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NEW OSCILLATION CRITERIA

FOR THIRD ORDER

NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

S. H. Saker

(Communicated by Michal Fečkan )

ABSTRACT. In this paper, we are concerned with oscillation of the third-order
nonlinear neutral difference equation

∆(cn
[
∆(dn∆(xn + pnxn−τ ))

]γ
) + qnf(xg(n)) = 0, n ≥ n0,

where γ > 0 is the quotient of odd positive integers, cn, dn, pn and qn are
positive sequences of real numbers, τ is a nonnegative integer, g(n) is a sequence
of nonnegative integers and f ∈ C(R,R) such that uf(u) > 0 for u �= 0. Our
results extend and improve some previously obtained ones. Some examples are
considered to illustrate the main results.
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1. Introduction

In recent years, the asymptotic properties and oscillation of difference equa-
tions and their applications have been and still are receiving intensive attention.
In fact, in the last few years several monographs and hundreds of research papers
have been written, see for example the monographs [1, 3, 6, 10]. Determination
of oscillatory behavior for solutions of first and second order difference equa-
tions has occupied a great part of researchers’ interest. Compared to the first
and second order difference equations, the study of third order difference equa-
tions has received considerably less attention in the literature, even though such
equations arise in the study of economics, mathematical biology, and other areas
of mathematics which discrete models are used as well as their applications in
the numerical solutions of third-order differential equations (see for example [4]).
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S. H. SAKER

For contributions, for third order difference equations, we refer the reader to the
papers [2, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19] and for neutral difference equa-
tions we refer the reader to the papers [14, 20] and the references cited therein.
For completeness and comparison, we present below some of these results.

In [20], the authors considered the nonlinear neutral delay difference equation

∆(cn∆(dn∆(xn + pnxn−τ ))) + qnf(xn−σ) = 0, for n ≥ n0, (1.1)

and established some sufficient conditions for oscillation by employing the Riccati
technique, when the following assumptions are satisfied:

(A1) τ and σ are nonnegative integers such that τ ≤ σ,

(A2) cn, dn, pn, qn are positive sequences of real numbers such 0 ≤ pn < 1, and

∞∑
n=n0

(
1

cn

)
=

∞∑
n=n0

(
1

dn

)
= ∞, (1.2)

(A3) f : R → R is a continuous function, uf(u) > 0 for u �= 0 and
f(u)/uγ � K > 0.

In [14] the author considered the third order nonlinear neutral delay difference
equation

∆
(
cn∆ [dn∆(xn + pnxn−τ )]

γ)+ qnf(xn−σ) = 0, n ≥ n0, (1.3)

where (A1)–(A3) are satisfied and γ � 1 is quotient of odd positive integers. In
[14] the author established several sufficient conditions for oscillation which im-
proved the results that has been established in [20]. To prove the main results in
[20] and [14] and find effective oscillation criteria the authors used an additional
sequence different from the coefficients in the equations. One of our aims in this
paper is to delete this condition and find new oscillation criteria without any
additional sequence.

In this paper, we are concerned with oscillation of the third-order nonlinear
neutral difference equation

∆ (cn [∆(dn∆(xn + pnxn−τ ))]
γ
) + qnf(xg(n)) = 0, n ≥ n0, (1.4)

when the following assumptions are satisfied:

(h1) γ > 0 is quotient of odd positive integers,

(h2) τ is a nonnegative integer and g(n) is a sequence of nonnegative integers
such that lim

n→∞ g(n) = ∞,

(h3) cn, dn, pn and qn are positive sequences of real numbers such 0 ≤ pn < 1,
and ∆pn ≥ 0,

(h4) f : R → R is a continuous function, uf(u) > 0 for u �= 0 and
f(u)/uγ � K > 0.
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We note that the results that has been established in [20] and [14] are obtained
in the case when γ � 1 and (1.2) holds. The natural question now is: If one
can find new oscillation criteria for the equation (1.4) when 0 < γ < 1? The
main aim in this paper is to give an affirmative answer to this question and
establish some sufficient conditions which guarantee that the equation (1.4) has
oscillatory solutions or the solutions tend to zero as n → ∞.

The paper is organized as follows: In Section 2, we state and prove some useful
lemmas. In Section 3, we will state and prove the main results and divided it
into two subsections: In the Subsection 3.1, we consider the advanced case when
g(n) > n and in the Subsection 3.2, we consider the delay case when g(n) < n.
The main investigation of the main oscillation results depends on the Riccati
substitution and the analysis of the associated Riccati difference inequality. The
results in this paper are different from the results established in [20] and [14] and
can be applied on the case when 0 < γ < 1. Some examples and applications
are considered throughout the paper to illustrate the main results.

2. Some preliminary lemmas

In this section, we state and prove the fundamental lemmas which we will
use in the proofs of the main results in Section 3. Let xn is a solution of the
equation (1.4), and

zn := xn + pnxn−τ . (2.1)

We define the quasi-differences of zn by

z[0]n = zn, z[1]n = dn∆zn, z[2]n = cn

[
∆z[1]n

]γ
, and z[3]n = ∆

(
z[2]n

)
. (2.2)

We note that if xn is a solution of (1.4) then yn = −xn is also solution of (1.4),
since from (h4), uf(u) > 0 for u �= 0. Thus, concerning nonoscillatory solutions
of (1.4), we can restrict our attention only to the positive ones and from (2.1),
since pn > 0, we see that if xn is positive and monotonic then zn is also positive
and monotonic. We start with the following Lemma which provides the sign of
the quasi-differences of zn.

����� 2.1� Assume that (h1)–(h4) hold. If xn is a nonoscillatory solution of

(1.4), then there exists N > n0 such that z
[i]
n �= 0 for i = 0, 1, 2, for n ≥ N .

