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ABSTRACT. The probability p(s) of the occurrence of an event pertaining to

a physical system which is observed in different states s determines a function

p from the set S of states of the system to [0, 1]. The function p is called a

multidimensional probability or numerical event. Sets of numerical events which

are structured either by partially ordering the functions p and considering or-

thocomplementation or by introducing operations + and · in order to generalize

the notion of Boolean rings representing classical event fields are studied with

the goal to relate the algebraic operations + and · to the sum and product of

real functions and thus to distinguish between classical and quantum mechanical

behaviour of the physical system. Necessary and sufficient conditions for this are

derived, as well for the case that the functions p can assume any value between

0 and 1 as for the special cases that the values of p are restricted to two or three

different outcomes.
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1. Introduction

Let S be the set of states a physical system can accept during a certain

experiment. The probabilities p(s) of the occurrence of an event obtained by

observing the physical system for the different states s ∈ S determines a func-

tion from S to [0, 1], called a numerical event or multidimensional probability

(cf. [1, 2]). For example, one could think of finding the value of an observable

within a given set of reals for different states s ∈ S.
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Studying the system with regard to the occurrence of different events leads to

a set P of functions from S to [0, 1] which are partially ordered by the order ≤
of functions. Denoting the constant functions with values 0 and 1 by 0 and 1,

respectively, it is natural to assume that

(1) 0 ∈ P and

(2) p′ := 1− p ∈ P for all p ∈ P .

For p, q, r ∈ P we write p ⊥ q if the functions p and q are orthogonal, i.e.

p(s) ≤ q′(s) for all s ∈ S, and call (p, q, r) an orthogonal triple if p ⊥ q ⊥ r ⊥ p.

If one assumes that in addition to (1) and (2) it holds that

(3) p, q, r ∈ P and (p, q, r) an orthogonal triple imply p+ q + r ∈ P

(with + the addition in R) then (P,≤,′ ) is called an algebra of S-probabilities

or algebra of multidimensional probabilities (cf. [1, 2]).

An algebra of S-probabilities is an orthomodular poset with respect to ≤
and ′ which admits a full set of states, and vice versa, any orthomodular poset

which admits a full set of states is isomorphic to an algebra of S-probabilities

(cf. [7]). — For the definition of an orthomodular poset and states confer e.g.

the monograph by Pták and Pulmannová [8].

Moreover, we point out that an algebra of S-probabilities allows to distinguish

a classical mechanical behaviour from a quantum mechanical one, namely, a

system is classical if and only if P is a Boolean algebra (cf. [1, 2]).

In the case of a Boolean algebra and in many other cases the algebra of

S-probabilities is not only a poset but a lattice, as the following examples show.

Examples 1.1.

(a) Let H be a Hilbert space, S the set of one-dimensional subspaces of H ,

and for every s ∈ S let as be a fixed unit vector in s. Denoting the set of

orthogonal projectors of H by P(H ) and writing 〈·, ·〉 for the inner product in
H the set of functions

{
s → 〈Qas, as〉 : Q ∈ P(H )

}
gives rise to an algebra

of S-probabilities which is an orthomodular lattice.

(b) Let S = {1, . . . , n}, n ∈ N, and k |n. For A ⊆ S denote by IA the

characteristic function of A, i.e. IA ∈ {0, 1}S,

IA(x) =

{
1 x ∈ A

0 x ∈ S \A.
Then P = {IA : A ⊆ S, k divides |A|} is an algebra of S-probabilities which

is a lattice if and only if k = 1 (in this case P is the Boolean algebra {0, 1}S) or
n/k ≤ 2: If n = k then P = {0, 1}, and if n = 2k, then P is the orthomodular

lattice MO
((

n
n/2

)
/2
)
with 0 and 1 and

(
n

n/2

)
pairwise incomparable elements in

572

Unauthenticated
Download Date | 2/3/17 9:26 PM



ON ALGEBRAS OF MULTIDIMENSIONAL PROBABILITIES

between. In the case n/k ≥ 3 and k > 1 it can be seen easily that for two

sets A1, A2 ⊆ S with |A1| = |A2| = k and |A1 + A2| = 2, where + denotes the

symmetric difference of sets, the supremum IA1
∨ IA2

does not exist.

