N (pr1 ◦m)
and q ∈ N (pr2 ◦m) it follows that p× q ∈ N (m). If K is separated, then it is
c-separated.

P r o o f. Let m ∈ sub(K ×K) be an atom with m ≤ δK . Then m �≤ δK , hence
pr1 ◦m = pr2 ◦m (because δK is an equalizer of pr1 and pr2). Therefore, there
are p ∈ N (pr1 ◦m) and q ∈ N (pr2 ◦m) such that p ∧ q = oK . Suppose that
(p×q)∧δK > oK×K . Then there is an atom s ∈ sub(K×K) with s ≤ (p×q)∧δK .
Since s ≤ p × q, we clearly have pr1 ◦ s ≤ p and pr2 ◦ s ≤ q. From s < δK it
follows that pr1 ◦s = pr2 ◦s. Consequently, p∧q > oK , which is a contradiction.
Thus, there holds (p× q)∧ δK = oK×K . Further, we have p× q ∈ N (m) by the
assumptions of the statement. Suppose that m ≤ cK×K(δK). Then n ∧ δK >
oK×K for every n ∈ N (m) by Lemma 3.4. Therefore, (p × q) ∧ δK > oK×K ,

which is a contradiction. Hence, we get m ≤ cK×K(δK). We have shown that

δK ≤ cK×K(δK), which yields cK×K(δK) ≤ δK . Thus, δK is c-closed. �

���

�� 4.4� Let K be a K -object such that subK is pseudocomplemented,

all atoms of subK have the same domain (up to isomorphisms) and δK = δK .
Let, for any pair of atoms p, q ∈ subK, from n ∈ N (〈p, q〉) it follows that
pr1 ◦ n ∈ N (p) and pr2 ◦ n ∈ N (q). If K is c-separated, then it is separated.
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P r o o f. Let δK be c-closed and let p, q ∈ subK be different atoms. Then 〈p, q〉 ∈
sub(K × K) is an atom by Lemma 2.1 and we have 〈p, q〉 �≤ δK = cK×K(δK)
because δK is an equalizer of pr1 and pr2. Therefore, by Lemma 3.4, there
exists n ∈ N (〈p, q〉) such that n ∧ δK = oK×K . We have pr1 ◦ n ∈ N (p) and
pr2 ◦ n ∈ N (q) by the assumptions of the statement. Suppose that pr1 ◦ n ∧
pr2 ◦ n > oK and let r ∈ subK be an atom with r ≤ pr1 ◦ n ∧ pr2 ◦ n. Then
there are s, t ∈ M with the same domain (up to isomorphisms) as r and such
that r = pr1 ◦ n ◦ s = pr2 ◦ n ◦ t. It follows that pr1 ◦ 〈r, r〉 = pr1 ◦ n ◦ s and
pr2 ◦〈r, r〉 = pr2 ◦n◦t. Hence, 〈r, r〉 = n◦s (and 〈r, r〉 = n◦t, so that s = t), which
yields 〈r, r〉 ≤ n. Thus, since 〈r, r〉 ≤ δK , we have 〈r, r〉 ≤ n∧ δK . Consequently,
n∧ δK > oK×K , which is a contradiction. Therefore, pr1 ◦n∧pr2 ◦n = oK and
the proof is complete. �

���

�� 4.5� Let c be additive and subL be an atomic Boolean algebra for
each K -object L. Let K be a K -object satisfying the following condition:

Given a K object L, an atom y ∈ subL and a subobject m ∈ sub(K × L)
with prL(cK×L(m))∧y = oL, for each atom x ∈ subK there are subobjects
ux ∈ subK and vx ∈ subL, ux c-closed, such that ux ∧x = oK , cL(vx)∧ y
= oL, and cK×L(m) ≤ pr−1

K (ux) ∨ pr−1
L (vx).

If K is compact, then it is c-compact.