P r o o f. Without loss of generality, we may assume that xn be an eventually
positive solution of (1.4) and there exists n1 ≥ n0 such that xn > 0, xn−τ > 0
and xg(n) > 0 for n ≥ n1. Then from (2.1) and (h3), we see that zn > 0 and

since qn > 0, we have z
[3]
n < 0 and there exists n2 ≥ n1 such that z

[2]
n is either

positive or negative for n ≥ n2. Thus z
[1]
n is either increasing or decreasing for

n ≥ n2 and so there exists N ≥ n2 such that z
[1]
n is either positive or negative

for n ≥ N . The proof is complete. �
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In view of Lemma 2.1, and (2.1), we see that if xn is a nonoscillatory solution
of (1.4) then quasi-differences of zn belong to the following classes:

C0 =
{
z : (∃N)(∀n ≥ N)

(
znz

[1]
n < 0, znz

[2]
n > 0

)}
,

C1 =
{
z : (∃N)(∀n ≥ N)

(
znz

[1]
n > 0, znz

[2]
n < 0

)}
,

C2 =
{
z : (∃N)(∀n ≥ N)

(
znz

[1]
n > 0, znz

[2]
n > 0

)}
,

C3 =
{
z : (∃N)(∀n > N)

(
znz

[1]
n < 0, znz

[2]
n < 0

)}
.

In the following we prove some lemmas which provide a classification of asymp-
totic behavior of the nonoscillatory solutions.

����� 2.2� Assume that (h1)–(h4) hold, and

∞∑
n=n0

(
1

cn

)γ

= ∞,

∞∑
n=n0

(
1

dn

)
= ∞. (2.3)

If xn is a nonoscillatory solution of (1.4), then zn ∈ C0 ∪ C2.

P r o o f. Without loss of generality, we may assume that xn is an eventually
positive solution of (1.4) and there exists n1 � n0 such that xn > 0, xn−τ > 0

and xg(n) > 0 for n ≥ n1. In view Lemma 2.1, we see that z
[0]
n , z

[1]
n and z

[2]
n are

monotone and eventually of one sign. So to complete the proof, we prove that
there are only the following two cases:

Case (I): z
[0]
n > 0, z

[1]
n > 0, z

[2]
n > 0, for n � n1 sufficiently large.

Case (II): z
[0]
n > 0, z

[1]
n < 0, z

[2]
n > 0, for n � n1 sufficiently large.

We claim that there exists n2 � n1 such that z
[2]
n > 0 for n � n2. Suppose

that z
[2]
n ≤ 0 for n � n2. From (1.4), we see that z

[3]
n < 0 for n � n1 and then

z
[2]
n is decreasing. Therefore there exist a negative constant C and n3 � n2 such

that z
[2]
n ≤ C for n � n3. So that

z[1]n ≤ z[1]n3
+ C

1
γ

n−1∑
s=n3

1

(cs)
1
γ

,

which implies by (2.3) that lim
n→∞ z

[1]
n = −∞. Thus, there is an integer n4 � n3

such that for n � n4, dn∆(zn) ≤ dn4
∆(zn4

) < 0. This implies that after
summing from n4 to n− 1, that

zn − zn4
≤ dn4

∆(zn4
)

n−1∑
s=n3

1

ds
,

which implies by (2.3) that zn → −∞ as n → ∞. This is a contradiction with

zn > 0. Then z
[2]
n > 0. The proof is complete. �
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����� 2.3� Assume that (h1)–(h4) hold and let zn is defined as in (2.1). If xn

is a nonoscillatory solution of (1.4) and

∞∑
n=n1

1

dn

n−1∑
s=n1

1

(cs)
1
γ

= ∞, for n1 ≥ n0, (2.4)

then C3 is empty.

P r o o f. Without loss of generality we assume that xn is an eventually positive
solution and there exists n1 > n0 such that xn > 0, xn−τ > 0 and xg(n) > 0
for n ≥ n1. This implies that zn > 0 for n ≥ n1. To prove that C3 is empty,

we prove that the case znz
[1]
n < 0, and znz

[2]
n < 0 for n ≥ N > n0 is impossible.

Assume for the sake of contradiction that there exists n2 > n1 such that z
[2]
n < 0

and z
[1]
n < 0 for n ≥ n2. Denote a0 = z

[2]
n2 < 0. Then, since z

[2]
n is deceasing we

have cn(∆z
[1]
n ) < a0 for n ≥ n2 and thus by summation from n2 to n − 1, we

have

z[1]n < z[1]n2
+ a

1
γ

0

n−1∑
s=n2

1

(cs)
1
γ

.

Now, since z
[1]
n2 < 0, we see after summation from n2 to n− 1, that

zn < a
1
γ

0

n−1∑
n=n2

1

dn

n−1∑
s=n2

1

(cs)
1
γ

.

Letting n → ∞, we get by (2.4) that lim
n→∞ zn = −∞, which contradicts the

positivity of zn. The proof is complete. �

����� 2.4� Assume that (h1)–(h4) hold and let xn is a nonoscillatory solution
of (1.4). Let zn is defined as in (2.1) and assume that zn ∈ C2. Then zn is
solution of the inequality

∆
(
cn

[
∆z[1]n

]γ)
+ Pnz

γ
g(n) ≤ 0, for n ≥ n1, (2.5)

where Pn = Kqn(1− pg(n))
γ.

P r o o f. Without loss of generality, we assume that xn is an eventually positive
solution and there exists n1 > n0 such that xn > 0, xn−2τ > 0 and xg(n) > 0
for n ≥ n1 sufficiently large. This implies from (2.1) that zn > 0 n ≥ n1. Since
zn ∈ C2, we see that

zn = xn + pnxn−τ = xn + pn[zn−τ − pn−τxn−2τ ] ≤ xn + pnzn, for n ≥ n1.