(c) The set P = {0, 1, x, 1 − x, |2x − 1|, 1 − |2x − 1|} ⊆ [0, 1][0,1] forms an

algebra of S-probabilities with S = [0, 1]. P is a lattice where the elements

x, 1 − x, |2x − 1|, 1 − |2x − 1| are pairwise incomparable and x ∨ |2x − 1| =

1 
= max
{
x, |2x − 1|}. This example can be generalized as follows: Any set

P ⊆ [0, 1]S satisfying (1) and (2) where (P \ {0, 1},≤) is an antichain forms an

algebra of S-probabilities.

If (P,≤) is a lattice then it is also possible to consider P from the point of view

of generalized event fields, structures that rely on operations + and · such that

+ is directly related to the addition of functions in R. If P pertains to a classical

physical system the Boolean ring which corresponds to the Boolean algebra P

is a so-called generalized event field which, in general, is defined as follows. To

begin with we have to explain what a generalized Boolean quasiring is.

���������� 1.2� (cf. [3, 4, 5, 6]) An algebra (R,+, ·) of type (2, 2) is called a

generalized Boolean quasiring (GBQR) if there exist 0, 1 ∈ R such that (1)–(8)

hold for all x, y, z ∈ R:

(1) x+ y = y + x (2) 0 + x = x

(3) (xy)z = x(yz) (4) xy = yx

(5) xx = x (6) x0 = 0

(7) x1 = x (8) 1 + (1 + xy)(1 + x) = x

(The elements 0 and 1 of a GBQR are uniquely defined.)

Omitting (1) and considering + as a partial operation ⊕ on R defined on

{0, 1}×R one obtains a so-called partial GBQR (pGBQR). A pGBQR (R,⊕, ·)
can be extended to a GBQR (R,+, ·) by defining

0 + x = x+ 0 = x,

1 + x = x+ 1 = 1⊕ x

for all x ∈ R and arbitrarily setting up x+ y = y+ x for all x, y ∈ R \ {0, 1}. In
particular, one can extend ⊕ by taking for + one of the two operations +1 or

+2 given by

x+1 y = 1⊕ (1⊕ x(1⊕ y))(1⊕ (1⊕ x)y),

x+2 y = (1⊕ (1⊕ x)(1⊕ y))(1⊕ xy)

which both coincide with the symmetric difference within Boolean algebras.
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pGBQRs (R,⊕, ·) and hence the GBQRs (R,+, ·) obtained by extending ⊕
in an arbitrary but unique way are in one-to-one correspondence with bounded

lattices (L,∨,∧, ∗, 0, 1) with an antitone involution ∗ by means of

x ∨ y = 1⊕ (1⊕ x)(1⊕ y), x ∧ y = xy, x∗ = 1⊕ x,

and

0⊕ x = x, 1⊕ x = x∗, xy = x ∧ y.

Let (R(L),+, ·) be the GBQR corresponding to a bounded lattice with antitone

involution (L,∨,∧, ∗, 0, 1). In R(L) the relation ≤ shall always refer to the order

of the lattice L, and the same should apply to the orthogonality relation ⊥
(x ⊥ y if and only if x ≤ y∗).

Now we can explain the notion of a generalized event field.

���������� 1.3� (cf. [1]) A GBQR (R,+, ·) is called a generalized event field if

the following condition (T) is satisfied:

(T) If the elements x1, x2, x3 have the property that xi ⊥ xj for i 
= j,

i, j ∈ {1, 2, 3}, in which case we will say that (x1, x2, x3) is an orthogo-

nal triple, then (xi + xj) ⊥ xk for {i, j, k} = {1, 2, 3}.

Examples 1.4.

