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ABSTRACT. The notion of relatively uniform convergence has been applied in
the theory of vector lattices and in the theory of archimedean lattice ordered
groups. Let G be an abelian lattice ordered group. In the present paper we
introduce the notion of weak relatively uniform convergence (wru-convergence, for
short) on G generated by a system M of regulators. If G is archimedean and M =
G+, then this type of convergence coincides with the relative uniform convergence
on G. The relation of wru-convergence to the o-convergence is examined. If G has
the diagonal property, then the system of all convex �-subgroups of G closed with
respect to wru-limits is a complete Brouwerian lattice. The Cauchy completeness
with respect to wru-convergence is dealt with. Further, there is established that
the system of all wru-convergences on an abelian divisible lattice ordered group
G is a complete Brouwerian lattice.
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1. Introduction

The notion of relatively uniform convergence (ru-convergence, for short) has
been applied in the theory of vector lattices (cf. the monographs [2], [15], [17])
and in the theory of archimedean lattice ordered groups (cf. the papers [1], [3],
[5], [6], [7], [14], [16]). Related notions for MV -algebras were studied in [4].

If H is an abelian lattice ordered group which fails to be archimedean, then
the definition of ru-convergence can be used for H, but it has certain rather
“pathological” properties, namely
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(i) there exists a sequence (xn) inH such that the set of limits of this sequence
is infinite;

(ii) there exists a sequence (yn) in H such that 0 < y1 < y2 . . . and (yn)
converges to 0 under the ru-convergence.

To avoid these patological properties, we introduce the notion of weak rel-
atively uniform convergence (wru-convergence, for short) on an abelian lattice
ordered group G generated by a system M of regulators of convergence. We
proceed as follows. The set of all positive integers will be denoted by N.

An element a ∈ G+ will be said to be archimedean if, whenever 0 � b ∈ G
and nb � a for each n ∈ N, then b = 0.

Recall that a lattice ordered group G is called archimedean if all elements of
G+ are archimedean.

The set of all archimedean elements of G will be denoted by A.
Let A(G) be the �-subgroup of G generated by the set A. Then A(G) is a

convex �-subgroup of G having the following properties (cf. [11]):

(i) A(G) is an archimedean lattice ordered group;

(ii) if H is an archimedean convex �-subgroup of G, then H ⊆ A(G).

We say that A(G) is the archimedean kernel of G.
Let b ∈ A, (xn) a sequence in G and x ∈ G. We say that (xn) b-converges

to x, written xn
b→ x, if for each k ∈ N there exists n0(b, k) ∈ N such that

k|xn − x| � b

holds whenever n ∈ N, n � n0(b, k).
Let M be a nonempty subset of A. Assume that M is closed with respect to

the addition.
Let (xn) be a sequence in G and x ∈ G. We say that this sequence

α(M )-converges to x and we write

xn →α(M) x, (1)

if xn
b→ x for some b ∈ M .

We denote this type of convergence as wru-convergence on G with the system
M of regulators, or, shortly, as α(M )-convergence.

If G is archimedean and if M = G+, then the relation (1) is equivalent with
the condition that (xn) relatively uniformly converges to x.

Further, assume that G is archimedean and 0 < b ∈ G. Consider the conver-
gence in G dealt with in [3] applying the fixed regulator b. Let us denote this
convergence as b-convergence on G. Put Mb = {nb}n∈N. It is easy to verify that
the b-convergence on G coincides with the convergence α(Mb) on G.

A sequence (xn) in G is a Cauchy sequence with respect to the convergence
α(M ) if for some b ∈ M and each k ∈ N there exists n1(b, k) ∈ N such that

k|xn − xm| � b
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whenever n and m are positive integers with n � n1(b, k), m � n1(b, k).
A lattice ordered group is Cauchy complete with respect to the convergence

α(M ) if, whenever (xn) is a Cauchy sequence with respect to α(M ), then there
exists x ∈ G with xn →α(M) x.

In the present paper, the basic properties of the α(M )-convergence in an
abelian lattice ordered group G are deduced. The relations between α(M )-con-
vergence and o-convergence are examined. The Cauchy completeness of G with
respect to α(M )-convergence is investigated. Some results of the paper [14] are
extended. We show that if G has the diagonal property, then the system of all
α(M )-closed convex �-subgroups of G is a complete Browerian lattice. Further,
there is proved that the system of all wru-convergences on an abelian divisible
lattice ordered group G is also a complete Brouwerian lattice.

2. Basic properties of α(M)-convergence and examples

In this section, basic properties of α(M )-convergence and some examples will
be given. As above, we apply the assumption that G is an abelian lattice ordered
group and M is as in Section 1.

The fact that the set M of regulators of convergence is closed with respect to
the addition, ensures that the results of Lemmas 2.1–2.5 can be proved in the
same way as in [6].

The first lemma establishes that limits in α(M )-convergence are uniquely
determined.

����� 2.1� Let (xn) be a sequence in G and x, y ∈ G. If xn →α(M) x and
xn →α(M) y, then x = y.