Thus we have xn � (1 − pn)zn for n � n1. Then there exists n2 � n1 such
that xg(n) � (1 − pg(n))zg(n). This and (h4) imply that (2.5) holds. The proof
is complete. �
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����� 2.5� Assume that (h1)–(h4) hold and let xn is a nonoscillatory solution
of (1.4). Let zn is defined as in (2.1) and assume that zn ∈ C0. Then there
exists n1 � n0 such that

xn−τ � zn
1 + pn

> (1− pn)zn for n � n1. (2.6)

P r o o f. Without loss of generality we may assume that xn is an eventually
positive solution and there exists n1 > n0 such that xn > 0, xn−τ > 0 and
xg(n) > 0 for n ≥ n1. This implies from (2.1) that zn > 0 for n ≥ n1. Now, since
zn ∈ C0, then zn is decreasing, we may assume without loss of generality that
xn is also decreasing. If this is not the case, i.e., if xn and xn−τ are eventually
nondecreasing for large n ≥ n1, we see (note from (h3) that pn ≥ 0 and ∆pn ≥ 0)
that

∆zn = ∆xn +∆pnxn−τ + pn+1(∆xn−τ ) > ∆xn ≥ 0,

which is a contradiction with ∆zn < 0, for n ≥ n1. Hence

zn = xn + pnxn−τ ≤ xn−τ + pnxn−τ .

From which we obtain that xn−τ � zn/(1 + pn), which is the first part in (2.6).
Since 0 ≤ pn < 1, then 1 ≥ 1− p2n, and this implies that 1/(1 + pn) ≥ (1− pn).
Therefore zn/ (1 + pn) ≥ (1− pn)zn and then the second part of the inequality
in (2.6) holds. The proof is complete. �

����� 2.6� Assume that (h1)–(h4) hold. Let xn be a nonoscillatory solution
of (1.4) and zn is defined as in (2.1) such that zn ∈ C0. Furthermore assume
that

(h5)
∞∑
n0

1
dn

[
n−1∑
n0

1
ct

t−1∑
n0

(
qs/
(
1 + pg(s)+τ

)γ)]1/γ
= ∞.

Then
lim
n→∞ zn = 0, (2.7)

and if lim
n→∞ pn = p∗ ∈ [0, 1) then lim

n→∞ xn = 0.

P r o o f. Without loss of generality we may assume that xn > 0, xn−τ > 0 and
xg(n) > 0 for n ≥ n1 where n1 is chosen so large that Lemma 2.1 holds. (The
proof when xn is eventually negative is similar, since the substitution yn = −xn

transforms (1.4) into an equation of the same form). From Lemma 2.5, (2.1)
implies that there exists n2 � n1 such that

xg(n) �
zg(n)+τ

1 + pg(n)+τ
for n � n2. (2.8)

From (h3), (1.4) and (2.8) we obtain

∆
(
cn

[
∆z[1]n

]γ)
+

Kqn
(1 + pg(n)+τ )γ

zγg(n)+τ ≤ 0, n ≥ n2. (2.9)
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Since zn > 0, decreasing and lim
n→∞ g(n) = ∞, it follows that lim

n→∞ zg(n)+τ =

b � 0. Now we claim that b = 0. If not then zγg(n)+τ → bγ > 0 as n → ∞, and

hence there exists n3 ≥ n2 such that zγg(n)+τ ≥ bγ . Therefore from (2.9) we have

∆
(
cn

[
∆z[1]n

]γ)
+

Kqn
(1 + pg(n)+τ )γ

bγ ≤ 0, n ≥ n2, (2.10)

Define the sequence un = cn∆(dn∆zn)
γ for n ≥ n3. Then, we have

∆un ≤ − Kqn
(1 + pg(n)+τ )γ

bγ .

Summing the last inequality from n3 to n− 1, we have

un ≤ un3
− bγK

n−1∑
s=n3

qs
(1 + pg(s)+τ )γ

.

In view of (h5) it is possible to choose an integer n4 sufficiently large such that
for all n ≥ n4

un ≤ −A

n−1∑
s=n3

qs
(1 + pg(s)+τ )γ

,

where A = bγK
2 > 0. Hence

∆z[1]n ≤ − (A)
1
γ

(
1

cn

n−1∑
s=n3

qs
(1 + pg(s)+τ )γ

) 1
γ

,

Summing the last inequality from n4 to n− 1 we obtain

z[1]n ≤ z[1]n4
− (A)

1
γ

n−1∑
t=n4

(
1

ct

t−1∑
s=n3

qs
(1 + pg(s)+τ )γ

) 1
γ

.

Since z
[1]
n < 0 for n � n0, the last inequality implies that

dn∆zn ≤ − (A)
1
γ

n−1∑
t=n3

(
1

ct

t−1∑
s=n2

qs
(1 + ps−σ+τ )γ

) 1
γ

,

or

∆zn ≤ − (A)
1
γ

1

dn

n−1∑
t=n4

(
1

ct

t−1∑
s=n3

qs
(1 + pg(s)+τ )γ

) 1
γ

.

Summing from n4 to n− 1 we have

zn ≤ zn4
− (A)

1
γ

n−1∑
l=n4

1

dl

l−1∑
t=n4

(
1

ct

t−1∑
s=n3

qs
(1 + pg(s)+τ )γ

) 1
γ

.
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Condition (h5) implies that zn → −∞ as n → ∞ which is a contradiction with
the fact that zn is positive. Then b = 0 and then (2.7) holds. From this since
lim

n→∞ pn = p∗, we see that

lim
n→∞ zn = lim

n→∞ xn + p∗ lim
n→∞xn−τ = (1 + p∗) lim

n→∞xn.

This and (2.7) implies that lim
n→∞ xn = 0. This completes the proof. �

To prove the next lemma which plays an important role in the proof of the
main results in the delay case, we need the following functions which are define
by

hk(n, s) :=
(n− s)(k)

k!
, k = 0, 1, 2, . . . , (2.11)

where t(k) = t(t−1) · · · (t−k+1) is the so-called falling function (see [10]). The
summation and the difference of the functions hk(n, s) are defined by

hk+1(n, s) :=

n−1∑
τ=s

hk(τ, s),

∆1hk(n, s) := hk−1(n, s), ∆2hk(n, s) := −hk−1(n, s),

where ∆1 denotes the difference with respect to n and ∆2 denotes the difference
with respect to s. As a special case when n = 2, we see that n(2) = n(n − 1)
and one can easily prove that ∆n(2) = 2n. Also since ∆(1/n(2)) = −2/(n+1)(3)

then
∞∑
s=n

(−2/(n+ 1)(3)
)
= 1/n(2).