(a) As can be seen easily, any “classical” σ-algebra of events corresponds to

a generalized event field if we take the symmetric difference for +. In this case

+ = +1 = +2.

(b) Any GBQR (R,+, ·) with x +1 y ≤ x + y ≤ x +2 y for all x, y ∈ R (in

which case we write +1 ≤ + ≤ +2) satisfies (T). This is due to the fact that for

+1 ≤ + ≤ +2 the orthogonality of x and y implies x+ y = x ∨ y.

(c) (R(P ),+, ·) with +1 ≤ + ≤ +2 for any algebra P of S-probabilities which

is a lattice. Condition (3) of algebras of S-probabilities guarantees that (T) is

fulfilled.

In this paper we study generalized event fields (R(P ),+1, ·) where P is an

algebra of S-probabilities and characterize these event fields among the general-

ized event fields (R(L),+, ·), where L is an arbitrary ortholattice. This way we

also obtain a characterization for an ortholattice to be an orthomodular lattice

admitting a full set of states. Moreover, we give necessary and sufficient con-

ditions for (R(P ),+, ·) to be a classical field of events, i.e. a Boolean algebra.

Finally, we study the special case that one deals with a small set of values.
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2. Preliminary remarks

Let P ⊆ [0, 1]S. In the following we investigate relations between the ax-

ioms/properties of algebras of S-probabilities. Here is the list of properties we

will study:

(1) 0 ∈ P .

(2) For all f ∈ P we have f ′ = 1− f ∈ P .

(3) For all f, g, h ∈ P , if (f, g, h) is an orthogonal triple then f + g + h ∈ P .

(4) For all f, g ∈ P , if f ⊥ g then f + g ∈ P .

(5) For all f, g, h ∈ P , if (f, g, h) is an orthogonal triple then f + g + h ≤ 1.

(6) P ⊆ {0, 1}S.
(7) For all f, g ∈ P , fg ∈ P .

(8) (P,≤) is a Boolean algebra.

(9) P \ {0} contains no function f with f ≤ 1/2.

��		
 2.1� The following implications between properties (1)–(9) hold:

(a) (1),(3) =⇒ (4) (b) (3) =⇒ (5) (c) (4),(5) =⇒ (3)

(d) (4),(6) =⇒ (3) (e) (1),(2),(6),(7) =⇒ (8) (f) (4),(5) =⇒ (9)

P r o o f.

(a) If f ⊥ g then (f, g, 0) is an orthogonal triple and by (3) we have f + g =

f + g + 0 ∈ P .

(b) is obvious.

(c) If (f, g, h) is an orthogonal triple then by (4), f + g ∈ P and by (5),

(f + g) ⊥ h. Employing (4) again yields f + g + h ∈ P .

(d) If (f, g, h) is an orthogonal triple then (6) means that f, g, h are charac-

teristic functions on pairwise disjoint subsets Sf , Sg, Sh of S, thus f + g which

is in P by (4) is the characteristic function on Sf ∪ Sg and (f + g) ⊥ h, and by

applying (4) to this orthogonal pair we obtain f + g + h ∈ P .

(e) (6) means that P consists of characteristic functions of certain subsets

of S. By (1) this set P̄ of subsets of S contains the empty set, by (2), P̄ is

closed under (set-theoretical) complements, and by (7) P̄ is closed under (set-

theoretical) intersection. Hence P̄ is also closed under union of sets and so P̄

and therefore also P is a Boolean subalgebra of {0, 1}S.
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(f) Suppose there is f ∈ P \ {0} with f ≤ 1/2 and let n be the maximum

among all k ∈ N such that kf ≤ 1. Then n ≥ 2 and kf ⊥ f for k = 1, . . . , n− 1

and by (4) and induction on k we infer kf ∈ P for k = 1, . . . , n. Moreover,

((n− 1)f, f, f) is an orthogonal triple in P and (5) yields (n+ 1)f ≤ 1 which is

a contradiction to the choice of n. �

As an easy consequence of Lemma 2.1 one can see that an algebra of S-pro-

babilities can be defined by a different set of axioms.