P r o o f. Let K be compact, L be a K -object and m ∈ sub(K × L). If
prL(cK×L(m)) = idL, then we clearly have cL(prL(m)) ≤ prL(cK×L(m)). Let

prL(cK×L(m)) < idL. Then prL(cK×L(m)) > oL. Let y ∈ subL be an atom

with y ≤ prL(cK×L(m)), i.e., with prL(cK×L(m)) ∧ y = oL. For each atom
x ∈ subK, let ux ∈ subK and vx ∈ subL be the subobjects from the con-
dition of the statement. Then

∧{
ux : x ∈ subK is an atom

}
= oK (be-

cause otherwise there is an atom x0 ∈ subK with x0 ≤ ux for each atom
x ∈ subK, which is a contradiction with ux0

∧ x0 = oK). Thus, there is a

finite set {x1, . . . , xk} of atoms of subK such that
k∧

i=1

uxi
= oK . Put v =

k∨
i=1

vxi
. Then cL(v) ∧ y = cL

( k∨
i=1

vxi

)
∧ y =

k∨
i=1

(cL(vxi
) ∧ y) = oL. Conse-

quently, v ∈ N (y). Further, we have cK×L(m) ≤
k∧

i=1

(pr−1
K (uxi

) ∨ pr−1
L (vxi

)) ≤
k∧

i=1

pr−1
K (uxi

) ∨
k∨

i=1

pr−1
L (vxi

) ≤ pr−1
L (

k∨
i=1

vxi
) = pr−1

L (v), hence prL(cK×L(m))

≤ v. This yields v ≤ prL(cK×L(m)), i.e., v ∧ prL(cK×L(m)) = oL. It follows
that v ∧ prL(m) = oL. By Lemma 3.4, y ∧ cL(prL(m)) = oL. Consequently,

y ≤ cL(prL(m)). We have shown that cL(prL(m)) ≥ prL(cK×L(m)). Therefore,
cL(prL(m)) ≤ prL(cK×L(m)) and the proof is complete. �
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���

�� 4.6� Let c be idempotent and K be a K -object with the properties that
subK is a Boolean algebra and for any centered subclass F ⊆ subK of c-closed
subobjects of K there exist a K -object L and a c-dense subobject m : |K| → |L|
of L such that the following conditions are satisfied:

(1) sub(K × L) is atomic.

(2) For any atom z ∈ sub(K × L), from p ∈ N (prK(z)) and q ∈ N (prL(z))
it follows that p× q ∈ N (z).

(3) There exists a subobject y ∈ subL with y > oL, y ∧m = oL, and y ∨m(s)
∈ N (y) for each s ∈ F .

If K is c-compact, then it is compact.

P r o o f. Let K be c-compact and F ⊆ subK be a centered class of c-closed
subobjects of K. Put d = 〈idK ,m〉. Then m = prL(d) ≤ prL(cK×L(d)).
As m is dense, we have y ≤ cL(m). Consequently, y ≤ cL(prL(cK×L(d))) =
prL(cK×L(d)) because prL : K × L → L is c-preserving and c is idempotent.
Thus, since prL(cK×L(d)) ∧ y > oL, we have cK×L(d) ∧ pr−1