����� 2.7� Assume that g(n) ≤ n, and

zn > 0, ∆zn > 0, ∆2zn > 0, and ∆3zn < 0, for n ≥ n0. (2.12)

Then

lim inf
n→∞

nzn
h2(n, n0)∆zn

≥ 1, (2.13)

and there exists N > n0 such that

∆zg(n)

∆zn+1
≥ (g(n)−N)

(n+ 1−N)
. (2.14)

P r o o f. First, we prove that (2.13) holds. Let

Gn := (n−N)zn − (n−N)(2)

2
∆zn.
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Then GN = 0, and

∆Gn = (n+ 1−N)∆zn + zn − (n+ 1−N)(2)

2
∆2zn − (n−N)∆zn

= ∆zn + zn − (n+ 1−N)(2)

2
∆2zn

= zn+1 − (n+ 1−N)(2)

2
∆2zn

= zn+1 −
n∑

τ=N

(τ −N)∆2zn.

To complete the proof we will apply the discrete Taylor’s Theorem [1, Theo-
rem 1.113] of the sequence fn, which is defined by

fn :=

m−1∑
k=0

hk(n, α)∆
kf(α) +

1

(m− 1)!

n−m∑
τ=α

hm−1(n, τ + 1)∆mf(τ), (2.15)

where hn(t, s) be defined as in (2.11). Replacing fn by zn+1 and putting m = 2
in (2.15), we have (noting from (2.12) that ∆2zn is decreasing)

zn+1 =

2−1∑
k=0

hk(n+ 1, N)∆kzN +
1

(2− 1)!

n+1−2∑
τ=N

h2−1(n+ 1, τ + 1)∆2zτ

= zN + (n+ 1−N)∆zN +

n−1∑
τ=N

h1(n+ 1, τ + 1)∆2zτ

≥ zN + (n+ 1−N)∆zN +∆2zn

n−1∑
τ=N

h1(n+ 1, τ + 1).

It would follows that ∆Gn > 0 on [N,∞) provided, we can prove that

n−1∑
τ=N

h1(n+ 1, τ + 1) =

n∑
τ=N

(τ −N).

To see this, we use the summation by parts formula [1, Theorem 1.77],

b∑
τ=a

f(τ + 1)∆g(τ) = f(τ)g(τ)b+1
a −

b∑
τ=a

∆f(τ)g(τ),

to get

n∑
τ=N

h1(n+1, τ+1) = h1(n+1, τ)(τ−N)τ=n+1
τ=N −

n∑
τ=N

(−1)(τ−N) =

n∑
τ=N

(τ−N),
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which is the desired result. Hence ∆Gn > 0 for n ≥ N . Since GN = 0, we get
that Gn > 0 for n ≥ N . This implies that

(n−N)zn
h2(n,N)∆zn

≥ 1, for n ≥ N. (2.16)

Therefore, since

nzn
h2(n, n0)∆zn

=
(n−N)zn

h2(n,N)∆zn

n

n−N

h2(n,N)

h2(n, n0)
,

and since

lim
n→∞

n

n−N
= 1 = lim

n→∞
h2(n,N)

h2(n, n0)
,

we get that

lim inf
n→∞

nz(n)

h2(n, n0)∆zn
≥ 1,

which proves (2.13). Next, we prove that (2.14) holds. From (2.12), since ∆2zn
is decreasing, we have

∆zn −∆zN ≥ ∆2zn(n−N).

Dividing by ∆zn∆zn+1, we get that

∆zn −∆zN −∆2zn(n−N)

∆zn∆zn+1
≥ 0.

Thus

∆

(
n−N

∆zn

)
≥ 0.

This implies that
(n+ 1−N)

∆zn+1
≥ (g(n)−N)

∆zσ(n)
.

where g(n) ≤ n < n+ 1. Hence

(
∆zg(n)

)γ ≥
(

g(n)−N

n+ 1−N

)γ

(∆zn+1)
γ
,

and this proves (2.14). The proof is complete. �

3. Main results

In this section, we establish some sufficient conditions which guarantee that
the solution xn of (1.4) oscillates or satisfies lim

n→∞ xn = 0. If (2.3) holds then

in view of Lemma 2.2 if xn is a solution of (1.4), and zn be as defined by (2.1),
then zn ∈ C0 ∪ C2.
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3.1. The case when g(n) > n

In this subsection, we consider the case when g(n) > n and establish some
sufficient conditions which guarantee that the solution xn of (1.4) is either os-
cillates or satisfies lim

n→∞
zn = ∞ where zn is defined as in (2.1). To simplify the

presentation of the results, we introduce the following notations:

r∗ := lim inf
n→∞

nγwn+1

cn
, R := lim sup

n→∞
nγwn+1

cn
,

q∗ := lim inf
n→∞

1

n

n−1∑
s=N

sγ+1

cs
Qs, p∗ := lim inf

n→∞
nγ

cn

∞∑
s=n+1

Qs,

Qn := Pn

(
Dn(cn)

1
γ Cn

(cn)
1
γ Cn + 1

)γ

, Pn = Kqn(1− pg(n))
γ ,

Cn :=

n−1∑
s=N

1

(cs)
1
γ

and Dn :=

g(n)−1∑
s=n

1

ds
.

����� 3.1� Assume that (h1)–(h4) and (2.3) hold. Furthermore assume that
g(n) > n. Let xn is a solution of (1.4) and let zn is defined as in (2.1) such
that zn ∈ C2. Define wn by the Riccati substitution

wn :=
z
[2]
n

(z
[1]
n )γ

. (3.1)

Then wn > 0, and

∆wn +Qn + γ
1

(cn)
1
γ

(wn+1)
1+ 1

γ ≤ 0, for n ∈ [N,∞). (3.2)

P r o o f. Let xn be as in the statement of this Theorem and without loss of
generality, we may assume that there exists n1 > n0 such that xn > 0, xn−τ > 0
and xg(n) > 0 for n ≥ n1. Then from Lemma 2.2, there exists N > n1 such that

z
[0]
n > 0, z

[1]
n > 0, z

[2]
n > 0, z

[3]
n ≤ 0. By the difference quotient rule, we have

∆wn =

(
z
[1]
n

)γ
z

[3]

n −∆
(
z
[1]
n

)γ
z
[2]
n(

z
[1]
n

)γ (
z
[1]
n+1

)γ

=
z

[3]

n

(
z
[0]
g(n)

)γ
(
z
[0]
g(n)

)γ (
z
[1]
n+1

)γ −
∆
(
z
[1]
n

)γ
z
[2]
n(

z
[1]
n

)γ (
z
[1]
n+1

)γ .
589

Unauthenticated
Download Date | 2/3/17 10:49 AM



S. H. SAKER

From Lemma 2.4, we see that

∆wn ≤ −Pn

(
z
[0]
g(n)

)γ
(
z
[1]
n+1

)γ −
∆
(
z
[1]
n

)γ
z
[2]
n(

z
[1]
n

)γ (
z
[1]
n+1

)γ . (3.3)

Using the inequality ([9, p. 39]),

xγ − yγ ≥ γyγ−1(x− y), for all x �= y and γ ≥ 1, (3.4)

we have

∆
(
z[1]n

)γ
=
(
z
[1]
n+1

)γ
−
(
z[1]n

)γ
≥ γ

(
z[1]n

)γ (
∆z[1]n

)
, when γ ≥ 1. (3.5)

From the definition of z
[2]
n we see that ∆z

[1]
n =

(
z
[2]
n /cn

) 1
γ

. This and (3.5) imply

that

∆
(
z[1]n

)γ
≥ γ

(
z[1]n

)γ (z
[2]
n

cn

) 1
γ

. (3.6)

Using the inequality ([9, p. 39]),

xγ − yγ ≥ γxγ−1(x− y), for all x �= y and 0 < γ ≤ 1, (3.7)

we see that

∆
(
z[1]n

)γ
=
(
z
[1]
n+1

)γ
−
(
z[1]n

)γ
≥ γ

(
z
[1]
n+1

)γ (
∆z[1]n

)
≥ γ

(
z
[1]
n+1

)γ (z
[2]
n

cn

) 1
γ

.

(3.8)

Combining (3.6) and (3.8), since z
[1]
n is increasing and z[2] is decreasing, we

obtain

∆
(
z
[1]
n

)γ
z
[2]
n(

z
[1]
n

)γ (
z
[1]
n+1

)γ ≥ γz
[2]
n (z

[2]
n )

1
γ

c
1
γ
n

(
z
[1]
n

)(
z
[1]
n+1

)γ

≥
γ
(
z
[2]
n+1

)(
z
[2]
n+1

) 1
γ

(cn)
1
γ

(
z
[1]
n+1

)(
z
[1]
n+1

)γ
=

γ

(cn)
1
γ

(wn+1)
1
γ +1

, for γ > 0.

Substituting in (3.3), we have

∆wn ≤ −Pn

(
zg(n)

z
[1]
n+1

)γ

− γ

(cn)
1
γ

(wn+1)
1+ 1

γ . (3.9)
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Next, we consider the coefficient of Pn in (3.9). Since z
[1]
n+1 = z

[1]
n +∆(z

[1]
n ), we

have

z
[1]
n+1

z
[1]
n

= 1 +
∆(z

[1]
n )

z
[1]
n

= 1 +

(
z
[2]
n

) 1
γ

(cn)
1
γ z

[1]
n

.

Also since z
[2]
n is decreasing, we get

z[1]n = z
[1]
N +

n−1∑
s=N

(
z[2]s

) 1
γ 1

(cs)
1
γ

≥ z
[1]
N +

(
z[2]n

) 1
γ

n−1∑
s=N

1

(cs)
1
γ

>
(
z[2]n

) 1
γ

n−1∑
s=N

1

(cs)
1
γ

.

(3.10)
It follows that

z
[1]
n(

z
[2]
n

) 1
γ

≥
n−1∑
s=N

1

(cs)
1
γ

= Cn. (3.11)

Hence
z
[1]
n+1

z
[1]
n

= 1 +
∆(z[1])

z
[1]
n

≤
(
(cn)

1
γ Cn + 1

(cn)
1
γ Cn

)
.

Thus
z
[1]
n

z
[1]
n+1

≥ (cn)
1
γ Cn

(cn)
1
γ Cn + 1

.

This gives that

zg(n)

z
[1]
n+1

=
zg(n)

z
[1]
n

z
[1]
n

z
[1]
n+1

≥ zg(n)

z
[1]
n

(cn)
1
γ Cn

(cn)
1
γ Cn + 1

. (3.12)

Now, since g(n) > n and z
[1]
n is increasing, we have

z
g(n)

> z
g(n)

− zn =

g(n)−1∑
s=n

∆zs =

g(n)−1∑
s=n

z
[1]
s

ds
≥ z[1]n

g(n)−1∑
s=n

1

ds
= z[1]n Dn.

This and (3.12) show that

z
g(n)

z
[1]
n+1

≥ Dn(cn)
1
γ Cn

(cn)
1
γ Cn + 1

. (3.13)

Substituting from (3.13) into (3.9), we have the inequality (3.2) and this com-
pletes the proof. �

In the following, we assume that
∞∑

s=n0

Qs < ∞, (3.14)
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which is different from the assumption that has been posed in all the above
mentioned results in the introduction.

Now, we are ready to state and prove the main oscillation theorem in the
advanced case.