���
������� 2.2� P ⊆ [0, 1]S is an algebra of S-probabilities if and only if P

satisfies (1), (2), (4) and (5).

The following result provides a characterization for the classicality of an al-

gebra of S-probabilities in terms of properties of its atoms.

���
������� 2.3� An orthomodular poset P = (P,≤,′ , 0, 1), in particular an

algebra of S-probabilities, is a finite Boolean algebra if and only if (i), (ii) and

(iii) hold:

(i) (P,≤) has finitely many atoms.

(ii) The atoms of (P,≤) are pairwise orthogonal.

(iii) (P,≤) is atomic, i.e. for every b ∈ P \ {0} there exists an atom a of P

with a ≤ b.

P r o o f. Let A denote the set of all atoms of P.

Obviously (i)–(iii) are necessary for P being a finite Boolean algebra.

Now assume P to satisfy (i)–(iii). Because of (i), A is finite. Let f denote

the mapping a �→ {x ∈ A : x ≤ a} from P to 2A and g the mapping B �→ ∨
B

from 2A to P . Then f and g are well-defined and order-preserving. Let a ∈ P .

Then g(f(a)) =
∨{x ∈ A : x ≤ a} ≤ a. Because of the orthomodularity

of (P,≤), g(f(a)) < a would imply a ∧ (g(f(a)))′ > 0. Because of (iii) there

would exist b ∈ A with b ≤ a ∧ (g(f(a)))′. But then we would have b ≤ g(f(a))

and b ≤ (g(f(a)))′, i.e., b ≤ g(f(a)) ∧ (g(f(a)))′ = 0 contradicting b ∈ A.

Therefore g(f(a)) = a. Now let C be a subset of A. Then f(g(C)) =
{
x ∈ A :

x ≤ ∨
C
} ⊇ C. Now f(g(C)) 
= C would imply the existence of some c ∈ A \C

with c ≤ ∨
C. According to (ii) this would imply c ≤ d′ for all d ∈ C and

hence c ≤ ∧{d′ : d ∈ C} =
(∨

C
)′

which together with c ≤ ∨
C would yield

c ≤ (∨
C
)∧ (∨

C
)′

= 0 contradicting c ∈ A. This shows f(g(C)) = C. Hence f

and g are mutually inverse isomorphisms between (P,≤) and (2A,⊆) and since

the latter is a finite Boolean algebra the same is true for P. �
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3. GBQRs of S-probabilities

We call a GBQR (R(L),+, ·) such that L is an algebra of S-probabilities a

GBQR of S-probabilities, i.e. L is an orthomodular lattice which admits a full set

of states. However, in the following we only assume that L is an ortholattice. We

recall that a state of L is a function m : L → [0, 1] such that m(0) = 0, m(1) = 1

and a ⊥ b implies m(a ∨ b) = m(a) +m(b) (with + in R), from which we infer

m(a′) = 1 −m(a) =: m′(a) and, moreover, that a ≤ b implies m(a) ≤ m(b) for

a, b ∈ L. If for a set M of states of L the converse is also true, i.e. m(a) ≤ m(b)

for all m ∈ M implies a ≤ b, then M is called full.

If for a, b ∈ L with a 
= b there always exists an m ∈ M with m(a) 
= m(b)

then M is called point-separating. For every fixed a ∈ L a function fa from

M to [0, 1] is defined by fa(m) = m(a) for all m ∈ M . In some instances we

will denote the function fa also by f(a) for notational reasons. In particular,

we will use the form f(a) when a is a more involved term and no evaluation

of f(a) in a certain state m ∈ M is considered at the same time, so that the

function f(a) never can be mixed up with the value fa(m). Let LM denote the

set of all functions fa, a ∈ L, assumed to be ordered by ≤ and endowed with

the operation ′ defined by

f ′
a(m) = 1− fa(m) = fa′(m).