L (y) > oK×L. Let

z ∈ sub(K×L) be an atom with z ≤ cK×L(d)∧pr−1
L (y). Then z ≤ cK×L(d) and

prL(z) ≤ y. Let a ∈ subK be the atom with a = prK(z) and put qs = y ∨m(s)
for each s ∈ F . By Lemma 2.1, a ∈ subK is an atom. Let p ∈ N (a).
Since qs ∈ N (y), we have p × qs ∈ N (z) for each s ∈ F . By Lemma 3.4,
w ∧ d > oK×L for each w ∈ N (z). Thus, (p× (y ∨m(s))) ∧ d > oK×L for each
s ∈ F . Hence, there is an atom vs ∈ sub(K ×L) with vs ≤ (p× (y ∨m(s)))∧ d
for each s ∈ F . As vs ≤ d, there is an element us ∈ subK, us > oK , with
vs = d ◦ us. We have prK ◦vs = prK ◦〈idK ,m〉 ◦ us = us and prL ◦ vs =
prL ◦ 〈idK ,m〉 ◦ us = m ◦ us. From vs ≤ p × (y ∨ m(s)) it follows that
us ≤ prK(p×(y∨m(s))) and m(us) ≤ prL(p×(y∨m(s))) (for each s ∈ F ). Now,
using the (E ,M )-diagonalization property, we get us ≤ p and m(us) ≤ y∨m(s),
i.e., us ≤ m−1(y)∨m−1(s) = m−1((y∨m(s))∧m) = m−1((y∧m)∨(m(s)∧m)) =
m−1(m(s) ∧ m) = m−1(m(s)) = s. Consequently, p ∧ s ≥ us > oK for each
s ∈ F . Therefore, by Lemma 3.4, a ≤ cK(s) = s for each s ∈ F . Hence∧

F > oK , so that K is compact. �

Example 4.7. If K = Top, then the assumptions of each of the Theorems 4.3–4.6
are satisfied and the Theorems give the well-known results that c-separation and
c-compactness coincide with separation and compactness of topological spaces.
Theorems 4.3 and 4.5 are also valid if K is the larger category of Čech closure
spaces [8]. The assumptions of Theorem 4.5 are satisfied whenever K is a full
subcategory of Top (the subobjects ux and vx are then obtained as complements
of certain open neighborhoods of x and y, respectively — see [19]). As for
Theorem 4.6, its assumptions are satisfied, for example, whenever K is the
category of T1-spaces or the category of normal spaces (the topological space L
is then defined to be the space with |L| = |K|∪{y} where y /∈ |K| is a point and
the open sets in L are just the open sets in K and the sets of the form {y}∪T ∪X
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where T is a finite intersection of elements of F and X ⊆ |K| is a subset — see
[19] again). On the other hand, there hardly exist topological categories which
are not subcategories of Top and fulfill the conditions of Theorem 4.5 or 4.6.

Remark 4.8� The assumptions of Theorems 4.3 and 4.4 are quite natural (espe-
cially if K is a construct), thus there is a strong relationship between separation
and c-separation. But this is not true for compactness and c-compactness in
general (if K differs from Top with the Kuratowski closure operator c). Never-
theless, the two concepts of compactness behave still quite analogously. For
example, the Tychonoff’s theorem for each of them is based on using a certain
finiteness property of products — cf. [22, Theorem 4.11] and [10].

5. Convergence

The well-known concepts of filter, ultrafilter, filter base and filter subbase de-
fined for lattices may be naturally extended to possibly large lattices. Similarly,
we may extend the concept of a stack from ordered sets to ordered classes (recall
that a stack on an ordered class G is a subclass S ⊆ G such that x ≤ y implies
y ∈ S whenever x ∈ S and y ∈ G). Of course, filters are just the filter bases
that are stacks and, for (large) lattices with a least element, filter subbases not
containing the least element coincide with centered subclasses (i.e., nonempty
subclasses C such that

∧
B is different from the least element for every finite

subset B ⊆ C ). Let G be a possibly large lattice with a smallest element. If
R, S are centered subclasses of G , then S is said to be finer than R, and R
is said to be coarser than S , provided that R ⊆ S . It is evident that maximal
centered subclasses of G (and maximal filter bases on G ) coincide with ultra-
filters on G . Thus, as the Axiom of Choice for conglomerates is assumed, each
centered subclass of G (and each filter base on G ) is coarser than an ultrafilter
on G .

For each X -object X we denote by RX the conglomerate of all centered
subclasses of subX. Thus, RX = ∅ if and only if X is a trivial object (because
otherwise {idX} ∈ RX). Given a K -object K, we write briefly RK instead
of R|K|.