������� 3.1� Assume that (h1)–(h5), and (2.3) hold. Furthermore assume
that g(n) > n, and ∆cn ≥ 0. Let xn be a solution of (1.4). If

p∗ >
γγ

(γ + 1)γ+1
, (3.15)

or
p∗ + q∗ > 2γ(γ+1). (3.16)

Then either xn oscillates or lim
n→∞

zn = 0.

P r o o f. Suppose the contrary and assume that xn is a nonoscillatory solution
of equation (1.4). Without loss of generality, we may assume that xn > 0,
xn−τ > 0, xg(n) > 0, for n ≥ n1 where n1 is chosen so large. We consider only
this case, because the proof when xn < 0 is similar, since uf(u) > 0. Then from
(2.1) and in view of Lemma 2.2, since (2.3) holds, zn ∈ C0 ∪C2. If zn ∈ C0 and
(h5) holds, we are back to the proof of Lemma 2.6 to show that lim

n→∞ zn = 0.

Next, we consider the case when zn ∈ C2 and wn is defined as in (3.1). Then from
Lemma 3.1, there exists n2 > n1 such that wn > 0 and satisfies the difference
inequality

∆wn ≤ −Qn − γ

(cn)
1
γ

(wn+1)
1+ 1

γ , for n ≥ n2. (3.17)

Also from Lemma 3.1, since

z[1]n >
(
z[2]n

) 1
γ

n−1∑
s=N

1

(cs)
1
γ

,

we see that

wn :=
z
[2]
n

(z
[1]
n )γ

<

(
n−1∑
s=N

1

(cs)
1
γ

)−γ

.

This and (2.3) imply that lim
n→∞wn = 0. First, we give a contradiction to (3.15).

Summing (3.17) from n+ 1 to ∞ and using that lim
n→∞wn = 0, we get

wn+1 ≥
∞∑

n+1

Qs + γ

∞∑
n+1

1

(cs)
1
γ

(ws+1)
1
γ ws+1. (3.18)

It follows from (3.18) that

nγwn+1

cn
≥ nγ

cn

∞∑
n+1

Qs + γ
nγ

cn

∞∑
n+1

1

(cs)
1
γ

(ws+1)
1
γ ws+1. (3.19)
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Let ε > 0, then by the definition of p∗ and r∗, we may assume that there exists
N ≥ n2, sufficiently large, so that

nγ

cn

∞∑
n+1

Qs ≥ p∗ − ε, and
nγwn+1

cn
≥ r∗ − ε, for N ≥ n2. (3.20)

From (3.19), (3.20) and using the fact ∆cn ≥ 0, we get

nγwn+1

cn
≥ (p∗ − ε) + γ

nγ

cn

∞∑
n+1

cs
sγ+1

s (ws+1)
1
γ

(cs)
1
γ

sγws+1

cs

≥ (p∗ − ε) + (r∗ − ε)
1+ 1

γ
nγ

cn

∞∑
n+1

γcs
sγ+1

≥ (p∗ − ε) + (r∗ − ε)
1+ 1

γ nγ
∞∑

n+1

γ

sγ+1
. (3.21)

Using the inequality (3.4), we have

∆

(−1

sγ

)
=

(s+ 1)γ − sγ

sγ(s+ 1)γ
≤ γ(s+ 1)γ−1

sγ(s+ 1)γ
=

γ

sγ(s+ 1)
<

γ

sγ+1
, for γ ≥ 1.

Using the inequality (3.7), we have

∆

(−1

sγ

)
=

(s+ 1)γ − sγ

sγ(s+ 1)γ
≤ γ(s)γ−1

sγ(s+ 1)γ
=

γ

s(s+ 1)γ
<

γ

sγ+1
, for 0<γ<1.

So that for γ > 0, we have
∞∑

n+1

γ

sγ+1
>

∞∑
n+1

∆

(−1

sγ

)
=

1

(n+ 1)γ
. (3.22)

Then from (3.21) and (3.22), we obtain

nγwn+1

cn
≥ (p∗ − ε) + (r∗ − ε)1+

1
γ

(
n

n+ 1

)γ

, for γ > 0.

Taking the lim inf of both sides as n → ∞, we get that

r∗ ≥ p∗ − ε+ (r∗ − ε)
1+ 1

γ .

Since ε > 0 is arbitrary, we get

p∗ ≤ r∗ − r
1+ 1

γ∗ . (3.23)

Using the fact that

u− u
γ+1
γ ≤ γγ

(γ + 1)γ+1
,

we have

p∗ ≤ γγ

(γ + 1)γ+1
,
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which contradicts (3.15). Next, we give a contradiction to (3.16). Multiplying
both sides of (3.17) by nγ+1/cn, and summing from N to n− 1 (n− 1 ≥ N), we
get

n−1∑
s=N

sγ+1

cs
∆ws ≤ −

n−1∑
s=N

sγ+1

cs
Qs − γ

n−1∑
s=N

(
sγws+1

cs

) γ+1
γ

.

Using summation by parts, we obtain

nγ+1wn

cn
≤ Nγ+1wN

cN
+

n−1∑
s=N

∆

(
sγ+1

cs

)
ws+1−

n∑
s=N

sγ+1

cs
Qs−γ

n−1∑
s=N

(
sγws+1

cs

) γ+1
γ

.

By the quotient rule, we have

∆

(
sγ+1

cs

)
=

∆(sγ+1)

cs+1
−sγ+1∆cs

cscs+1
≤ (γ + 1)(s+ 1)γ

cs+1
≤ (γ + 1)(s+ 1)γ

cs
. (3.24)

Hence

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1∑
s=N

sγ+1

cs
Qs +

n−1∑
s=N

(γ + 1)

(
(s+ 1)γws+1

cs

)

− γ

n−1∑
s=N

(
sγws+1

cs

) γ+1
γ

.