����� 2.2� Let (xn), (yn) be sequences in G and x, y ∈ G. If xn →α(M) x and
yn →α(M) y, then

(i) xn + yn →α(M) x+ y,

(ii) xn ∨ yn →α(M) x ∨ y,

(iii) xn ∧ yn →α(M) x ∧ y,

(iv) kxn →α(M) kx for any integer k,

(v) if a, b ∈ G, a � xn � b for all n ∈ N, then a � x � b.

We use the symbol F to denote the set of all sequences in G which are Cauchy
with respect to α(M )-convergence.

����� 2.3� Let (xn) be a sequence in G and x ∈ G. If xn →α(M) x, then
(xn) ∈ F .

����� 2.4� If (xn) ∈ F then (xn) is bounded.
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����� 2.5� Let (xn), (yn) ∈ F . Then

(i) (xn + yn) ∈ F ,

(ii) (xn ∨ yn) ∈ F ,

(iii) (xn ∧ yn) ∈ F .

Example 2.6. Let us modify the previous definition of the convergence α(M ) in
such a way that we do not assume all elements of M to be archimedean. Let
b ∈ M and suppose that b fails to be archimedean. Hence there exists x ∈ G
such that 0 < nx < b for each n ∈ N. Let xn = nx for each n ∈ N. Then we
have

xn < xn+1 and k|xn − 0| � b

for each n ∈ N and each k ∈ N. Hence xn →α(M) 0.

Further, let m be a positive integer. If n > m, then for each k ∈ N we get

0 < k|xn − xm| < k|xn| < b,

whence xn →α(M) xm. Thus the number of limits of the sequence (xn) is infinite.

We verified that we arrived at the pathological properties mentioned in Sec-
tion 1 above. This is the reason to suppose all elements of M to be archimedean.

We remark that the possibility M = {0} is not excluded; in this case, the
only α(M )-convergent sequences are those which are eventually constant.

The following example shows that there exists a lattice ordered groupG �= {0}
with 0 being the only archimedean element; in such a case we have M = {0}.
Example 2.7. Consider the lexicographic product G = ΓGi (i ∈ N), Gi = Z for
each i ∈ N where Z is the additive group of all integers with the natural linear
order (for the notion of the lexicographic product of partially ordered groups
cf., e.g., Fuchs [8]). The component of an element g ∈ G in Gi will be denoted
by g(i).

Let 0 < x ∈ G. Then with respect to the order of G, there exists i0 ∈ N with
x(i0) > 0 and x(i) = 0 for each i ∈ N, i < i0. Let i1 ∈ N, i1 > i0. There exists
y ∈ G such that y(i1) = 1 and y(i) = 0 for each i ∈ N, i �= i1. Hence y > 0. We
get (ny)(i1) = n and (ny)(i) = 0 for each i ∈ N, i �= i1. Therefore ny < x for
each n ∈ N. Consequently, x cannot be archimedean, so A = {0}.
Example 2.8. Let G1 be any abelian linearly ordered group, G2 any abelian
lattice ordered group, and let G be their lexicographic product. It is easy to
verify that for every set M of regulators, the relation M ⊆ {0} × G+

2 holds.
Assume that M �= {0}.

Let (xn) be a sequence in G and let xn →α(M) 0.

Let k ∈ N. There exist b ∈ M and n0 ∈ N such that

k|xn| � b for each n ∈ N, n � n0.
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Since b(1) = 0, xn(1) = 0 for each n ∈ N, n � n0 and k|xn(2)| = k|xn|(2) �
b(2) = b. Hence xn(2) →α(M) 0.

Let (yn) be a sequence in G, y ∈ G and let yn →α(M) y. The above consider-
ations entail that there exists n0 ∈ N with yn(1) = y(1) for each n ∈ N, n � n0

and yn(2) →α(M) y(2).

We intend now to generalize the results established in the foregoing two ex-
amples.

Let I �= ∅ be a linearly ordered set and let Ai �= {0} be a partially ordered
group for each i ∈ I. Suppose that G is the lexicographic product of Ai, G = ΓAi

(i ∈ I). We distinguish two cases:

(a) The set I has no greatest element. Then all Ai are linearly ordered groups.
Zero element 0 is the only archimedean element of G. Hence M = {0}.
For the proof of this, a similar procedure to that in Example 2.7 can be
applied.

(b) The set I possesses the greatest element i0. Then Ai0 is a lattice ordered
group and Ai is a linearly ordered group for each i ∈ I\{i0}. We have
G = A ◦ Ai0 where A = ΓAi (i ∈ I \ {i0}). Assume that M �= {0}.
Concerning α(M )-convergence in G, we obtain an analogous result to that
in Example 2.8.

The direct product of lattice ordered groups is defined in the usual way. Let
G =

∏
i∈I

Gi be the direct product of the system {Gi}i∈I and let H be a subset of

all elements g ∈ G such that the set
{
i ∈ I : g(i) �= 0

}
is finite. Then H is an

�-subgroup of G; it is said to be a direct sum of the system {Gi}i∈I ; we express
this fact by writing H =

∑
i∈I

Gi. If the set I is finite then
∏
i∈I

Gi =
∑
i∈I

Gi. We

apply the notion of direct sum to investigate the α(M )-convergence.