Let X, Y be X -objects and B ⊆ subX a subclass. As usual, if f : X → Y
is an X -morphism, we put f(B) =

{
f(r) : r ∈ B

}
. Clearly, if B is a centered

subclass of subX (or a filter base on subX respectively), then f(B) is a centered
subclass of subY (or a filter base on subY respectively).

Let X =
∏
i∈I

Xi be a product in X and let Bi ⊆ subXi for each i ∈ I.

Then we put
∏
i∈I

Bi =
{ ∏

i∈I

mi : mi ∈ Bi for each i ∈ I
}
. If in X the non-

trivial objects are stable under products and if Bi is centered for each i ∈ I,
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then
∏
i∈I

Bi ∈ subX is centered, too (because
∧
j∈J

∏
i∈I

mj
i ≥ ∏

i∈I

∧
j∈J

mj
i whenever

mj
i ∈ Bi for each j ∈ J and each i ∈ I, and the domain of

∧
j∈J

mj
i is non-trivial

for each i ∈ I).

Let K be a K -object and m ∈ subK, m > oK . By Lemma 3.3, N (m) is a
centered subclass of subK and each base B ⊆ N (m) is a centered subclass of
subK too. But N (m) need not be a filter in general (by Lemma 3.3, N (m)
is a filter on subK provided that c is additive and subK is a Boolean algebra).
For this reason, centered classes will be used as tools for defining convergence:

������	�
� 5.1� Let K be a K -object, m ∈ subK and R ∈ RK .

(a) We say that R converges to m, in symbols R → m, if, for each p ∈ subK
with oK < p ≤ m and each n ∈ N (p) there exists r ∈ R such that r ≤ n.

(b) m is called a clustering of R provided that m ≤ cK(r) for each r ∈ R
(i.e., provided that m ≤ ∧

r∈R

cK(r)).

Example 5.2. (1) Let K = Top, let K be a K -object, R ∈ RK be a filter,
and m : M → |K| be an inclusion (in Set). Then R → m (respectively, m is a
clustering of R) if and only if R converges to x (respectively, x is a cluster point
of R) — in the usual topological sense — for each x ∈ M . But some authors
do not require R to be a filter when defining convergence in a topological space
and work with convergence of centered systems — see e.g. [2].

(2) If K is the construct of Čech closure spaces [8], K ∈ K , R ∈ RK is
a filter base and m ∈ K is a point, then Definition 5.1 is equivalent to the
definitions of convergence and a cluster point from [8].

The following statement is obvious:

�

�
��	�
� 5.3� Let K be a K -object. Then

(1) R → oK for each R ∈ RK .

(2) N (m) → m whenever m is an atom of subK.

(3) For any R ∈ RK and any m ∈ subK, from R → m it follows that R → p
for each p ∈ subK, p ≤ m.

(4) Let the lattice subK be atomic, let R ∈ RK and let m ∈ subK. If R → a
for each atom a ∈ subK with a ≤ m, then R → m.

(5) For any R ∈ RK and any m ∈ subK, from R → m it follows that S → m
whenever S ∈ RK is finer than R.

(6) If R ∈ RK is a stack on subK and m ∈ subK, then R → m if and only
if N (p) ⊆ R for each p ∈ subK with oK < p ≤ m.

(7) oK is a clustering of every R ∈ RK .

(8) Let R ∈ RK and m,n ∈ subK. If m is a clustering of R and n ≤ m,
then n is a clustering of R, too.
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As an immediate consequence of Lemma 3.4, Definition 5.1 and Proposi-
tion 5.3 we get:

�

�
��	�
� 5.4� Let K be a K -object, m, p ∈ subK, and let m be an atom
of subK. If m ≤ cK(p), then there exists R ∈ RK such that R → m and
n ∧ p > oK for each n ∈ R, and vice versa provided that subK is a Boolean
algebra.