Now, since s > n0 > 0 we can assume for s sufficiently large that (s+ 1) ≤ Ls
< 2s. Using this and the last inequality, we obtain

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1∑
s=N

sγ+1

cs
Qs +

n−1∑
s=N

{
(γ + 1)LγWs+1 − γW

γ+1
γ

s+1

}
.

where Ws+1 := (sγws+1/cs). Using the inequality

BW −AWu
γ+1
γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

we have

nγ+1wn

cn
≤ Nγ+1wN

cN
−

n−1∑
s=N

sγ+1

cs
Qs +

n−1∑
s=N

γγ

(γ + 1)γ+1

[(γ + 1)Lγ ]γ+1

γγ

=
Nγ+1wN

cN
−

n−1∑
s=N

sγ+1

cs
Qs + Lγ(γ+1)(n−N).

It follows that

nγwn

cn
≤ Nγ+1wN

ncN
− 1

n

n−1∑
s=N

sγ+1

cs
Qs + Lγ(γ+1)

(
1− N

n

)
.
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Since wn+1 ≤ wn, we get

nγwn+1

cn
≤ Nγ+1wN

ncN
− 1

n

n−1∑
s=N

sγ+1

cs
Qs + Lγ(γ+1)

(
1− N

n

)
.

Taking the lim sup of both sides as n → ∞, we obtain

R ≤ −q∗ + Lγ(γ+1) = −q∗ + Lγ(γ+1),

which implies that

R ≤ −q∗ + 2γ(γ+1).

Using this and the inequality (3.23), we get

p∗ ≤ r∗ − r
1+ 1

γ∗ ≤ r∗ ≤ R ≤ −q∗ + 2γ(γ+1).

Therefore

p∗ + q∗ ≤ 2γ(γ+1),

which contradicts (3.16). The proof is complete. �

From Theorem 3.1, we have the following results immediately.

	���

��� 3.1.1� Assume that (h1)–(h5) and (2.3) hold. Furthermore assume
that g(n) > n, and ∆cn ≥ 0. Let xn be a solution of (1.4). If

lim inf
n→∞

nγ

cn

∞∑
s=n+1

Qs > 2γ(γ+1). (3.25)

Then either xn oscillates or lim
n→∞ zn = 0.

	���

��� 3.1.2� Assume that (h1)–(h5) and (2.3) hold. Furthermore assume
that g(n) > n, and ∆cn ≥ 0. Let xn be a solution of (1.4). If

lim inf
n→∞

1

n

n∑
s=N

sγ+1

cs
Qs > 2γ(γ+1). (3.26)

Then either xn oscillates or lim
n→∞

zn = 0.

In the following, we give some examples to illustrate the main results when
g(n) > n.

Example 1. Consider the advanced equation

∆3

(
xn +

1

2
xn−2

)
+

α

(n− 1)2(n+ 1)(2)
x(n2) = 0, for n > 1. (3.27)

Here γ = 1, K = 1, dn = cn = 1, pn = 1/2, τ = 2, g(n) = n2, and qn =
α/
(
(n− 1)2(n+ 1)(2)

)
where α is a positive constant. In this case it is clear
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that the conditions (h1)–(h5) hold. To apply Corollary 3.1 it remains to prove
that (3.25) hold. In this case, we see that

Cn = (n− 1), Dn = n(n− 1), and Qn =
α

2(n+ 1)(2)
.

So that the condition (3.25) reads

lim inf
n→∞

nγ

cn

∞∑
s=n+1

Qs = α lim inf
n→∞

n

∞∑
s=n+1

1

2(s+ 1)(2)

=
α

2
lim inf
n→∞

n

∞∑
s=n+1

∆

(−1

s

)

=
α

2
lim inf
n→∞ n

1

n + 1
=

α

2
.

Then by Corollary 3.1, if α > 8 the solution xn of the equation (3.27), either os-
cillates or lim

n→∞
(
xn + 1

2xn−2

)
= 0. Note that the results in the above mentioned

papers cannot be applied on (3.27), since g(n) = n2 > n.

3.2. The case when g(n) ≤ n and dn = 1

In this subsection, we establish some sufficient conditions which guarantee
that the solution xn of (1.4) is either oscillates or lim

n→∞ zn = ∞ when g(n) ≤ n.

For simplification, we introduce the following notations:

A∗ := lim inf
n→∞

nγ

cn

∞∑
s=n+1

As, B∗ := lim inf
n→∞

1

n

n−1∑
s=N

sγ+1

cs
As,

An = Pn

(
h2(g(n), n0)

n+ 1

)γ

, Pn = Kqn(1− pg(n))
γ .

Let xn be a nonoscillatory solution of (1.4) and zn is defined as in (2.1) such
that zn ∈ C2. If dn = 1 and ∆cn ≥ 0, then we can deduce that if zn > 0, then

∆zn > 0, ∆2zn > 0, and ∆3zn < 0. (3.28)

We define the new quasi-differences of zn by

y[0]n = zn > 0, y[1]n = ∆zn, y[2]n = cn
[
∆2zn

]γ
, y[3]n = ∆(y[2]n ).

In the following, we assume that

∞∑
s=n+1

As < ∞.
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����� 3.2� Assume that (h1)–(h4) and (2.3) hold. Furthermore assume that
dn = 1, ∆cn ≥ 0, and g(n) ≤ n. Let xn be a solution of (1.4) and zn ∈ C2.
Define un by the Riccati substitution

un :=
y
[2]
n(

y
[1]
n

)γ .
Then un > 0, and satisfies

∆un +An + γ
1

(cn)
1
γ

(un+1)
1+ 1

γ ≤ 0, for n ≥ N. (3.29)

P r o o f. Let xn be as in the statement of this theorem and without loss of
generality, we may assume that there is n1 > n0 such that xn > 0, xn−τ > 0
and xg(n) > 0. Now, since zn ∈ C2 then there exists N > n1 such that zn > 0,

y[1] = ∆zn > 0, y
[2]
n = cn

[
∆2zn

]γ
> 0, y

[3]
n ≤ 0 for n ≥ N . Since ∆cn ≥ 0,

we see that (3.28) is satisfied. From the definition of un, by quotient rule and
continue as in the proof of Lemma 3.1, we get

∆un ≤ −Pn

(
zg(n)

y
[1]
n+1

)γ

− γ
1

(cn)
1
γ

(un+1)
1+ 1

γ . (3.30)

Now we consider the coefficient of Pn in (3.30). This coefficient can be written
in the form

zg(n)

z
[1]
n+1

=
zg(n)

y
[1]
g(n)

y
[1]
g(n)

y
[1]
n+1

. (3.31)

From Lemma 2.7, since lim
n→∞

g(n) = ∞, we can choose Nk ≥ N such that

zg(n)

y
[1]
g(n)

=
g(n)zg(n)

∆zg(n)
≥

√
kh2(g(n), n0)

g(n)
, for n > Nk, (3.32)

and
y
[1]
g(n)

y
[1]
n+1

=
∆zg(n)

∆zn+1
≥ 1√

k

g(n)

(n+ 1)
, for 0 < k < 1. (3.33)

Then from (3.31)–(3.33), we have

zg(n)

∆zn+1
≥ h2(g(n), n0)

g(n)

g(n)

n+ 1
=

h2(g(n), n0)

(n+ 1)
. (3.34)

Substituting from (3.34) into (3.30), we have the inequality (3.29) and this com-
pletes the proof. �

The following theorem gives sufficient conditions for oscillation of (1.4) in the
delay case.
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������� 3.2� Assume that (h1)–(h5) and (2.3) hold. Furthermore assume that
dn = 1, ∆cn ≥ 0, f(u)/uγ � K > 0 and g(n) ≤ n. Let xn be a solution of (1.4).
If

A∗ >
γγ

(γ + 1)γ+1
, (3.35)

or
A∗ +B∗ > 2γ(γ+1). (3.36)

Then xn is oscillatory or lim
n→∞ zn = 0.

P r o o f. The proof is similar to the proof of Theorem 3.1, by replacing wn by
un, and Qn by An and hence is omitted. �

	���

��� 3.2.1� Assume that (h1)–(h5) and (2.3) hold. Furthermore assume
that dn = 1, ∆cn ≥ 0, and g(n) ≤ n. Let xn be a solution of (1.4). If

lim inf
n→∞

1

n

n−1∑
s=N

sγ+1

cs
As > 2γ(γ+1). (3.37)

Then xn is oscillatory or lim
n→∞ zn = 0.

	���

��� 3.2.2� Assume that (h1)–(h5) and (2.3) hold. Furthermore assume
that dn = 1, ∆cn ≥ 0, and g(n) ≤ n. Let xn be a solution of (1.4). If

lim inf
n→∞

nγ

cn

∞∑
s=n+1

As > 2γ(γ+1). (3.38)

Then xn is oscillatory or lim
n→∞ zn = 0.

In the following, we give some examples to illustrate the main results when
g(n) ≤ n.

Example 2. Consider the third order delay difference equation

∆3(xn+
1

2
xn−3)+

α(n+ 1)

g2(n)h2(g(n), 1)
xg(n) = 0, g(n) ≤ n for n ≥ 1. (3.39)

Here cn = dn = 1, γ = 1, β = 1, K = 1 and qn = α(n + 1)/(g2(n)h2(g(n), 1))
where α is a positive constant. It is clear that (h1)–(h4) hold. To apply Corol-
lary 3.3 it remains to prove that (h3) and (3.37) hold. For equation (3.39), we
have

∞∑
n=n0

1

dn

n−1∑
t=n0

(
1

ct

t−1∑
s=n0

qs

) 1
γ

≥
∞∑

n=n0

n−1∑
t=n0

(
t−1∑
s=n0

α(s)

s2h2(g(s), 1)

)

=

∞∑
n=1

n−1∑
t=1

(
t−1∑
s=1

α

sh2(g(s), 1)

)
= ∞.
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Also the condition (3.37) reads.

lim inf
n→∞

1

n

n−1∑
n=N

sγ+1

cs
A(s)

= lim inf
n→∞

α

2n

n−1∑
n=N

s2(s+ 1)

g2(s)h2(g(s), 1)

(
h2(g(s), 1)

(s+ 1)

)

= lim inf
n→∞

α

2n

n−1∑
n=1

s2

g2(s)
≥ lim inf

n→∞
α

2n

n−1∑
n=1

1 =
α

2
.

Then by Corollary 3.3, the solution xn of (3.39) is oscillatory or lim
n→∞

(
xn+

1
2xn−3

)
= 0 if α > 8.

Remark 1� It would be great of interest to consider the case when
∞∑

n=n0

(
1

cn

)γ

< ∞,

∞∑
n=n0

(
1

dn

)
< ∞, (3.40)

and establish some sufficient conditions for oscillation of (1.4). In this case if
(2.4) holds and xn is a nonoscillatory solution of (1.4), then zn ∈ C0 ∪C1 ∪C2.
If zn ∈ C0, then we can prove that lim

n→∞ zn = 0 and if zn ∈ C2, we follow the

proofs of Theorems 3.1 and 3.2 to establish conditions for oscillation. It remains
to consider the case when zn ∈ C1. This will left as an open problem to the
interested reader.

Acknowledgement� The author is very grateful to the anonymous referees for
valuable remarks and comments which significantly contributed to the quality
of the paper.

REFERENCES

[1] AGARWAL, R. P.: Difference Equations and Inequalities, Theory, Methods and Appli-
cations (2nd ed., Revised and expanded), Marcel Dekker, New York, 2000.

[2] AGARWAL, R. P—GRACE, S. R.: Oscillation of certain third order difference equations,
Comput. Math. Appl. 42 (2001), 379–384.

[3] AGARWAL, R. P.—WONG, P. J. Y.: Advanced Topics in Difference Equations, Kluwer
Academic Publishers, Drodrecht, 1997.

[4] ARTZROUMI, M.: Generalized stable population theory, J. Math. Biol. 21 (1985),
363–381.
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