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ABSTRACT. The purpose of the paper is to study the uniqueness of meromor-
phic function when certain non-linear differential polynomials share the same
1-points. As a consequence of the main result we improve and supplement the
following recent result: [LAHIRI, I.—PAL, R.: Nonlinear differential polynomials
sharing 1-points, Bull. Korean Math. Soc. 43 (2006), 161–168].
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1. Introduction definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. We shall use the standard notations of value distribution
theory:

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [7]).

For a ∈ C ∪ {∞}, we define

Θ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

If for some a ∈ C ∪ {∞}, f − a and g − a have the same set of zeros with
the same multiplicities, we say that f and g share the value a CM (counting
multiplicities). Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We
denote by Em)(a; f) the set of all a-points of f with multiplicities not exceeding
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m, where an a-point is counted according to its multiplicity. If for some a ∈
C ∪ {∞}, E∞)(a; f) = E∞)(a; g) we say that f , g share the value a CM.

In 1999, Lahiri [8] studied the problem of uniqueness of meromorphic func-
tions when two linear differential polynomials share the same 1-points. In the
same paper [8] regarding the nonlinear differential polynomials Lahiri asked the
following question.

What can be said if two nonlinear differential polynomials generated by two
meromorphic functions share 1 CM?

Since then the progress to investigate the uniqueness of meromorphic func-
tions which are the generating functions of different types of non-linear differen-
tial polynomials is remarkable and continuous efforts are being put in to relax
the hypothesis of the results. (cf. [1]–[6], [12]–[18]).

In 2001, Fang and Hong [6] proved the following result.

������� A� Let f and g be two transcendental entire functions and n (≥ 11)
be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

In 2002, Fang and Fang [5] improved and supplemented the above theorem
by proving the following theorems.

������� B� Let f and g be two non-constant entire functions and m (≥ 3),
n (≥ 8) be two positive integers. If Em)(1; f

n(f − 1)f ′) = Em)(1; g
n(g − 1)g′),

then f ≡ g.

������� C� Let f and g be two non-constant entire functions and n (≥ 9) be
an integer. If E2)(1; f

n(f − 1)f ′) = E2)(1; g
n(g − 1)g′), then f ≡ g.

������� D� Let f and g be two non-constant entire functions and n (≥ 14)
be an integer. If E1)(1; f

n(f − 1)f ′) = E1)(1; g
n(g − 1)g′), then f ≡ g.

In 2004, Lin and Yi [16] further improved Theorem A as follows.

������� E� Let f and g be two transcendental entire functions and n (≥ 7)
be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

The following example shows that the above theorems are not valid when f
and g are two meromorphic functions.

Example 1.1.

f(z) =
(n+ 2)

(n+ 1)

ez + · · ·+ e(n+1)z

1 + ez + · · ·+ e(n+1)z

and

g(z) =
(n+ 2)

(n+ 1)

1 + ez + · · ·+ enz

1 + ez + · · ·+ e(n+1)z
.

Clearly f(z) = ezg(z). Also fn(f − 1)f ′ and gn(g− 1)g′ share 1 CM but f �≡ g.
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We note that in the above example Θ(∞; f) = Θ(∞; g) = 0.

So to replace entire functions by meromorphic functions in the above men-
tioned theorems definitely some extra conditions are required.

Further investigations in the above directions have already been executed
by many contemporary mathematicians and consequently some elegant results
have been obtained in this aspect (see [3], [12], [14], [16]). But in all the papers
just mentioned, to prove the uniqueness of the meromorphic functions some
restrictions on the ramification indexes of f and g has to be imposed by all the
authors.

Recently, Lahiri-Pal [13] has proved the following theorem.

������� F� Let f and g be two non-constant meromorphic functions and n
(≥ 14) be an integer. If E3)(1; f

n(f3 − 1)f ′) = E3)(1; g
n(g3 − 1)g′), then f ≡ g.

In the paper we will consider the value sharing of more generalised differential
polynomial than that was considered in Theorem F and we will show that the
same conclusion can be obtained as a corollary of our main result. Following
theorem is the main result of the paper.