If the supremum of two functions fa and fb exists in LM we will denote it by

fa ∨ fb also indicating this way that the supremum exists. In order to omit

extensive use of brackets we agree that ∨ and ∧ bind stronger than +.

������	 3.1� Let L be an ortholattice with a point-separating set M of states.

Then (R(L),+1, ·) is a GBQR of S-probabilities if and only if fa ⊥ fb implies

f(a+1 b) = f(a ∧ b′ +1 b) = fa ∨ fb for all a, b ∈ L.

P r o o f. Let (R(L),+1, ·) be a GBQR of S-probabilities. Then for M we choose

a full set of states and therefore m(a) ⊥ m(b) for all m ∈ M implies a ⊥ b, from

which we infer f(a+1 b) = f(a ∧ b′ +1 b) = fa + fb = fa ∨ fb because, as shown

in [7], if fa ⊥ fb then fa ∨ fb exists and equals fa + fb.

Conversely, assume fa ⊥ fb entails f(a+1 b) = f(a∧ b′ +1 b) = fa ∨ fb. If for

a, b ∈ L we have m(a+1 b) = m(a ∧ b′ +1 b) for all m ∈ M then

m(a ∧ b′) +m(a′ ∧ b) = m(a ∧ b′ ∧ b′) +m((a′ ∨ b) ∧ b) = m(a ∧ b′) +m(b)

which implies that m(a′∧b) = m(b), and with interchanged roles of a and b that

m(b′ ∧ a) = m(a), which means that f(a+1 b) = fa + fb = fa ∨ fb.
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Now, if fa ⊥ fb ⊥ fc ⊥ fa for a, b, c ∈ L then fa + fb ≤ f ′
c = 1 − fc and we

obtain fa + fb + fc ≤ 1 from which we can conclude fa ∨ fb ∨ fc ∈ LM proving

(LM ,≤,′ ) to be an algebra of S-probabilities. Since M is point-separating the

mapping a �→ fa is a bijection, and because a ≤ b implies m(a) ≤ m(b) (as

pointed out above for ortholattices L), L is order-isomorphic to LM and hence

isomorphic to LM as an ortholattice. �

������
�� 3.2� An ortholattice with a point-separating set M of states is

orthomodular and admits a full set of states if and only if for all a, b ∈ L the

relation fa ⊥ fb implies f((a ∧ b′) ∨ (a′ ∧ b)) = f((a ∧ b′) ∨ b) = fa ∨ fb.

If a GBQR of S-probabilities is a Boolean ring we call it classical (in accor-

dance with the fact that a classical physical phenomenon can be characterized

by the fact that the corresponding algebra of S-probabilities is Boolean).

������	 3.3� Let L be an ortholattice with a point-separating set M of states.

Then (R(L),+1, ·) is a classical GBQR of S-probabilities if and only if

f(a ∧ b′) + f(a′ ∧ b) + f(a ∧ b) = f(a ∨ b) = fa ∨ fb

for all a, b ∈ L.

P r o o f. If R(L) is classical then R(L) is a Boolean ring, hence +1 = +2 which

means

(a ∧ b′) ∨ (a′ ∧ b) = (a ∨ b) ∧ (a′ ∨ b′) = ((a′ ∧ b′) ∨ (a ∧ b))′.

Therefore

m(a ∧ b′) +m(a′ ∧ b) = (m(a′ ∧ b′) +m(a ∧ b))′

= 1− ((1−m(a ∨ b)) +m(a ∧ b))

= m(a ∨ b)−m(a ∧ b)

for all a, b ∈ L and m ∈ M . Hence

f(a ∧ b′) + f(a′ ∧ b) + f(a ∧ b) = f(a ∨ b) = fa ∨ fb.

(That f(a ∨ b) = fa ∨ fb is due to the fact that LM is isomorphic to L.)