Let I be a nonempty set and let Gi be an abelian lattice ordered group for
each i ∈ I. In the following two lemmas we assume that G is the direct sum of
Gi, G =

∑
i∈I

Gi, M is as before. It is easy to see that Mi =
{
bi ∈ Gi : b ∈ M

}
is

a set of archimedean elements in Gi, which is closed with respect to the addition.
We consider Mi as the set of convergence regulators in Gi. The set of all Cauchy
sequences in Gi with respect to α(Mi)-convergence is denoted by Fi.

����� 2.9� Let (xn) be a sequence in G. If (xn) ∈ F then (xn(i)) ∈ Fi for
each i ∈ I.

����� 2.10� Let (xn) be a sequence in G and x ∈ G. If xn →α(M) x then
xn(i) →α(Mi) x(i) for each i ∈ I.

Lemmas 2.9 and 2.10 are easy to prove. If I is a finite set then also the
converse assertions are satisfied. However, if I is infinite, the converses fail to
hold in general.
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Example 2.11. Let G =
∑
i∈N

Gi where Gi = R for each i ∈ N. Consider the se-

quence (xn) in G, x1 = (1, 0, 0, . . . ), x2 = (0, 2, 0, 0, . . . ), x3 = (0, 0, 3, 0, 0, . . . ),
x4 = (0, 0, 0, 4, 0, . . . ), . . . . For each i ∈ I and any Mi ⊆ G+

i we have
xn(i) →α(Mi) 0, but (xn) /∈ F for an arbitrary M ⊆ G+.

Let M1,M2 ⊆ A. Assuming that the sets M1 and M2 are nonempty and
closed under the addition, we put α(M1) � α(M2) if and only if xn →α(M1) x
implies xn →α(M2) x. If M1 ⊆ M2 then α(M1) � α(M2), but not conversely.
We will show that the converse implication is valid for a particular type of sets
M1 and M2.

Let M be a nonempty subset of A closed under the addition. We form the set

M̃ =
{
b ∈ A :

(∀� = (xn) ∈ GN
)(∀x ∈ G

)(
xn

b→ x =⇒ xn →α(M) x
)}

.

In 2.12–2.14, G is assumed to be an abelian divisible lattice ordered group (for
a construction of a divisible lattice ordered group cf., e.g. [10]).

������� 2.12� The set M̃ is closed with respect to the addition.

P r o o f. Assume that b1, b2 ∈ M̃ . We have to show that b = b1 + b2 ∈ M̃ . For
this purpose, suppose that (xn) is a sequence in G and x ∈ G with the property

xn
b→ x. Our aim is to prove that xn →α(M) x.

The assumption xn
b→ x is equivalent to |xn−x| b→ 0. Denoting yn = |xn−x|,

we have yn � 0 for all n ∈ N and yn
b→ 0. Thus for each k ∈ N there exists

n0 ∈ N with the property

kyn � b for each n ∈ N, n � n0.

Hence

yn � 1

k
b =

1

k
b1 +

1

k
b2 for each n ∈ N, n � n0.

Applying the Riesz decomposition property, we get

yn = y1n + y2n

where

0 � y1n � 1

k
b1, 0 � y2n � 1

k
b2 for each n ∈ N, n � n0.

Whence y1n
b1→ 0 and y2n

b2→ 0. The assumption yields y1n→α(M) 0 and y2n→α(M) 0.

By 2.2, |xn − x| = yn = y1n + y2n →α(M) 0, i.e., xn →α(M) x. �

It is easy to see that M ⊆ M̃ , 0 ∈ M̃ , M̃ is a convex subset of A, α(M ) =

α(M̃) and that M̃ is the greatest of all M ⊆ A, closed under addition with

α(M ) = α(M̃).
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����� 2.13� Let M1 and M2 be nonempty subsets of A closed with respect to

the addition. Then α(M1) � α(M2) if and only if M̃1 ⊆ M̃2.

P r o o f. If M̃1 ⊆ M̃2 then obviously α(M1) = α(M̃1) � α(M̃2) = α(M2).

In order to prove the converse implication, we assume that b1 ∈ M̃1, (xn) is a

sequence in G and x ∈ G such that xn
b1→ x. Then xn →α(M1) x. The assumption

implies xn →α(M2) x. This shows that b1 ∈ M̃2. �

Let b ∈ A. The convergence α(M̃b) is said to be the principal convergence
generated by the element b.

As observed earlier in Section 1, b-convergence and α(Mb)-convergence coin-
cide. Then we get:

����� 2.14� Let b ∈ A. The following conditions are equivalent:

(i) xn
b→ x.

(ii) xn →
α(M̃b)

x.

Let H be a convex �-subgroup of G, (xn) a sequence in H and x ∈ H. It can
happen that xn →

α(M̃g)
x for some g ∈ A, but there is no archimedean element

h ∈ H such that xn →
α(M̃h)

x.

Example 2.15. Let G be the set of all real functions f defined on the interval
[0, 1] such that f(1) = 0. Then G is an archimedean lattice ordered group with
respect to the operation + and the partial order performed componentwise. Let
H be the set of all functions f from G such that there exists 0 < xf < 1 with the
property f(x) = 0 whenever x ∈ [0, 1], x > xf . Then H is a convex �-subgroup
of G. Consider the sequence (fn(x)) with

fn(x) =

{
1
n , if 0 � x � 1− 1

n ,

0, if 1− 1
n < x � 1

and the function

g(x) =

{
1, if 0 � x < 1,

0, if x = 1.