������� 1.1� Let f and g be two transcendental meromorphic functions and n,
k (≥ 1), m (≥ 2) be three positive integers. Suppose for two non zero constants
a and b, El)

(
1; [fn (afm + b)](k)

)
= El)

(
1; [gn (agm + b)](k)

)
. Then f ≡ g or

f ≡ −g or [fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 provided one of the following
holds.

(i) l ≥ 3 and n > 3k +m+ 8;

(ii) l = 2 and n > 4k + 3m
2 + 9;

(iii) l = 1 and n > 7k + 3m+ 12.

When k = 1 the possibility [fn(afm + b)](k)[gn(agm + b)](k) ≡ 1 does not occur.
Also the possibility f ≡ −g arises only if n and m are both even.

Putting n = s+1, m = 3, a = 1
s+4

, b = − 1
s+1

and k = 1 in the above theorem
we can immediately deduce the following corollary.

������	�
 1.1� Let f and g be two non-constant meromorphic functions and s
be a positive integer. Suppose El)

(
1; fs(f3 − 1)f ′) = El)

(
1; gs(g3 − 1)g′

)
. Then

f ≡ g provided one of the following holds.

(i) l ≥ 3 and s ≥ 14;

(ii) l = 2 and s ≥ 17;

(iii) l = 1 and s ≥ 28.

Remark 1.1� Since Theorem F can be obtained as a special case of Theorem 1.1,
clearly Theorem 1.1 improves and supplements Theorem F.
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Though we use the standard notations and definitions of the value distribution
theory available in [7], we explain some definitions and notations which are used
in the paper.

���
�
�
�� 1.1� ([14]) For a ∈ C ∪ {∞}we denote by N(r, a; f | = 1) the
counting function of simple a-points of f . For a positive integer m we denote by
N(r, a; f | ≤ m) (N(r, a; f | ≥ m)) the counting function of those a-points of f
whose multiplicities are not greater (less) than m where each a-point is counted
according to its multiplicity.

N(r, a; f | ≤ m) (N(r, a; f | ≥ m)) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r, a; f | < m), N(r, a; f | > m), N(r, a; f | < m) and N(r, a; f | > m)
are defined analogously.

���
�
�
�� 1.2� Let m be a positive integer and for a ∈ C, Em)(a; f) =
Em)(a; g). Let z0 be a zero of f(z)− a of multiplicity p and a zero of g(z)− a

of multiplicity q. We denote by NL(r, a; f) (NL(r, a; g)) the reduced counting
function of those a-points of f and g for which p > q ≥ m+ 1 (q > p ≥ m+ 1),

by N
(m+1)

E (r, a; f) the reduced counting function of those a-points of f and g
for which p = q ≥ m + 1, by Nf>m+1(r, 1; g) the reduced counting function of

f and g for which p ≥ m + 2 and q = m + 1. Also by Nf≥m+1(r, a; f | g �= a)

(Ng≥m+1(r, a; g | f �= a)) we denote the reduced counting functions of those
a-points of f and g for which p ≥ m+ 1 and q = 0 (q ≥ m+ 1 and p = 0).

���
�
�
�� 1.3� We denote by N(r, a; f | = k) the reduced counting function
of those a-points of f whose multiplicities is exactly k where k ≥ 2 is an integer.
For k = 1 we refer Definition 1.1.

���
�
�
�� 1.4� ([10]) Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b)
the counting function of those a-points of f , counted according to multiplicity,
which are b-points of g.

���
�
�
�� 1.5� ([10]) Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g �= b)
the counting function of those a-points of f , counted according to multiplicity,
which are not the b-points of g.

���
�
�
�� 1.6� ([11], cf. [19]) For a ∈ C ∪ {∞} and a positive integer p we
denote by Np(r, a; f) the sum N(r, a; f)+N(r, a; f | ≥ 2)+ · · ·+N(r, a; f | ≥ p).

Clearly N1(r, a; f) = N(r, a; f).

���
�
�
�� 1.7� Let a, b ∈ C∪{∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g �= b)) the reduced counting function
of those a-points of f with multiplicities ≥ p, which are the b-points (not the
b-points) of g.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote
by H the following function.

H =

(
F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1

)
−

(
G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1

)
. (2.1)

����	 2.1� ([7]) Let f be a non-constant meromorphic function, k a positive
integer and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ N(r,∞; f) +Nk+1(r, 0; f) +N
(
r, c; f (k)

)

−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
is the counting function of the zeros of f (k+1) which are

not the zeros of f(f (k) − c)

����	 2.2� ([11]) If N(r, 0; f (k) | f �= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted ac-
cording to its multiplicity then

N(r, 0; f (k) | f �= 0) ≤ kN(r,∞; f)+N(r, 0; f | < k)+kN(r, 0; f | ≥ k)+S(r, f).

����	 2.3� ([20]) Let f be a non-constant meromorphic function and p, k be
positive integers, then

Np(r, 0; f
(k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

����	 2.4� Let Em)(1; f) = Em)(1; g) and 2 ≤ m < ∞. Then

N(r, 1; f | = 2) + 2N(r, 1; f | = 3) + · · ·+ (m− 1)N(r, 1; f | = m)

+mN
(m+1)

E (r, 1; f) +mNL(r, 1; f) + (m+ 1)NL(r, 1; g)

+mNg≥m+1(r, 1; g | f �= 1)

≤ N(r, 1; g)−N(r, 1; g).

P r o o f. Since E(m)(1; f) = Em)(1; g), we note that common zeros of f − 1 and
g−1 up to multiplicity m are same. Clearly a 1-point of f and g with multiplicity
i ≤ m is counted exactly (i − 1) times in both sides of the inequality. Let z0
be a 1-point of f with multiplicity p and a 1-point of g with multiplicity q. If
q = m+ 1 the possible values of p are as follows
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(i) p = m+ 1,

(ii) p ≥ m+ 2,

(iii) p = 0.

Similarly when q = m+ 2 the possible values of p are

(i) p = m+ 1,

(ii) p = m+ 2,

(iii) p ≥ m+ 3,

(iv) p = 0.

If q ≥ m+3 we can similarly find the possible values of p. When q ≥ m+1, the
common 1-points of f and g with the same multiplicities, the common 1-points
of f and g where the multiplicities for f are greater than those for g, the 1-points
of f which are not the 1-points of g are counted at least m times in the right
hand side of the above inequality which is evident from the possible values of p
when q = m + 1. Also we note that the 1-points of g whose multiplicities are
greater than those of f are counted at least m+ 1 times and this case can only
happen when q ≥ m+ 2. The rest of the proof follows easily. �

����	 2.5� Let E1)(1; f) = E1)(1; g). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)

+Ng≥2(r, 1; g | f �= 1)−Nf>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g),

P r o o f. Since E1)(1; f) = E1)(1; g) the simple 1-points of f and g are same.
Let z0 be a 1-point of f with multiplicity p and a 1-point of g with multiplicity
q. If q = 2 the possible values of p are as follows

(i) p = 2

(ii) p ≥ 3

(iii) p = 0.

Similarly when q = 3 the possible values of p are

(i) p = 2

(ii) p = 3

(iii) p ≥ 4

(iv) p = 0.

If q ≥ 4 we can similarly find the possible values of p. Now the lemma follows
from above discussion and the explanation in the previous lemma. �
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����	 2.6� Let E2)(1; f) = E2)(1; g). Then

Nf≥3(r, 1; f | g �= 1) ≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N⊕(r, 0; f ′) + S(r, f),

where N⊕(r, 0; f ′) is the counting function of those zeros of f ′ which are not the
zeros of f(f − 1), each point is counted according to its multiplicity.

P r o o f. Using Lemma 2.2 we get

Nf≥3(r, 1; f | g �= 1)

≤ N(r, 1; f | ≥ 3)

≤ 1

2
N(r, 0; f ′ | f = 1)

≤ 1

2
N(r, 0; f ′ | f �= 0)− 1

2
N⊕(r, 0; f ′)

≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N⊕(r, 0; f ′) + S(r, f).

�

����	 2.7� Let E1)(1; f) = E1)(1; g). Then

Nf>2(r, 1; g) +Nf≥2(r, 1; f | g �= 1)

≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f).

P r o o f. We note that a 1-point of f with multiplicity 2 is counted at most once
in the counting function Nf≥2(r, 1; f | g �= 1). Also since a 1-point of f with
multiplicity ≥ 3 may or may not be a 1 point of g, those 1-points of f are counted
only once, either in Nf>2(r, 1; g) or Nf≥2(r, 1; f | g �= 1). So using Lemma 2.2
we get

Nf>2(r, 1; g) +Nf≥2(r, 1; f | g �= 1)

≤ N(r, 1; f | ≥ 2)

≤ N(r, 0; f ′ | f = 1)

≤ N(r, 0; f ′ | f �= 0)−N⊕(r, 0; f ′)

≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f).

�

����	 2.8� Let E1)(1; f) = E1)(1; g). Then

Nf≥2(r, 1; f | g �= 1) ≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f).
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P r o o f. Using Lemma 2.2 and following the same procedure as in Lemma 2.7
we get

Nf≥2(r, 1; f | g �= 1) ≤ N(r, 1; f | ≥ 2)

≤ N(r, 0; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f).

�

����	 2.9� ([17]) Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an �= 0 and bm �= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.
����	 2.10� Let f and g be two non-constant meromorphic functions and a,
b be two non zero constants. Then

[fn(afm + b)]′[gn(agm + b)]′ �≡ 1,

where n, m ≥ 2 be two positive integers and n (≥ m+ 3).

P r o o f. We note that according to the statement of the lemma we have to prove

[fn−1 (a(n+m)fm + bn) f ′][gn−1 (a(n+m)gm + bn) g′] �≡ 1.

If possible let us suppose that

[fn−1 (a(n+m)fm + bn) f ′][gn−1 (a(n+m)gm + bn) g′] ≡ 1. (2.2)

Let z0 be a zero of f with multiplicity p (≥ 1). So from (2.2) we get z0 be a
pole of g with multiplicity q (≥ 1) such that

np− 1 = (n+m)q + 1, (2.3)

i.e.

mq = n(p− q)− 2 ≥ n− 2.

Again from (2.3) we get

np = (n+m)q + 2 ≥ (n+m)
n− 2

m
+ 2,

i.e.,

p ≥ n+m− 2

m
.
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Therefore

Θ(0; f) ≥ 1− m

n+m− 2
.

Suppose a(n+m)fm + bn = a(n+m)(f − α1)(f − α2) . . . (f − αm). Let z1
be a zero of (f − αi), i = 1, 2, . . . ,m, with multiplicity p. Then from (2.2) we
have z1 be a pole of g with multiplicity q (≥ 1) such that

2p− 1 = (n+m)q + 1

i.e.,

p ≥ n+m+ 2

2
.

Hence

Θ(αi; f) ≥ 1− 2

n+m+ 2
.

Since

Θ(0; f) +
m∑
i=1

Θ(αi; f) ≤ 2,

it follows that
2m

n+m+ 2
+

m

n+m− 2
≥ m− 1,

which is a contradiction. �

����	 2.11� Let f and g be two non-constant meromorphic functions such that
F = fn (afm + b) and G = gn (agm + b), where m ≥ 2 and n + m ≥ 9 is an
integer and a, b are non-zero constants. Then

F ≡ G

implies either f ≡ g or f ≡ −g. Also only if n and m are both even then the
possibility f ≡ −g occurs.

P r o o f. Clearly if n and m are both odd or if n is odd and m is even or if n
is even and m is odd then f ≡ −g contradicts F ≡ G. Let neither f ≡ g nor
f ≡ −g. We put h = g

f . Then h �≡ 1 and h �≡ −1. Also F ≡ G implies

fm = − b

a

hn − 1

hn+m − 1
.

If n and m are both even then the numerator and the denominator have two
common factors namely h + 1 and h − 1. Also we observe that since a non-
constant meromorphic function can not have more than two Picard exceptional

values h can take at least n + m − 4 values among uj = exp
(

2jπi
n+m

)
, where

j = 1, 2, . . . , n+m−1. Since f is non-constant it follows that h is non constant.
Again since fm has no simple pole h−uj has no simple zero for at least n+m−4
values of uj , for j = 1, 2, . . . , n + m − 1 and for these values of j we have
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Θ(uj ;h) ≥ 1
2 , which leads to a contradiction. Therefore either f ≡ g or f ≡ −g.

This proves the lemma. �

3. Proofs of the theorems

P r o o f o f T h e o r e m 1.1. Let F = fn(afm + b) and G = gn(agm + b). It
follows that El)

(
1;F (k)

)
= El)

(
1;G(k)

)
.

Case 1. Let H �≡ 0.
From (2.1) we get

N(r,∞;H)

≤ N(r,∞;F ) +N(r,∞;G) +NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
+NG(k)≥l+1

(
r, 1;G(k) | F (k) �= 1

)
+N

(
r, 0;F (k) | ≥ 2

)
+N

(
r, 0;G(k) | ≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
,

(3.1)

where N⊗
(
r, 0;F (k+1)

)
is the reduced counting function of those zeros of F (k+1)

which are not the zeros of F (k)
(
F (k) − 1

)
and N⊗

(
r, 0;G(k+1)

)
is similarly de-

fined.

Let z0 be a simple zero of F (k) − 1. Then z0 is a simple zero of G(k) − 1 and
a zero of H. So

N
(
r, 1;F (k) | = 1

) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.2)

Subcase 1.1. l ≥ 2.
Using Lemma 2.4, (3.1) and (3.2) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;F (k) | = 1

)
+N

(
r, 1;F (k) | = 2

)
+ · · ·+N

(
r, 1;F (k) | = l

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
+N

(l+1

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N(r,∞;F ) +N(r,∞;G) +N

(
r, 0;F (k) | ≥ 2

)
+N

(
r, 0;G(k) | ≥ 2

)
+ T

(
r,G(k)

)
+ 2NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
− (l − 1)NG(k)≥l+1

(
r, 1;G(k) | F (k) �= 1

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G). (3.3)
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So in view of (3.3), from Lemma 2.1 we have

T (r, F ) + T (r,G)

≤ 2N(r,∞;F ) + 2N(r,∞;G) +Nk+1(r, 0;F ) +Nk+1(r, 0;G)

+N
(
r, 0;F (k) | ≥ 2

)
+N

(
r, 0;G(k) | ≥ 2

)
+ T (r,G) + kN(r,∞;G)

+ 2NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
− (l − 1)NG(k)≥l+1

(
r, 1;G(k) | F (k) �= 1

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
−N0

(
r, 0;F (k+1)

)−N0

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

(3.4)

We note that

Nk+1(r, 0;F ) +N
(
r, 0;F (k) | ≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N

(
r, 0;F (k) | ≥ 2 | F = 0

)
+N

(
r, 0;F (k) | ≥ 2 | F �= 0

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N

(
r, 0;F | ≥ k + 2

)
+N0

(
r, 0;F (k+1)

)
≤ Nk+2(r, 0;F ) +N0

(
r, 0;F (k+1)

)
.

(3.5)

Clearly similar expression holds for G also.

Using (3.5) in (3.4) we get

T (r, F ) ≤ 2N(r,∞;F ) + (k + 2)N(r,∞;G) +Nk+2(r, 0;F )

+Nk+2(r, 0;G) + 2NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
− (l − 1)NG(k)≥l+1

(
r, 1;G(k) | F (k) �= 1

)
+ S(r, F ) + S(r,G).

(3.6)

In a similar way we can obtain

T (r,G) ≤ (k + 2)N(r,∞;F ) + 2N(r,∞;G) +Nk+2(r, 0;F )

+Nk+2(r, 0;G) + 2NG(k)≥l+1

(
r, 1;G(k) | F (k) �= 1

)
− (l − 1)NF (k)≥l+1

(
r, 1;F (k) | G(k) �= 1

)
+ S(r, F ) + S(r,G).

(3.7)

While l ≥ 3, in view of Lemma 2.9, adding (3.6) and (3.7) we get for ε > 0

(n+m){T (r, f) + T (r, g)}
≤ (k + 4)N(r,∞; f) + 2{(k + 2)N(r, 0; f) +Nk+2(r, 0; af

m + b)}
+ (k + 4)N(r,∞; g) + 2{(k + 2)N(r, 0; g) +Nk+2(r, 0; ag

m + b)}
+ S(r, f) + S(r, g)

≤ (3k + 2m+ 8)T (r, f) + (3k + 2m+ 8)T (r, g) + S(r, f) + S(r, g).

(3.8)
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That is

(n− 3k −m− 8)T (r, f) + (n− 3k −m− 8)T (r, g) ≤ S(r, f) + S(r, g).

Since n > 3k +m+ 8, we get a contradiction from above.

While l = 2, in view of Lemmas 2.3, 2.6 and 2.9, adding (3.6) and (3.7) we
get

(n+m){T (r, f) + T (r, g)}

≤
(
3k

2
+

9

2

)
N(r,∞; f) + 2{(k + 2)N(r, 0; f) +Nk+2(r, 0; af

m + b)}

+
1

2

(
(k + 1)N(r, 0; f) +Nk+2(r, 0; af

m + b)
)
+

(
3k

2
+

9

2

)
N(r,∞; g)

+ 2{(k + 2)N(r, 0; g) +Nk+2(r, 0; ag
m + b)}

+
1

2

(
(k + 1)N(r, 0; g) +Nk+2(r, 0; ag

m + b)
)
+ S(r, f) + S(r, g)

≤
(
4k +

5m

2
+ 9

)
T (r, f) +

(
4k +

5m

2
+ 9

)
T (r, g) + S(r, f) + S(r, g),

(3.9)
which is a contradiction since n > 4k + 3m

2 + 9.

Subcase 1.2. l = 1.
Using Lemma 2.5, (3.1) and (3.2) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)

≤ N
(
r, 1;F (k) | = 1

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)

+NF (k)≥2

(
r, 1;F (k) | G(k) �= 1

)
+N

(2

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)

≤ N(r,∞;F ) +N(r,∞;G) +N
(
r, 0;F (k) | ≥ 2

)
+N

(
r, 0;G(k) | ≥ 2

)

+ T
(
r,G(k)

)
+ 2NF (k)≥2

(
r, 1;F (k) | G(k) �= 1

)
+NF (k)>2

(
r, 1;G(k)

)

+N⊗
(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

(3.10)
So in view of (3.5) and (3.10) from Lemmas 2.1, 2.3, 2.7 and 2.8 we have

T (r, F ) + T (r,G)

≤ 4N(r,∞;F ) + 2N(r,∞;G) +Nk+2(r, 0;F ) +Nk+2(r, 0;G)

+ T (r,G) + kN(r,∞;G) + 2N
(
r, 0;F (k)

)
+ S(r, F ) + S(r,G)

≤ (2k + 4)N(r,∞;F ) + (k + 2)N(r,∞;G) +Nk+2(r, 0;F )

+ 2Nk+1(r, 0;F ) +Nk+2(r, 0;G) + T (r,G) + S(r, F ) + S(r,G).
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Using Lemma 2.9 we get from above

(n+m)T (r, f) (3.11)

≤ (5k + 3m+ 8)T (r, f) + (2k +m+ 4)T (r, g) + S(r, f) + S(r, g).

In a similar manner we can obtain

(n+m)T (r, f) (3.12)

≤ (2k +m+ 4)T (r, f) + (5k + 3m+ 8)T (r, g) + S(r, f) + S(r, g).

Combining (3.11) and (3.12) we get

(n− 7k − 3m− 12)T (r, f) + (n− 7k − 3m− 12)T (r, g) ≤ S(r, f) + S(r, g).
(3.13)

Since n > 7k + 3m+ 12, (3.13) implies a contradiction.

Case 2. Let H ≡ 0.
Then by integration we get from (2.1)

1

F (k) − 1
≡ bG(k) + a− b

G(k) − 1
, (3.14)

where a, b are constants and a �= 0. From (3.14) it is clear that F (k) and G(k)

share 1 CM and hence E3)

(
1;F (k)

)
= E3)

(
1;G(k)

)
. So in this case always

n > 3k +m+ 8. We now consider the following subcases.

Subcase 2.1. Let b �= 0 and a �= b.
If b = −1, then from (3.14) we have

F (k) =
−a

G(k) − a− 1
.

Therefore

N
(
r, a+ 1;G(k)

)
= N

(
r,∞;F (k)

)
= N(r,∞; f).

Since a �= b = −1, from Lemma 2.1 we have

(n+m)T (r, g) +O(1) = T (r,G)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N
(
r, a+ 1;G(k)

)
+ S(r,G)

≤ N(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;G) + S(r,G)

≤ T (r, f) + (k + 2 +m)T (r, g) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite
measure such that T (r, f) ≤ T (r, g) for r ∈ I.

So for r ∈ I we have

(n− k − 3)T (r, g) ≤ S(r, g),

which is a contradiction for n > 3k +m+ 8.
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If b �= −1, from (3.14) we obtain that

F (k) −
(
1 +

1

b

)
=

−a

b2[G(k) + (a− b)/b]
.

Therefore

N
(
r, (b− a)/b;G(k)

)
= N

(
r,∞;F (k) − (1 + 1/b)

)
= N(r,∞; f).

Using Lemma 2.1 and the same argument as used in the case when b = −1 we
can get a contradiction.

Subcase 2.2. Let b �= 0 and a = b.
If b = −1, then from (3.14) we have

F (k)G(k) ≡ 1,

that is
[fn(af + b)](k)[gn(ag + b)](k) ≡ 1,

which is impossible by Lemma 2.10 for k = 1. If b �= −1, from (3.14) we have

1

F (k)
=

bG(k)

(1 + b)G(k) − 1
.

Hence from Lemma 2.3 we have

N
(
r, 1/(1 + b);G(k)

)
= N

(
r, 0;F (k)

)

≤ Nk+1(r, 0;F ) + kN(r,∞; f).

From Lemma 2.1 we have

(n+m)T (r, g) +O(1) = T (r,G)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N

(
r,

1

b+ 1
;G(k)

)
+ S(r,G)

≤ kN(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;F ) +Nk+1(r, 0;G) + S(r,G)

≤ (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, g),

which is a contradiction for n > 3k +m+ 8 for r ∈ I.

Subcase 2.3. Let b = 0.
From (3.14) we obtain

F (k) =
G(k) + a− 1

a
. (3.15)

If a− 1 �= 0 then From (3.15) we obtain

N
(
r, 1− a;G(k)

)
= N

(
r, 0;F (k)

)
.

We can similarly deduce a contradiction as in Subcase 2.2. Therefore a = 1 and
from (3.15) we obtain

F = G+ p(z), (3.16)
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where p(z) is a polynomial of degree at most k − 1. We claim that p(z) ≡ 0.
Otherwise noting that f is transcendental when k ≥ 2, in view of Lemma 2.9 we
have

(n+m)T (r, f) = T (r, F ) +O(1) (3.17)

≤ N(r, 0;F ) +N(r,∞; f) +N(r, p;F ) + S(r, F )

≤ N(r, 0;F ) +N(r,∞; f) +N(r, 0;G) + S(r, F )

≤ 3T (r, f) + 2T (r, g) + S(r, f).

Also from (3.16) we get

T (r, f) = T (r, g) + S(r, f),

which together with (3.17) implies a contradiction. Hence

F ≡ G.

So from Lemma 2.11 we get the conclusion of the theorem. �
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