Conversely, if f(a ∧ b′) + f(a′ ∧ b) + f(a ∧ b) = f(a ∨ b) = fa ∨ fb then the

mapping a �→ fa, a ∈ L, is an ortholattice isomorphism of L onto LM and

therefore fa ⊥ fb ⊥ fc ⊥ fa for a, b, c ∈ L implies

fa + fb = fa ∧ f ′
b + f ′

a ∧ fb + fa ∧ fb = f(a ∨ b)− fa ∨ fb,

from which we conclude fa + fb + fc = fa ∨ fb ∨ fc ∈ LM . Thus it follows that

LM is an algebra of S-probabilities and L is orthomodular.
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The condition f(a ∧ b′) + f(a′ ∧ b) + f(a ∧ b) = f(a ∨ b) is equivalent to the

condition m(a +1 b) = m(a +2 b) for all a, b ∈ L and all m ∈ M . Because L

is isomorphic to LM we therefore obtain +1 = +2 which within orthomodular

lattices implies that the lattice has to be Boolean, as can be easily verified. �

4. GBQRs of S-probabilities with a small number of values

Let L be a set of functions from S in {0, 1}, 0 ∈ L and f ′ = 1 − f ∈ L for

f ∈ L. First we prove some basic properties of L in order to obtain results about

algebras of 2-valued S-probabilities.

��		
 4.1� If f, g ∈ {0, 1}S then

(i) fg = min{f, g},
(ii) f + g − fg = max{f, g}.

P r o o f. min{a, b} = ab and max{a, b} = 1−min{1−a, 1−b} = 1−(1−a)(1−b)

= a+ b− ab for all a, b ∈ {0, 1}. �

��		
 4.2� If P ⊆ {0, 1}S and P is closed with respect to ′ then the following

are equivalent:

(i) fg ∈ P for all f, g ∈ P ,

(ii) min{f, g} ∈ P for all f, g ∈ P ,

(iii) f + g − fg ∈ P for all f, g ∈ P ,

(iv) max{f, g} ∈ P for all f, g ∈ P .

P r o o f.

(i) =⇒ (ii): min{f, g} = fg for all f, g ∈ P .

(ii) =⇒ (iii): f + g − fg =
(
min{f ′, g′})′ for all f, g ∈ P .

(iii) =⇒ (iv): max{f, g} = f + g − fg for all f, g ∈ P .

(iv) =⇒ (i): fg =
(
max{f ′, g′})′ for all f, g ∈ P . �

��		
 4.3� If L ⊆ {0, 1}S, 0 ∈ L and f ′, fg ∈ L for all f, g ∈ L then (L,≤,′ )
is a Boolean algebra.

P r o o f. (L,≤,′ ) is a distributive lattice with an antitone involution. Since

max{f, f ′} = 1 for all f ∈ L, (L,≤,′ ) is Boolean. �
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��		
 4.4� Suppose L ⊆ {0, 1}S, 0 ∈ L and L is closed with respect to ′. If

f, g ∈ L and f ⊥ g imply f + g ∈ L then L is an algebra of S-probabilities.

P r o o f. This follows from (d) of Lemma 2.1. �

��		
 4.5� If L ⊆ {0, 1}S is an algebra of S-probabilities and fg ∈ L for all

f, g ∈ L then (L,≤,′ ) is an Boolean algebra.

P r o o f. This follows from (e) of Lemma 2.1. �

������	 4.6� Let (L,≤,′ ) be an algebra of S-probabilities in {0, 1} which is

an ortholattice. If f +1 g = f + g − 2fg then (R(L),+1, ·) is a classical GBQR

of S-probabilities.

P r o o f. For arbitrary functions fi, gi ∈ [0, 1]S, i = 1, 2, we have the following

elementary property:((∀i ∈ {1, 2})(fi ≤ gi
)

& f1+f2 = g1+g2
)

=⇒ (∀i ∈ {1, 2})(fi = gi
)
. (4.1)

Our assumption f+1g = f+g−2fg means (f∩g′)∪(f ′∩g) = f(1−g)+g(1−f),

and since (f ∩ g′) ⊥ (f ′ ∩ g) this can be written in the form

(f ∩ g′) + (f ′ ∩ g) = f(1− g) + g(1− f). (4.2)

The algebra of S-probabilities L is a subset of {0, 1}S, hence
f ∩ g′ = inf

L
{f, g′} ≤ inf

{0,1}S
{f, g′} = f · g′ = f(1− g), and f ′ ∩ g ≤ g(1− f).