We see that (fn(x)) is a sequence in H and 0 < g(x) ∈ G\H. It is easy to

check that fn(x)
g(x)→ 0, but there is no element 0 < h(x) in H with fn(x)

h(x)→ 0.
Finally, we apply Lemma 2.14.
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3. Cauchy completeness of G and A(G)

Again, let G be an abelian lattice ordered group, A(G) as in Section 1 and
let M be as above. If the role of G is to be emphasized, then we write α(M ;G)
rather than α(M ).

We obviously have M ⊆ A(G); then from the definition of α(M ;G) we im-
mediately obtain:

����� 3.1� Let (xn) be a sequence in A(G) and x ∈ A(G). Then the following
conditions are equivalent:

(i) xn →α(M ;G) x;

(ii) xn →α(M ;A(G)) x.

Order convergence (o-convergence) of a sequence (xn) in G to an element
x ∈ G will be denoted by xn →o x.

Also, the following assertion is easy to verify.

����� 3.2� Let (xn) be a sequence in G and x ∈ G. Then the following
conditions are equivalent:

(i) xn →o x in G;

(ii) there exists m ∈ N such that the sequence (xm+n) o-converges to x in G.

Assume that (xn) is a sequence in G, x ∈ G and that

xn →α(M ;G) x.

Thus there exists b ∈ M and m ∈ N such that

|xn − x| � b

for each n ∈ N with n � m.

Denote |xn − x| = yn. Hence yn ∈ A(G) for n � m. Also,

ym+n →α(M ;G) 0.

Then according to Lemma 3.1, we have

ym+n →α(M ;A(G)) 0.

Assume that the lattice ordered group A(G) is either σ-complete or divisible.
Then according to [14, Proposition 3.4, Proposition 3.5], we obtain that the
sequence (ym+n) o-converges to 0 in A(G). From this and from the fact that
A(G) is a convex �-subgroup of G we conclude that the sequence (ym+n) o-con-
verges to 0 in G. Then Lemma 3.2 yields that the sequence (yn) o-converges to
0 in G. Due to the definition of yn we get that the sequence (xn) o-converges to
x in G.

Therefore we obtain:
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	��
���
��� 3.3� Let (xn) be a sequence in G, x ∈ G and xn →α(M ;G) x.
Assume that the archimedean kernel A(G) of G is either σ-complete or divisible.
Then xn →o x in the lattice ordered group G.

This extends [14, Proposition 3.4, Proposition 3.5].
If G is divisible, then, clearly, A(G) is divisible as well. If G is σ-complete,

then it is archimedean and hence A(G) = G. Thus from Proposition 3.3 we
infer:

��������� 3.4� Let G, (xn) and x be as in Proposition 3.3. Assume that G
is either σ-complete or divisible. Then xn →o x is valid in G.

We remark that when speaking about Cauchy completeness in this section,
we always consider this notion with respect to a convergence generated by a
fixed system M of regulators.

	��
���
��� 3.5� Let M be as above. The following conditions are equivalent:

(i) G is Cauchy complete with respect to α(M );

(ii) A(G) is Cauchy complete with respect to α(M ).

P r o o f. Let (i) be valid. From the fact that A(G) is a convex �-subgroup of G
we infer that (ii) holds.

Conversely, assume that (ii) is satisfied. Let (xn) be a Cauchy sequence (with
respect to α(M )) in G. Hence there exists b ∈ M such that for each k ∈ N there
exists nk ∈ N with

k|xn − xm| � b

whenever n,m � nk.
For each n ∈ N, let us put

yn = xn − xn1
.

Let us notice that
|yn| = |xn − xn1

| � b

for all n � n1. Thus (yn+n1
) is a sequence in A(G). Further, as

k|yn − ym| = k|xn − xn1
− xm + xn1

| = k|xn − xm| � b.

for all n,m � nk, we infer that (yn), just like (yn+n1
) is a Cauchy sequence in

A(G). By (ii), there exists y ∈ A(G) such that

yn+n1
→α(M ;A(G)) y.

Then yn+n1
→α(M ;G) y and this implies that

xn+n1
= yn+n1

+ xn1
→α(M) y + xn1

.

Consequently
xn →α(M) y + xn1

.

Therefore (xn) is convergent with respect to α(M ). Thus the condition (i) is
satisfied. �
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4. Dedekind completion

In the present section we deduce some results concerning Dedekind comple-
tions of lattice ordered groups. We apply the notation as in [8, Chapter §10]
with the distinction that the group operation is written additively.

We recall some relevant notions. Let G be a lattice ordered group. For each
nonempty upper bounded subset X of G we denote by U (X) the set of all upper
bounds of X; further, let X# = L(U (X)) be the set of all lower bounds of
U (X). The system of all such sets X# will be denoted by D0(G); this system is
partially ordered by the set-theoretical inclusion. For X# and Y # from D0(G)
we put

X# +1 Y
# = (X + Y )#.