�


���
� 5.5� Let K be a K -object such that subK is a Boolean algebra
and let p ∈ subK. If cK(p) equals a join of atoms of subK, then cK(p) =∨{

m ∈ subK : m is an atom such that there exists R ∈ RK with R → m

and n ∧ p > oK for each n ∈ R
}
.

�

�
��	�
� 5.6� Let K be a K -object such that subK is a Boolean algebra,
let R ∈ RK be a stack on subK and let m ∈ subK be a join of atoms. If there
exists S ∈ RK with R ⊆ S and S → m, then m is a clustering of R, and vice
versa provided that subK is atomic, c is additive and R is a filter.

P r o o f. For m = oK the statement is trivial. Let m > oK and let there exist
S ∈ RK with R ⊆ S and S → m. Then, for an arbitrary atom p ∈ subK
with p ≤ m, we have S → p. As N (p) ⊆ S by Proposition 5.3(6), it follows
that r ∧ n > oK whenever r ∈ R and n ∈ N (p). By Lemma 3.4, p ≤ cK(r)
for each r ∈ R. Hence p is a clustering of R, i.e., p ≤ ∧{

cK(r) : r ∈ R
}
.

Consequently, m is a clustering of R.
Conversely, let subK be atomic, c be additive and R be a filter. Suppose

that m is a clustering of R and let p ≤ m be an arbitrary atom of subK. Put
B =

{
r ∧ n : r ∈ R, n ∈ N (p)

}
. By Lemma 3.4, r ∧ n > oK whenever

r ∈ R and n ∈ N (p). As R is a filter and, by Lemma 3.3(9), N (p) is a
filter, too, B is a filter base. Let S be the filter generated by B, i.e., S ={
s ∈ subK :

(∃q ∈ B
)
(q ≤ s)

}
. We have N (p) ⊆ S , hence S → p.

But we also have R ⊆ S and, by Proposition 5.3(4), S → m. The proof is
complete. �
�


���
� 5.7� Let K ∈ K be an object such that subK is a Boolean algebra,
let R ∈ RK be a stack and let m ∈ subK be a join of atoms. If R → m, then
m is a clustering of R.

�


���
� 5.8� Let c be additive, K be a K -object such that subK is an
atomic Boolean algebra, and let R ∈ RK be an ultrafilter. Then R → m if and
only if m is a clustering of R.

���

�� 5.9� Let f : K → L be a K -morphism, m ∈ subK and R ∈ RK . If
R → m, then f(R) → f(m).

P r o o f. Let R → m, p ∈ subL, oL < p ≤ f(m), and let n ∈ N (p). Since
f(f−1(p)) = p, we have n ∈ N (f(f−1(p))). Thus, by Lemma 3.3, f−1(n) ∈
N (f−1(p)). From f−1(p)∧m ≤ f−1(p) it follows that f−1(n) ∈ N

(
f−1(p)∧m)

.
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Further, f(m) ∧ p = p > oL implies oK < f−1(p) ∧ m ≤ m. Thus, there exists
r ∈ R such that r ≤ f−1(n) because R → m. Hence, f(r) ≤ f(f−1(n)) ≤ n.
Since f(r) ∈ f(R), we have f(R) → f(m). �

Let K =
∏
i∈I

Ki be a product in K and let R ∈ RK . By Theorem 5.9,

given m ∈ subK, R → m implies pri(R) → pri(m) for each i ∈ I. If the
converse implication is also valid, we say that the centered class R is convergence-
compatible with the product K. For example, it is well known that in the case
K = Top filters are convergence-compatible with products.

�

�
��	�
� 5.10� Let in X the non-trivial objects be stable under products
and let all projections in K belong to E . Let K =

∏
i∈I

Ki be a product in K

and, for each i ∈ I, let Ri ∈ RKi
, mi ∈ subKi and Ri → mi. If

∏
i∈I

Ri ∈ RK

is convergence-compatible with K, then
∏
i∈I

Ri →
∏
i∈I

mi.