(4.3)

Now we can apply (4.1) to the elements involved in (4.2) and (4.3) and obtain

f ∩ g′ = f(1 − g) ∈ L. Therefore we also have f ∩ g = fg ∈ L and Lemma 4.5

yields the result. �

The remaining part of this section is devoted to algebras of S-probabilities

with values in {0, 1/2, 1}.
��		
 4.7� If f, g ∈ {0, 1/2, 1}S then

(i) (1/2)�2fg� = min{f, g},
(ii) (1/2)�2(f + g − fg)� = max{f, g}.

P r o o f.

min{a, b} = (1/2)�2ab�
and

580

Unauthenticated
Download Date | 2/3/17 9:26 PM



ON ALGEBRAS OF MULTIDIMENSIONAL PROBABILITIES

max{a, b} = 1−min{1− a, 1− b} = 1− (1/2)�2(1− a)(1− b)�
= (1/2)(2− �2(1− a)(1− b)�) = (1/2)�2− 2(1− a)(1− b)�
= (1/2)�2(a+ b− ab)�

for all a, b ∈ {0, 1/2, 1}. �

��		
 4.8� If P ⊆ {0, 1/2, 1}S and P is closed with respect to ′ then the

following are equivalent:

(i) (1/2)�2fg� ∈ P for all f, g ∈ P ,

(ii) min{f, g} ∈ P for all f, g ∈ P ,

(iii) (1/2)�2(f + g − fg)� ∈ P for all f, g ∈ P ,

(iv) max{f, g} ∈ P for all f, g ∈ P .

P r o o f.

(i) =⇒ (ii): min{f, g} = (1/2)�2fg� for all f, g ∈ P .

(ii) =⇒ (iii): (1/2)�2(f + g − fg)� = (
min{f ′, g′})′ for all f, g ∈ P .

(iii) =⇒ (iv): max{f, g} = (1/2)�2(f + g − fg)� for all f, g ∈ P .

(iv) =⇒ (i): (1/2)�2fg� = (
max{f ′, g′})′ for all f, g ∈ P . �

��		
 4.9� If P ⊆ {0, 1/2, 1}S and f ′, (1/2)�2fg� ∈ P for all f, g ∈ P then

(P,≤,′ ) is a distributive lattice with an antitone involution. If, moreover, 0 ∈ P

then (P,≤) is a Boolean algebra if and only if P ⊆ {0, 1}S. In this case f ′ is
the complement of f .

P r o o f. (P,≤,′ ) is a distributive lattice with an antitone involution. Now as-

sume 0 ∈ P . If P ⊆ {0, 1}S then (P,≤,′ ) is a Boolean algebra according to

Lemma 4.3. If P 
⊆ {0, 1}S then there exists an f ∈ P and an s ∈ S with

f(s) = 1/2. If (P,≤) would be a Boolean algebra then there would exist a

g ∈ P which is a complement of f . Now g(s) = 1 since max
{
f(s), g(s)

}
= 1 but

then 0 = min
{
f(s), g(s)

}
= 1/2, a contradiction. Hence (P,≤) is not a Boolean

algebra in this case. �

Summing up we obtain the following result:

������	 4.10� Let (L,≤,′ ) be an algebra of S-probabilities in {0, 1/2, 1} which

is an ortholattice such that 1/2 · �2fg� ∈ L for all f, g ∈ L. Then (R(L),+1, ·)
is a classical GBQR of S-probabilities if and only if L ⊆ {0, 1}S.

P r o o f. By Lemma 4.9, (R(L),+1, ·) is a Boolean ring if and only if L ⊆ {0, 1}S.
�
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‘
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