Further, let D(G) be the set of all sets X# having the property that there
exists Y # ∈ D0(G) with

X# +1 Y
# = {0}#.

Then (cf. [8]) D(G) is closed with respect to the operation +1. If we consider
the mapping G → D(G) defined by

x → {x}#,
then we obtain an embedding of G into D(G). In fact, we will identify x and
{x}#; in this way, G turns out to be an �-subgroup of D(G). We say that D(G)
is the Dedekind completion of G.

We denote by D the class of all lattice ordered groups G such that G = D(G).
Obviously, each complete lattice ordered group belongs to D. On the other hand,
a lattice ordered group belonging to D need not be complete. A necessary and
sufficient condition for a lattice ordered group G to belong to D is given in [9].

The notion of a generalized Dedekind completion D1(G) of a lattice ordered
group G has been introduced and studied in [11]; cf. also [12] and [13]; we recall
the relevant basic facts.

Let G be a lattice ordered group. There exists a lattice ordered group D1(G)
such that the following conditions are fulfilled:

(i) G is an �-subgroup of D1(G).

(ii) D(A(G)) is an �-ideal of D1(G).

(iii) If x ∈ G and X is a nonempty subset of x + A(G) such that X is upper-
bounded in x+A(G), then there is x0 ∈ D1(G) with supX = x0.

(iv) For each x0 ∈ D1(G) there exists x ∈ G and a nonempty subset X ⊆
x+A(G) such that X is upper-bounded in x+A(G) and x0 = supX.

The lattice ordered group D1(G) is said to be the generalized Dedekind com-
pletion of G. A constructive description of D1(G) was presented in [11].
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In fact, D1(G) is an amalgam of lattice ordered groups G and D(A(G)) with
the common �-subgroup A(G). The generalized Dedekind completion D1(G) is
uniquely determined, up to isomorphisms leaving all elements of G fixed.

If G is archimedean, then D1(G) = D(G). There exists an abelian lattice
ordered group G such that D1(G) fails to be isomorphic to D(G) (cf. [13]).

	��
���
��� 4.1� (Cf. [11, Proposition 2.14].) For each lattice ordered group
G, the relation

A(D1(G)) = D(A(G))

is valid.

We remark that since the lattice ordered group A(G) is archimedean,D(A(G))
= D1(A(G)). Thus the relation given in Proposition 4.1 can be written in the
form

A(D1(G)) = D1(A(G)).

It is well-known that the Dedekind completion of an archimedean lattice or-
dered group is a complete lattice ordered group. Hence applying Proposition 4.1
we get:

����� 4.2� For each lattice ordered group G, the lattice ordered group
A(D1(G)) is complete.

Similarly as above, when speaking about Cauchy completeness, we have in
mind the convergence α(M ), where M is a fixed system of regulators of conver-
gence with M ⊆ (A(G))+ (cf. Section 1).

	��
���
��� 4.3� Let G be an abelian lattice ordered group. Then D1(G) is
Cauchy complete.

P r o o f. In view of [6, Corollary 4.5], each complete lattice ordered group is
Cauchy complete. Thus according to Lemma 4.2, A(D1(G)) is Cauchy complete.
Now, it suffices to apply Proposition 3.5. �

Our aim is to verify that a result analogous to Proposition 4.3 is valid for the
Dedekind completion of an abelian lattice ordered group.

����� 4.4� (Cf. [11, Corollary 2.19].) Let ∅ �= {ai}i∈I be a set of archimedean
elements of a lattice ordered group G. Assume that the relation

∨
I∈I

ai = b is
valid in G. Then b is an archimedean element of G.

	��
���
��� 4.5� (Cf. [13, Proposition 3.1].) The archimedean kernel of D(G)
is the set of all elements h ∈ D(G) with the property that |h| = supZ for a subset
Z ⊆ A(G).

From Lemma 4.4 and Proposition 4.5, we obtain by a simple calculation:

	��
���
��� 4.6� Let G be an abelian lattice ordered group. Then the relation

A(D(G)) = D(A(G))

is valid.
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	��
���
��� 4.7� Let G be an abelian lattice ordered group. Then D(G) is
Cauchy complete.

P r o o f. Since A(G) is archimedean, from Proposition 4.6 we get the assertion

A(D(G)) is a complete lattice ordered group. (∗)
Now, it suffices to apply the same argument as in the proof of Proposition 4.3
with the distinction that (∗) is used instead of Lemma 4.2. �

5. α(M)-closed convex �-subgroups

Again, let M ⊆ A,M �= ∅. We assume that M is closed under the addition.
The set c(G) of all convex �-subgroups of G is a complete lattice under the

set inclusion. The lattice operations in c(G) will be denoted by ∧ and ∨. Let
{Gi : i ∈ I} ⊆ c(G). Then

∧
i∈I

Gi =
⋂
i∈I

Gi and
∨
i∈I

Gi coincides with the lattice

operation of join in the lattice of all subgroups of G, i.e., it is the subgroup of
G generated by the subgroups Gi (i ∈ I) of G.

Let A be a convex �-subgroup of G. Then A is called α(M )-closed if for every
sequence (xn) in A with xn →α(M) x in G, the limit x belongs to A.