P r o o f. By the assumptions,
∏
i∈I

Ri ∈ RK . Let ri ∈ Ri, ri : Ri → Ki for each

i ∈ I. Then, for each i ∈ I, pri ◦ ∏
i∈I

ri = ri ◦ pi where pri :
∏
i∈I

Ki → K and

pi :
∏
i∈I

Ri → Ri are the projections. Thus, pri

( ∏
i∈I

ri

)
is the M -part of the

(E ,M )-factorization of ri ◦pi. Now, for each i ∈ I, the diagonalization property

results in pri

( ∏
i∈I

ri

)
≤ ri and, since pi ∈ E , also in ri ≤ pri

( ∏
i∈I

ri

)
. Therefore,

we have pri

( ∏
i∈I

ri

)
= ri for each i ∈ I and, analogously, we get pri

( ∏
i∈I

mi

)
=

mi for each i ∈ I. Hence pri

( ∏
i∈I

Ri

)
= Ri, which yields pri

( ∏
i∈I

Ri

)
→ mi for

each i ∈ I. Consequently, pri

( ∏
i∈I

Ri

)
→ pri

( ∏
i∈I

(mi)
)
for each i ∈ I. Since∏

i∈I

Ri is convergence-compatible with K, we have
∏
i∈I

Ri →
∏
i∈I

mi. �

���

�� 5.11� Let K be a K -object. If K is separated, then from R → m and
R → p it follows that m = p whenever m, p ∈ subK are atoms and R ∈ RK ,
and vice versa provided that c is additive and subK is a Boolean algebra.

P r o o f. Let K be separated. Then, for any pair p, q ∈ subK of different atoms,
there exist m ∈ N (p) and n ∈ N (q) such that m ∧ n = oK . Let R ∈ RK be
a centered class with R → r and R → s where r, s ∈ subK are atoms. Let
m ∈ N (r) and n ∈ N (s) be arbitrary neighborhoods. Then there are t, u ∈ R
such that t ≤ m and u ≤ n. Since t ∧ u > oK , we have m ∧ n > oK . Therefore,
r = s.
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Conversely, let c be additive and subK be a Boolean algebra. Suppose there is
a pair p, q ∈ subK of different atoms such that m∧n > oK whenever m ∈ N (p)
and n ∈ N (q). Put B = N (p) ∪ N (q). Then B ⊆ subK is centered because
N (p) and N (q) are filters by Lemma 3.3. We have both B → p and B → q. �

���

�� 5.12� Let K be a K -object. If every R ∈ RK has a clustering dif-
ferent from oK , then K is compact, and vice versa provided that c is idempotent.

P r o o f. Suppose that K is not compact. Then there exists a centered class
T ⊆ subK of c-closed subobjects of K such that

∧
T = oK . Hence, T ∈ RK

and
∧{

cK(p) : p ∈ T
}
=

∧
T = oK . Thus, the only clustering of T is oK .

Conversely, let c be idempotent and let K be compact. Let R ∈ RK and put
S =

{
cK(r) : r ∈ R

}
. Then S is a clustering of R and, since S is a centered

class of c-closed subobjects of K, we have
∧

S > oK . �

Remark 5.13�

(a) The introduced concept of convergence may be strengthened by saying
that R ∈ RK converges to m ∈ subK if N (p) ⊆ R for each p ∈ subK with
oK < p ≤ m. Then all statements of this section remain valid and, in the case
of Proposition 5.6 and Corollary 5.7, this is true even if the assumption that R
is a stack is omitted.

(b) A concept of convergence with respect to a closure operator on a category
was introduced and investigated in [21]. But it is supposed in [21] that all
subK, K ∈ K , are pseudocomplemented, so that the centered class of all
neighborhoods of a given subobject of K forms a stack. Therefore, centered
stacks are used in [21] as a tool for expressing the convergence. The convergence
introduced in Definition 5.1 generalizes the convergence from [21].
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