The set of all α(M )-closed convex �-subgroups of G will be denoted by cl(G).
Let {Gi : i ∈ I} ⊆ cl(G). It is easy to check that

⋂
i∈I

Gi ∈ cl(G). As G ∈ cl(G),

the set cl(G) is a complete lattice under the set inclusion. The lattice operations
in cl(G) will be denoted by � and 
; thus

i∈I
Gi =

⋂
i∈I

Gi and
⊔
i∈I

Gi is the set

intersection of all convex α(M )-closed �-subgroups of G including the set
⋃
i∈I

Gi.

Assume that A is a convex �-subgroup of G. Let {Ai : i ∈ I} be the system
of all elements of cl(G) with A ⊆ Ai. Then A =

⋂
i∈I

Ai is the least convex

α(M )-closed �-subgroup of G containing A as an �-subgroup.
The following lemma is easy to verify.

����� 5.1� Let {Gi : i ∈ I} ⊆ cl(G). Then
⊔
i∈I

Gi =
∨
i∈I

Gi.

Let {Gi : i ∈ I} ⊆ cl(G). It can happen that
∨
i∈I

Gi is different from
⊔
i∈I

Gi

in α(M )-convergence for some M ⊆ A.

Example 5.2. Let G =
∏
i∈N

Gi where Gi = R for each i ∈ N and G0
i =

{
x ∈ G :

x(j) = 0 for each j ∈ N, j �= i
}
. Then G0

i is a convex α(M )-closed �-subgroup

of G for each M ⊆ A and for each i ∈ N. Since H =
∨
i∈N

G0
i is the subgroup

of G generated by all subgroups G0
i of G, H consists of all elements x from G
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such that the set
{
i ∈ N : x(i) �= 0

}
is finite. It suffices to prove that H is

not α(M )-closed for some M ⊆ A. Consider α(M )-convergence such that the
element b = (1, 1, . . . ) ∈ M . The sequence (xn) with xn =

(
1, 12 , . . . ,

1
n , 0, 0, . . .

)
for each n ∈ N is a sequence in H and xn →α(M) x =

(
1, 12 ,

1
3 , . . .

)
, because

xn
b→ x. Then x ∈ G, but x /∈ H and so H fails to be α(M )-closed.

Let A be a convex �-subgroup of G. We denote by A′ the set of all elements
x of G such that there exists a sequence (xn) in A such that xn →α(M) x.

����� 5.3� A′ is a convex �-subgroup of G.

P r o o f. Evidently, A′ is an �-subgroup of G. To prove that A′ is convex, as-
sume that x ∈ A′, y ∈ G, 0 � y � x. There is a sequence (xn) in A such
that xn →α(M) x. It is easy to verify that without loss of generality we can
suppose that xn � 0 for each n ∈ N. Hence, (xn ∧ y) is a sequence in A and
xn ∧ y →α(M) x ∧ y = y, so y ∈ A′ and A′ is convex. �

In [15] there is defined a diagonal property for relatively uniform convergence
in a vector lattice. This notion can be defined analogously for α(M )-convergence
in G. The definition is as follows.

We say that the lattice ordered group G has the diagonal property if the
following condition is satisfied:

Let (xnk) be a double sequence in G, (xn) a sequence in G and x0 ∈ G such
that xnk →α(M) xn for each n ∈ N (if k → ∞) and xn →α(M) x0. Then for each
n ∈ N there exists k(n) ∈ N such that xn,k(n) →α(M) x0.

����� 5.4� If G has the diagonal property for α(M )-convergence then A′ = A
for each convex �-subgroup A of G.

The proof is analogous to that in vector lattices for relatively uniform con-
vergence [15].

����� 5.5� Let G possess the diagonal property. If A,B ∈ c(G), then A ∩B
= A ∩ B.

P r o o f. From A ∩ B ⊆ A,B we infer that A ∩ B ⊆ A,B, so A ∩B ⊆ A ∩ B.
Conversely, we will show that A ∩ B ⊆ A ∩ B. With respect to hypothesis and
Lemma 5.4, we have to verify that A′ ∩ B′ ⊆ (A ∩ B)′. Let 0 � x ∈ A′ ∩ B′.
Then there are sequences (xn) in A and (yn) in B such that xn →α(M) x and
yn →α(M) x in G. Similarly as in the proof of Lemma 5.3, we can suppose that
xn, yn � 0 for any n ∈ N. The sequence (xn∧yn) is in A∩B and xn∧yn →α(M) x
in G. This yields that x ∈ (A∩B)′. Therefore, we obtain the desired result. �

������� 5.6� Let G have the diagonal property. Then the lattice cl(G) is
Brouwerian.
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P r o o f. Let A ∈ cl(G) and Bi ∈ cl(G) for each i ∈ I. We have to verify that

A �
(⊔

i∈I

Bi

)
=

⊔
i∈I

(A �Bi)

is valid. It is well-known that c(G) is a Brouwerian lattice. Using this fact
together with Lemmas 5.1 and 5.5 we obtain

A �
(⊔

i∈I

Bi

)
= A ∩

∨
i∈I

Bi = A ∩
∨
i∈I

Bi = A ∩
(∨

i∈I

Bi

)
=

∨
i∈I

(A ∩Bi)

=
⊔
i∈I

(A ∩Bi) =
⊔
i∈I

(A � Bi).

�

6. The system s(G)

Let s(G) be the system of all wru-convergences on G (for all possible ∅ �=
M ⊆ A closed under the addition). It will be established that s(G) is a complete
Brouwerian lattice.

����� 6.1� (Cf. [11].) Let b1, b2 ∈ A. Then b1 ∨ b2 ∈ A.

����� 6.2� Let b1, b2 ∈ A. Then b1 + b2 ∈ A.

P r o o f. Let b1, b2 ∈ A. By Lemma 6.1, b1 ∨ b2 ∈ A. From b1, b2 � b1 ∨ b2 we
get b1 + b2 � 2(b1 ∨ b2). Then 2(b1 ∨ b2) ∈ A implies b1 + b2 ∈ A. �

Let b1, . . . , bn ∈ A. Applying Lemma 6.2 and by induction we obtain b1 +
· · ·+ bn ∈ A.

When dealing with regulators of a relative uniform convergence, in some sit-
uations, it seems to be more convenient to proceed without the assumption that
the set M under consideration is closed with respect to the addition.

Thus, we introduce the following definition.

Let M be a nonempty subset of A, (xn) a sequence in G and x ∈ G. We say

that this sequence α0(M )-converges to x, written xn →α0(M) x, if xn
b→ x for

some b = b1 + · · ·+ bm with bi ∈ M (i = 1, . . . ,m).

Remark that α0(M )= α(M ) whenever M is closed with respect to the addi-
tion.

Given ∅ �= M ⊆ A, the symbol M 0 will denote the set consisting of all
elements b ∈ G which can be expressed in the form b = b1 + · · · + bm for some
b1, . . . , bm ∈ M . The set M 0 is closed with respect to the addition and α0(M )=
α(M 0) is valid.
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Analogously to definition of M̃ in Section 2, we define the set

M =
{
b ∈ A :

(∀� = (xn) ∈ GN
)(∀x ∈ G

)(
xn

b→ x =⇒ xn →α0(M) x
)}

.

In 6.3–6.7, we assume that G is an abelian divisible lattice ordered group.

����� 6.3� Let ∅ �= M ⊆ A. Then the set M is closed with respect to the
addition.

P r o o f. It is easy to verify that the relations

M = M̃ 0 = M 0 (2)

are fulfilled. By 2.12, M̃ 0 is closed under the addition. Then (2) completes the
proof. �
����� 6.4� Let ∅ �= M ⊆ A. Then α0(M ) = α0(M).

P r o o f. In view of (2) and 2.12 we have

α0(M) = α0(M̃ 0) = α(M̃ 0) = α(M 0) = α0(M ).

�

It is easy to see that M ⊆ M , 0 ∈ M , M is a convex subset of A and that M
is the greatest of all ∅ �= M ⊆ A, with α0(M ) = α0(M).

The proof of the following lemma is analogous to that of Lemma 2.13.

����� 6.5� Let M1andM2 be nonempty subsets of A. Then α0(M1) � α0(M2)
if and only if M1 ⊆ M2.

������� 6.6� The set s(G) is a complete lattice. If I is a nonempty set and
for each i ∈ I, Mi is a nonempty subset of A closed with respect to the addition,
then

(i)
∧
i∈I

α(Mi) = α
( ⋂

i∈I

M i

)
,

(ii)
∨
i∈I

α(Mi) = α
( ⋃

i∈I

Mi

)
.

P r o o f.
(i) The relation

∧
i∈I

α(Mi) =
∧
i∈I

α0(Mi) is valid, since all sets Mi are closed

with respect to the addition. According to Lemma 6.3, all M i are closed under

the addition, thus so does
⋂
i∈I

M i. Hence α
( ⋂

i∈I

M i

)
= α0

( ⋂
i∈I

M i

)
. Thus we

have to prove that the relation∧
i∈I

α0(Mi) = α0

(⋂
i∈I

M i

)
(3)

is valid.
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From
⋂
i∈I

M i ⊆ M i1 for each i1 ∈ I and from Lemma 6.4 we deduce that

α0

( ⋂
i∈I

M i

)
� α0(M i1) = α0(Mi1) for each i1 ∈ I.

Suppose that M ⊆ A and that α0(M ) � α0(M i) for each i ∈ I. Then by

Lemma 6.5,M ⊆ M i = M i for each i ∈ I and so α0(M ) = α0(M) � α0

( ⋂
i∈I

M i

)
because M ⊆ ⋂

i∈I

M i. Consequently, (3) is valid and hence (i) is satisfied.

The convergence α(A) is the greatest element of s(G). Hence s(G) is a com-
plete lattice; α({0}) is the least element of s(G).

(ii) By using the same argument as above we get
∨
i∈I

α(Mi) =
∨
i∈I

α0(Mi) and

α
( ⋃

i∈I

Mi

)
= α0

( ⋃
i∈I

Mi

)
= α0

( ⋃
i∈I

Mi

)
. Hence we want to show that

∨
i∈I

α0(Mi) = α0

(⋃
i∈I

Mi

)
(4)

holds.

For each i1 ∈ I, Mi1 ⊆ ⋃
i∈I

Mi is valid, so α0(Mi1) � α0

( ⋃
i∈I

Mi

)
for each

i1 ∈ I.

Assume that M ⊆ A and α0(Mi) � α0(M ) for each i ∈ I. Lemma 6.5 yields
M i ⊆ M for each i ∈ I. Hence

⋃
i∈I

M i ⊆ M . This and Lemma 6.4 imply

α0

( ⋃
i∈I

M i

)
� α0(M) = α0(M ).

Now we show that

α0

(⋃
i∈I

M i

)
= α0

(⋃
i∈I

Mi

)
. (5)

On account of
⋃
i∈I

Mi ⊆ ⋃
i∈I

M i we have α0

( ⋃
i∈I

Mi

)
� α0

( ⋃
i∈I

M i

)
. The

inclusion Mi1 ⊆ ⋃
i∈I

Mi for each i1 ∈ I yields M i1 ⊆ ⋃
i∈I

Mi for each i1 ∈ I,

so
⋃
i∈I

M i ⊆ ⋃
i∈I

Mi. Therefore α0

( ⋃
i∈I

M i

)
� α0

( ⋃
i∈I

Mi

)
= α0

( ⋃
i∈I

Mi

)
by

Lemma 6.4, whence (5) is satisfied which completes the proof of the part (ii). �

������� 6.7� The lattice s(G) is Brouwerian.

P r o o f. Let I be a nonempty set, Mi ⊆ A for each i ∈ I and M ⊆ A. Suppose
that all Mi and M are nonempty and closed under the addition. We have to
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prove that the relation

α(M ) ∧
(∨

i∈I

α(Mi)

)
=

∨
i∈I

(α(M ) ∧ α(Mi)) (6)

holds.

In view of (3) and (4) we get

α(M ) ∧
(∨

i∈I

α(Mi)

)
= α0(M ) ∧

(∨
i∈I

α0(Mi)

)
= α0(M ) ∧ α0

(⋃
i∈I

Mi

)
= α0

(
M ∩

⋃
i∈I

Mi

)
,∨

i∈I

(
α(M ) ∧ α(Mi)

)
=

∨
i∈I

(
α0(M ) ∧ α0(Mi)

)
=

∨
i∈I

α0(M ∩M i) = α0

(⋃
i∈I

(M ∩M i)

)
.

To prove that the relation (6) is valid, it suffices to verify that α(M ) ∧( ∨
i∈I

α(Mi)
)
�

∨
i∈I

(α(M ) ∧ α(Mi)), i.e., that

α0

(
M ∩

⋃
i∈I

Mi

)
� α0

(⋃
i∈I

(M ∩M i)

)
.

Assume that xn →
α0

(
M∩ ⋃

i∈I

Mi

) x. Then xn →α0(M) x and xn →
α0

( ⋃
i∈I

Mi

) x.

By Lemma 6.4 and (5), xn →
α0

( ⋃
i∈I

Mi

) x. Therefore there are u1, . . . , um ∈ M

and v1, . . . , vk ∈ ⋃
i∈I

M i such that for each p ∈ N there exists n0 ∈ N with the

property

p|xn − x| � u1 + · · ·+ um and p|xn − x| � v1 + · · ·+ vk

for each n ∈ N, n � n0. Hence

p|xn − x| � (u1 + · · ·+ um) ∧ (v1 + · · ·+ vk)

� u1 ∧ v1 + · · ·+ u1 ∧ vk + · · ·+ um ∧ v1 + · · ·+ um ∧ vk

for each n ∈ N, n � n0. We have uj ∧ v� � uj , v� (j = 1, . . . ,m; � = 1, . . . , k),

so uj ∧ v� ∈ M ∩
( ⋃

i∈I

M i

)
=

⋃
i∈I

(M ∩M i) (j = 1, . . . ,m; � = 1, . . . , k). Conse-

quently, xn →
α0

( ⋃
i∈I

(M∩Mi)
) x and the proof is finished. �
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[14] JAKUBÍK, J.—ČERNÁK, Š.: Relatively uniform convergences in archimedean lattice
ordered groups, Math. Slovaca 60 (2010), 447–460.

[15] LUXEMBURG, W. A. J.—ZAANEN, A. C.: Riesz Spaces, Vol I, North Holland Publ.,
Amsterdam-London, 1971.

[16] MARTINEZ, J.: Polar functions, III. On irreducible maps vs. essential extensions of
archimedean �-groups with unit, Tatra Mt. Math. Publ. 27 (2003), 189–211.

[17] VULIKH, B. Z.: Introduction to the Theory of Partially Ordered Spaces, Wolters-
Nordhoff Sci. Publ., Groningen, 1967.

Received 31. 3. 2009
Accepted 24. 8. 2009

Mathematical Institute
Slovak Academy of Sciences
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Košice
SLOVAKIA

E-mail : stefan.cernak@tuke.sk
kstefan@saske.sk

704

Unauthenticated
Download Date | 2/3/17 10:51 AM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldMT
    /ArialMT
    /Times
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice




