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ABSTRACT. This is a continuation of “Spaces of lower semicontinuous set-
valued maps I”. Together, these two parts contain two interrelated main theo-
rems. In the previous part I, the Extension Theorem is proved, which says that
for binormal spaces X and Y , every bimonotone homeomorphism between C(X)
and C(Y ) can be extended to an ordered homeomorphism between L−(X) and
L−(Y ). In this part II, the Factorization Theorem is proved, which says that for
binormal spaces X and Y , every ordered homeomorphism between L−(X) and
L−(Y ) can be characterized by a unique factorization.
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1. Introduction

The preceding “Spaces of lower semicontinuous set-valued maps I” introduces
the lower semicontinuous analog, L−(X), of the well-studied space L(X) of up-
per semicontinuous maps with values that are nonempty compact intervals in R.
Because the elements of L−(X) contain continuous selections, the space C(X)
of real-valued continuous functions on X can be used to establish properties of
L−(X), such as the two interrelated main theorems. The first of these theorems,
the Extension Theorem, is proved in part I. This Extension Theorem says that
for binormal spaces X and Y , every bimonotone homeomorphism between C(X)
and C(Y ) can be extended to an ordered homeomorphism between L−(X) and
L−(Y ). We now prove in this part II the second main theorem, the Factor-
ization Theorem, which says that for binormal spaces X and Y , every ordered
homeomorphism between L−(X) and L−(Y ) can be characterized by a unique
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factorization. So the two main theorems together give a unique factorization
characterization of the bimonotone homeomorphisms between C(X) and C(Y ).
In this part, when we refer to a result in part I, we prefix its number with a I.

2. Regular open correspondences

Before we can understand exactly what the ordered homeomorphisms between
L−(X) and L−(Y ) are, we need to introduce a correspondence between X and
Y that is more general than a homeomorphism. This will be needed for the
Factorization Theorem in the next section.

Since X and Y are completely regular Hausdorff spaces, they are, in particu-
lar, regular spaces. Now let TX and TY be the families of regular open subsets
of X and Y , respectively (where U is regular open provided that int(U) = U ).
Then TX and TY are bases for the topologies on X and Y . The next paragraph
and the following lemma are stated in terms of the space X, but apply just as
well to the space Y .

Let T = T(X) be the collection of subfamilies of TX that have the finite
intersection property. If T is partially ordered by inclusion, then for every lin-
early ordered subcollection L of T,

⋃
L is an upper bound of L in T. So by

Zorn’s Lemma, every element of T is contained in a maximal element of T. Let
T
∗ = T

∗(X) be the collection of maximal elements of T. For each T ∈ T, let

T =
{
U : U ∈ T

}
.

����� 2.1� For each T ∈ T, the following are true.

(1) If T ∈ T
∗ and U1, . . . , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T .

(2) The family T ∈ T
∗ if and only if for every U ∈ TX such that U ∩ U ′ �= ∅

for all U ′ ∈ T , U ∈ T .

(3) If T ∈ T
∗, then either

⋂
T = ∅ or

⋂
T = {x} for some x ∈ X.

P r o o f.

(1) Let T ′ = T ∪ {
U1 ∩ · · · ∩ Un

}
. Now let U 1, . . . , Um ∈ T . Then U 1 ∩ · · ·

∩Um∩U1∩· · ·∩Un �= ∅ since T has the finite intersection property. Therefore,
T ′ has the finite intersection property, so that T ′ ∈ T. Since T is maximal in
T, we have T = T ′, and thus U1 ∩ · · · ∩ Un ∈ T .

(2) Let T ∈ T
∗ and let U ∈ TX be such that U ∩U ′ �= ∅ for all U ′ ∈ T . Let

T ′ = T ∪{
U
}
. If U1, . . . , Un ∈ T , then by statement (1), U1∩· · ·∩Un ∈ T , so

that U1∩· · ·∩Un∩U �= ∅ by hypothesis. Therefore, T ′ has the finite intersection
property, so that T ′ ∈ T. Since T is maximal in T, we have T = T ′, and
hence U ∈ T .
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For the converse, suppose that for every U ∈ TX such that U ∩U ′ �= ∅ for all
U ′ ∈ T , we have U ∈ T . Let T ′ ∈ T with T ⊆ T ′. Then for each U ∈ T ′,
U ∩ U ′ �= ∅ for all U ′ ∈ T because T ′ has the finite intersection property. But
then U ∈ T , showing that T ′ = T , and that T is maximal in T.

(3) Suppose, by way of contradiction, that there are x1 and x2 in
⋂

T with
x1 �= x2. Let U1 and U2 be disjoint elements of TX with x1 ∈ U1 and x2 ∈ U2.
For each U ∈ T , we have U1 ∩ U �= ∅ and U2 ∩ U �= ∅. So by statement (2),
U1, U2 ∈ T . Since T has the finite intersection property, U1 ∩ U2 �= ∅, which is
a contradiction. �

Before we define a regular open correspondence from X to Y , we consider
some preliminary properties of a bijection τ : TX → TY .

����� 2.2� If τ : TX → TY is a bijection, then the following are equivalent.

(1) For every U1, U2 ∈ TX , U1 ⊆ U2 if and only if τ(U1) ⊆ τ(U2).

(2) For every U1, U2 ∈ TX , τ(U1 ∩ U2) = τ(U2) ∩ τ(U2).

P r o o f.

(1) =⇒ (2). Let U1, U2 ∈ TX . Since U1∩U2 ⊆ U1 and U1∩U2 ⊆ U2, we have
τ(U1 ∩ U2) ⊆ τ(U1) ∩ τ(U2). For the reverse containment, since τ(U1) ∩ τ(U2)
⊆ τ(U1) and τ(U1)∩τ(U2) ⊆ τ(U2), it follows that τ

−1(τ(U1)∩τ(U2)) ⊆ U1∩U2.
Therefore, τ(U1) ∩ τ(U2) ⊆ τ(U1 ∩ U2).

(2) =⇒ (1). Let U1, U2 ∈ TX . Suppose first that U1 ⊆ U2. Then U1 ∩ U2

= U1, so that τ(U1) = τ(U1 ∩ U2) = τ(U1) ∩ τ(U2), which implies that τ(U1) ⊆
τ(U2). Conversely, suppose that τ(U1) ⊆ τ(U2). Then τ(U1) ∩ τ(U2)= τ(U1),
so that U1 = τ−1(τ(U1) ∩ τ(U2)) = τ−1(τ(U1) ∩ U2)) = U1 ∩ U2, which implies
that U1 ⊆ U2. �

We will say that a bijection τ : TX → TY is an ordered bijection if it satisfies
condition (1) of Lemma 2.2. Note that if τ is an ordered bijection, then τ(∅) = ∅.
For each ordered bijection τ and each T ⊆ TX , let τ(T ) =

{
τ(U ) : U ∈ T

}
.

����� 2.3� Let τ : TX → TY be an ordered bijection, and let T ⊆ TX . Then
T has the finite intersection property if and only if τ(T ) has the finite inter-
section property.

P r o o f. Let T have the finite intersection property, and let U1, . . . , Un ∈ T . If
U = U1∩· · ·∩Un, then U �= ∅, so that τ(U ) �= ∅. But τ(U ) ⊆ τ(U1)∩· · ·∩τ(Un)
since τ is ordered. This shows that τ(T ) has the finite intersection property.
The proof of the converse is similar. �

Note that Lemma 2.3 implies that for an ordered bijection τ : TX → TY , if
T ∈ T(X), then τ(T ) ∈ T(Y ).

543

Unauthenticated
Download Date | 2/3/17 10:47 AM



R. A. MCCOY

����� 2.4� If τ : TX → TY is an ordered bijection and T ∈ T
∗(X), then

τ(T ) ∈ T
∗(Y ).

P r o o f. Let V ∈ TY be such that V ∩ τ(U ) �= ∅ for all U ∈ T . Then τ−1(V )∩
U �= ∅ for all U ∈ T , so that by Lemma 2.1, τ−1(V ) ∈ T , and hence V ∈ τ(T ).
But the proof of Lemma 2.1 also applies to τ(T ) in T(Y ), so that τ(T ) ∈ T

∗(Y ).
�

From this point on, we will use T
∗ for T

∗(X). For each ordered bijection

τ : TX → TY and T ∈ T
∗, let τ(T ) =

{
τ(U ) : U ∈ T

}
. Also let τ(T∗) ={

τ(T ) : T ∈ T
∗}. Note that Lemmas 2.4 and 2.1 imply that if T ∈ T

∗, then
either

⋂
τ(T ) = ∅ or

⋂
τ(T ) = {y} for some y ∈ Y .

����� 2.5� If τ : TX → TY is an ordered bijection, then the following are
equivalent.

(1) For every U1, U2 ∈ TX , U1 ∩ U2 �= ∅ if and only if τ(U1) ∩ τ(U2) �= ∅.
(2) For every U1, U2 ∈ TX , U1 ⊆ U2 if and only if τ(U1) ⊆ τ(U2).

P r o o f.

(1) =⇒ (2). Let U1, U2 ∈ TX . Suppose that U1 ⊆ U2. Define U0 =

τ−1(Y \ τ(U2)). Then by Lemma 2.2, τ(U0 ∩ U2) = τ(U0) ∩ τ(U2) =

(Y \ τ(U2)) ∩ τ(U2) = ∅, and hence U0 ∩ U2 = ∅. But then U0 ∩ U2 = ∅. Since

U1 ⊆ U2, we have U0∩U1 = ∅. Thus Y \ τ(U2)∩τ(U1) = τ(U0)∩τ(U1) = ∅. But
τ(U1) ⊆ τ(U2), so that τ(U1) ∩ bd(τ(U2)) = ∅. Therefore, τ(U1) ⊆ int(τ(U2))
= τ(U2) because τ(U2) is regular open. The proof of the converse is similar.

(2) =⇒ (1). Let U1, U2 ∈ TX . Suppose that U1∩U2 = ∅. Define U0 = X\U2.

Then U1 ⊆ X \ U2 = U0. By statement (2), we have τ(U1) ⊆ τ(U0). Now
U0 ∩ U2 = ∅, so that by Lemma 2.2, τ(U0) ∩ τ(U2) = τ(U0 ∩ U2) = ∅. Then

τ(U0) ∩ τ(U2) = ∅, and hence τ(U1) ∩ τ(U2) = ∅. The proof of the converse is
similar. �

Now we define a regular open correspondence from X to Y to be an ordered
bijection τ : TX → TY that satisfies condition (1) of Lemma 2.5. Let the family
of such τ be denoted by ROC(X, Y ).

For τ ∈ ROC(X, Y ), define

X∅ =
{
T ∈ T

∗ :
⋂

T = ∅ and
⋂
τ(T ) �= ∅}

and
Y ∅ =

{
τ(T ) ∈ τ(T∗) :

⋂
T �= ∅ and

⋂
τ(T ) = ∅}.

Also define equivalence relation ∼ on X∅ as follows. If T1,T2 ∈ X∅, then
T1 ∼ T2 provided that

⋂
τ(T1) =

⋂
τ(T2). Then let X∗ be the set of equiv-

alence classes of ∼, and let us denote a typical element by [T ] where T is an
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element of X∅ that is contained in this equivalence class. Similarly, define equi-
valence relation ∼ on Y ∅ by τ(T1) ∼ τ(T2) provided that

⋂
T1 =

⋂
T2, and

let Y ∗ be its set of equivalence classes with typical element denoted by [τ(T )].
Now define τX = X ∪X∗ and τY = Y ∪ Y ∗. Finally, for each U ∈ TX , define

U∗ =
{
[T ] ∈ X∗ : U ∈ T and

⋂
τ(T ) ⊆ τ(U )

}
,

and for each V ∈ TY , define

V ∗ =
{
[τ(T )] ∈ Y ∗ : V ∈ τ(T ) and

⋂
T ⊆ τ−1(V )

}
.

����� 2.6� For τ ∈ ROC(X, Y ), the family
{
U ∪ U∗ : U ∈ TX

}
is a base

for a topology on τX such that X is a dense subspace of τX. Also the family{
V ∪ V ∗ : V ∈ TY

}
is a base for a topology on τY such that Y is a dense

subspace of τY .

P r o o f. To show that
{
U ∪ U∗ : U ∈ TX

}
is closed under finite intersections,

it suffices to show that for each U1, U2 ∈ TX , U∗
1 ∩ U∗

2 = (U1 ∩ U2)
∗. First

let [T ] ∈ U∗
1 ∩ U∗

2 . Then U1, U2 ∈ T and
⋂
τ(T ) ⊆ τ(U1) ∩ τ(U2). But

U1 ∩U2 ∈ T by Lemma 2.1, and τ(U1) ∩ τ(U2) = τ(U1 ∩ U2) by Lemma 2.2, so
that [T ] ∈ (U1 ∩U2)

∗. For the reverse containment, let [T ] ∈ (U1 ∩U2)
∗. Then

U1 ∩ U2 ∈ T and
⋂
τ(T ) ⊆ τ(U1 ∩ U2) = τ(U1) ∩ τ(U2). By the maximality of

T , U1, U2 ∈ T , and hence [T ] ∈ U∗
1 ∩ U∗

2 .

This shows that
{
U ∩U∗ : U ∈ TX

}
is closed under finite intersections, and

since this family includes the empty set and covers τX, it is a base for a topology
on τX. Also since TX is a base for the topology on X, it is clear that X is a
dense subspace of τX. We have a similar argument that

{
V ∩ V ∗ : V ∈ TY

}
is

a base for a topology on τY such that Y is a dense subspace of τY . �
����� 2.7� For τ ∈ ROC(X, Y ), τX and τY are Hausdorff spaces.

P r o o f. We only show that τX is Hausdorff since the proof that τY is Hausdorff
is similar. First note that if U1, U2 ∈ TX are such that U1 ∩ U2 = ∅, then
(U1 ∪ U∗

1 ) ∩ (U2 ∪ U∗
2 ) = ∅. Since X is Huasdorff, we can therefore separate

points of X in the space τX.

If [T1], [T2] ∈ X∗ with [T1] �= [T2], then y1 �= y2 where
⋂
τ(T1) = {y1} and⋂

τ(T2) = {y2}. Let V1 and V2 be disjoint elements of TY with y1 ∈ V1 and
y2 ∈ V2. So if U1 = τ−1(V1) and U2 = τ−1(V2), we have U1 ∈ T1, U2 ∈ T2, and
U1 ∩U2 = ∅. Therefore, U1 ∪U∗

1 and U2 ∪U∗
2 are disjoint neighborhoods of [T1]

and [T2] in τX.

Finally, if x ∈ X and [T ] ∈ X∗, then there exists a U1 ∈ T with x /∈ U1.
By the regularity of X, there exists a U2 ∈ TX with x ∈ U2 and U1 ∩ U2 = ∅.
It follows that τ(U1) ∩ τ(U2) = ∅. Let U3 = X \ U2, which is in TX . Since

U1 ⊆ U3, τ(U1) ⊆ τ(U3) by Lemma 2.5. If
⋂
τ(T ) = {y}, then y ∈ τ(U1),

so that y ∈ τ(U3). By the maximality of τ(T ), we have τ(U3) ∈ τ(T ), and
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hence U3 ∈ T . Thus [T ] ∈ U∗
3 . Note that y /∈ τ(U2), so that U2 /∈ T , and so

[T ] /∈ U∗
2 . Then U2∪U∗

2 and U3∪U∗
3 are disjoint open subsets of τX containing

x and [T ], respectively. �

Now for τ ∈ ROC(X, Y ), we have topological spaces τX and τY that are
Hausdorff extensions of X and Y . Next we define eτ : τX → τY as follows.
First, let x ∈ X, and take T to be any element of T∗ that contains

{
U ∈ TX :

x ∈ U
}
(and hence

⋂
T = {x}). If ⋂ τ(T ) = ∅, then τ(T ) ∈ Y ∅, so we define

eτ (x) = [τ(T )] ∈ Y ∗ ⊆ τY . If
⋂
τ(T ) �= ∅, then ⋂

τ(T ) = {y} for some y ∈ Y ,
so we define eτ (x) = y ∈ Y ⊆ τY . Secondly, let [T ] ∈ X∗. Then T ∈ X∅, so
that

⋂
T = ∅. In this case also,

⋂
τ(T ) = {y} for some y ∈ Y , and we also

define eτ ([T ]) = y.

����� 2.8� For τ ∈ ROC(X, Y ), eτ : τX → τY is a well-defined bijection.

P r o o f. First let us show that eτ is well-defined. Let T1,T2 be elements of T∗

that both contain
{
U ∈ TX : x ∈ U

}
, and hence

⋂
T1 = {x} and

⋂
T2 = {x}.

Suppose, by way of contradiction, that
⋂
τ(T1) = ∅ and

⋂
τ(T2) �= ∅. Then⋂

τ(T2) = {y} for some y ∈ Y . Now y /∈ ⋂
τ(T1), so there exits a U1 ∈ T1

with y /∈ τ(U1); let V1 = τ(U1). Then there exists a V2 ∈ TY with y ∈ V2 and
V1∩V2 = ∅. Since τ(T2) is maximal in T(Y ), by Lemma 2.4, we have V2 ∈ τ(T2),
so that U2 ∈ T2 where U2 = τ−1(V2). Now x ∈ U1 ∩ U2, which implies that

V1 ∩ V2 = τ(U1) ∩ τ(U2) �= ∅ by Lemma 2.5. But this is a contradiction, so that

either both
⋂
τ(T1) = ∅ and

⋂
τ(T2) = ∅ or both

⋂
τ(T1) �= ∅ and

⋂
τ(T2) �= ∅.

Suppose first that
⋂
τ(T1) = {x}= ⋂

τ(T2). Then since
⋂

T1 = {x} =
⋂

T2,
we have τ(T1), τ(T2) ∈ Y ∅ and [τ(T1)] = [τ(T2)], showing that eτ (x) is well-

defined. Now in the case that
⋂
τ(T1) �= ∅ �= ⋂

τ(T2), suppose
⋂
τ(T1) =

{
y1
}

and
⋂
τ(T2) = {y2}. If y1 �= y2, then there exists V1 ∈ τ(T1) and V2 ∈ τ(T2)

with y1 ∈ V1, y2 ∈ V2, and V1 ∩ V2 = ∅. But then if U1 = τ−1(V1) and
U2 = τ−1(V2), we have U1 ∈ T1 and U2 ∈ T2, so that x ∈ U1 ∩ U2. Again, by
Lemma 2.5, this is a contradiction, so that y1 = y2, showing that eτ (x) is also
well-defined in this case.

Finally, let T1,T2 ∈ X∅ be such that [T1] = [T2]. Then the definition of

the equivalence relation ∼ gives
⋂
τ(T1) =

⋂
τ(T2), so that in this final case,

eτ ([T1]) = eτ ([T2)]. Therefore, eτ is a well-defined function from τX into τY .

Define the inverse e−1
τ : τY → τX as follows. Let y ∈ Y . Take T to be any el-

ement of T∗ that contains
{
τ−1(V ) : y ∈ V ∈ TY

}
; and hence

⋂
τ(T ) = {y}. If⋂

T = ∅, then T ∈ X∅, so that we define e−1
τ (y) = [T ] ∈ X∗. If

⋂
T �= ∅, then⋂

T = {x} for some x ∈ X, so we define e−1
τ (y) = x. Finally, let [τ(T )] ∈ Y ∗.

Then τ(T ) ∈ Y ∅, so that
⋂

T �= ∅. In this case also,
⋂

T = {x} for some
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x ∈ X, and we define e−1
τ ([τ(T )]) = x. The argument that e−1

τ is well-defined
is similar to the argument that eτ is well-defined.

Now to show that e−1
τ eτ is the identity map on τX, let x ∈ X. Let T be

any element of T∗ that contains
{
U ∈ TX : x ∈ U

}
; and hence

⋂
T = {x}.

Suppose first that
⋂
τ(T ) = ∅, so that eτ (x) = [τ(T )]. Then e−1

τ eτ (x) = x

since
⋂

T = {x}. Now suppose that
⋂
τ(T ) = {y}, so that eτ (x) = y. Then

e−1
τ eτ (x) = x since

⋂
T = {x}. Finally, let [T ] ∈ X∗. Then eτ ([T ]) = y

where
⋂
τ(T ) = {y}. But T contains

{
τ−1(V ) : y ∈ V ∈ TY

}
, so that

e−1
τ eτ ([T ]) = [T ] since

⋂
T = ∅. Therefore, e−1

τ eτ is the identity map on τX.
A similar argument shows that eτe

−1
τ is the identity map on τY , finishing the

argument that eτ is a well-defined bijection. �

To show that eτ : τX → τY is a homeomorphism, we need the next two
technical lemmas. They have similar proofs, so we only give the proof of the
first lemma.

����� 2.9� Let τ ∈ ROC(X, Y ), let U ∈ TX , and let [T ] ∈ U∗ with
⋂
τ(T )

= {y} for some y ∈ Y . Then there exists a U0 ∈ TX such that y ∈ τ(U0),
U0 ⊆ U , and [T ] ∈ U∗

0 ⊆ U∗.

P r o o f. Since [T ] ∈ U∗, we have U ∈ T and {y} =
⋂
τ(T ) ⊆ τ(U ). Let

V = τ(U ), so that y ∈ V ∈ τ(T ). Let V0 ∈ TY with y ∈ V0 and V0 ⊆ V , and let
U0 = τ−1(V0). Then by Lemma 2.5, U0 ⊆ U . Since y ∈ V0, we have V0 ∈ τ(T ),

so that U0 ∈ T . Also
⋂
τ(T ) = {y} ⊆ V0 = τ(U0), and hence [T ] ∈ U∗

0 . To

show that U∗
0 ⊆ U∗, let [T0] ∈ U∗

0 . Then U0 ∈ T0 and
⋂
τ(T0) ⊆ τ(U0) = V0.

But U0 ⊆ U , so that U ∈ T0. Also V0 ⊆ V = τ(U ), so that
⋂
τ(T0) ⊆ τ(U ).

Thus [T0] ∈ U∗, showing that U∗
0 ⊆ U∗. �

����� 2.10� Let τ ∈ ROC(X, Y ), let V ∈ TY , and let [τ(T )] ∈ V ∗ with⋂
T = {x} for some x ∈ X. Then there exists a V0 ∈ TY such that x ∈ τ−1(V0),

V0 ⊆ V , and [τ(T )] ∈ V ∗
0 ⊆ V ∗.

�����	
�
�� 2.11� For τ ∈ ROC(X, Y ), eτ : τX → τY is a homeomorphism.

P r o o f. We know that eτ is a bijection by Lemma 2.8. To prove that eτ is
continuous, first let x ∈ X and V ∈ TY with eτ (x) ∈ V ∗ ⊆ V ∪ V ∗. Let T be

any element of T∗ that contains
{
U ∈ TX : x ∈ U

}
; and hence

⋂
T = {x}.

By Lemma 2.10, there exists a V0 ∈ TY such that x ∈ τ−1(V0), V0 ⊆ V , and
[τ(T )] ∈ V ∗

0 ⊆ V ∗. Define U0 = τ−1(V0). Then x ∈ U0 ∈ T , so that U0 ∪ U∗
0 is

a neighborhood of x in Xτ .

To show that eτ (U0 ∪ U∗
0 ) ⊆ V ∪ V ∗, first let x0 ∈ U0, and let T0 be any

element of T∗ that contains
{
U ′ ∈ TX : x0 ∈ U ′}; and hence

⋂
T0 = {x0}. For

the first case, suppose that
⋂
τ(T0) = ∅, so that eτ (x0) = [τ(T0)]. Now x0 ∈ U0,
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so that U0 ∈ T0, and hence V0 ∈ τ(T0). Also
⋂

T0 = {x0} ⊆ U0 = τ−1(V0),
so that eτ (x0) = [τ(T0)] ∈ V ∗

0 ⊆ V ∗ ⊆ V ∪ V ∗. For the second case, suppose

that
⋂
τ(T0) = {y} for some y ∈ Y . Since x0 ∈ U0, we have U0 ∈ T0, and thus

V0 ∈ τ(T0). Then eτ (x0) = y ∈ V0 ⊆ V ⊆ V ∪ V ∗. Finally, let [T0] ∈ U∗
0 , so

that U0 ∈ T0, and hence V0 ∈ τ(T0). Then
⋂
τ(T0) = {y} for some y ∈ Y , so

that eτ ([T0]) = y ∈ V0 ⊆ V ⊆ V ∪ V ∗. These cases finish the argument that
eτ (U0 ∪ U∗

0 ) ⊆ V ∪ V ∗.
For our final case, let [T ] ∈ X∗ with eτ ([T ]) ∈ V ∪ V ∗. Then

⋂
τ(T ) = {y}

for some y ∈ Y , so that eτ ([T ]) = y. Then y ∈ V , so that V ∈ τ(T ). Let

U = τ−1(V ), and thus U ∈ T . Also
⋂
τ(T ) = {y} ⊆ V = τ(U ), so that

[T ] ∈ U∗. By Lemma 2.9, there exists a U0 ∈ TX such that y ∈ τ(U0), U0 ⊆ U ,
and [T ] ∈ U∗

0 ⊆ U∗. Then U0 ∪ U∗
0 is a neighborhood of [T ] in τX. The

argument that eτ (x) ∈ V ⊆ V ∪ V ∗ is similar to the argument in the previous
paragraph, except we need to use Lemma 2.5 to know that V0 ⊆ V where
V0 = τ(U0). This finishes the proof that eτ is continuous. A similar argument
shows that e−1

τ is continuous. �

Finally, for τ ∈ ROC(X, Y ), we will say that τ has the lifting property pro-
vided that every element of C(X) has an extension in C(τX) and every element
of C(Y ) has an extension in C(τY ). Let LROC(X, Y ) denote the set of ele-
ments of ROC(X, Y ) that have the lifting property. For τ ∈ LROC(X, Y ) and
for each f ∈ C(X), let eX(f) denote the extension of f in C(τX), and for each
g ∈ C(Y ), let eY (g) denote the extension of g in C(τY ). This gives us bijections
eX : C(X) → C(τX) and eY : C(Y ) → C(τY ). If C(τX) and C(τY ) have the
fine topology, then the following is true.

����� 2.12� If X and Y are binormal spaces and τ ∈ LROC(X, Y ), then
eX : C(X) → C(τX) and eY : C(Y ) → C(τY ) are strictly increasing homeo-
morphisms.

P r o o f. Let f1, f2 ∈ C(X) with f1 < f2. Since X is dense in τX, we have
eX(f1) ≤ eX(f2). Suppose, by way of contradiction, that eX(f1)([T ]) =
eX(f2)([T ]) for some [T ] ∈ X∗. Then by the continuity of eX(f1) and eX(f2),
for each n ∈ N, there exists a Un ∈ TX with [T ] ∈ U∗

n such that for each x ∈ Un,
0 < f2(x) − f1(x) < 1/n. Now define f ∈ C(X) by f(x) = 1/(f2(x) − f1(x)).
So for each x ∈ Un, f(x) > n. But then the continuity of eX(f) implies
that eX(f)([T ]) ≥ n for all n ∈ N, which is a contradiction. Therefore,
eX(f1) < eX(f2), showing that eX is strictly increasing. Now since X and
Y are binormal spaces, it follows that eX is a homeomorphism. The proof that
eY is a strictly increasing homeomorphism is similar. �

Now assume that X and Y are binormal spaces, and that τ ∈ LROC(X, Y ).

Define êτ : C(τX) → C(τY ) by êτ (f̂) = f̂ e−1
τ for all f̂ ∈ C(τX). Then êτ is
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a strictly increasing homeomorphism with inverse given by ê−1
τ (ĝ) = ĝeτ for all

ĝ ∈ C(τY ). Define τ̂ : C(X) → C(Y ) by τ̂ = e−1
Y êτeX . We see that τ̂ is a strictly

increasing homeomorphism, so that the Extension Theorem I.5.1 ensures that τ̂
induces an ordered homeomorphism τ∗ : L−(X) → L−(Y ) that is an extension
of τ̂ , where τ∗ is defined by τ∗(F ) =

⋃{
τ̂(f) : f ∈ C(X) and f ⊆ F

}
.

We need to point out that in the previous section, the Extension Theorem I.5.1
was only proved for L−(X) and L−(Y ) with the upper Vietoris topology. How-
ever, the Extension Theorem I.5.1 is also true for L−(X) and L−(Y ) with the
Vietoris topology, but that follows from Proposition 3.6 in the next section,
which in turn depends on τ∗ being continuous with respect to the Vietoris to-
pology. So we give an independent proof of the continuity of τ∗ with respect to
the lower Vietoris topology in the following proposition.

�����	
�
�� 2.13� IfX and Y are binormal spaces, then every τ∈LROC(X, Y )
induces an ordered homeomorphism τ∗ : L−(X) → L−(Y ).

P r o o f. Since we know from the proof of the Extension Theorem I.5.1 that τ∗

and (τ∗)−1 are continuous with respect to the upper Vietoris topology, we only
need to show the continuity of τ∗ with respect to the lower Vietoris topology.
The argument for the continuity of (τ∗)−1 with respect to the lower Vietoris
topology is similar.

Let F ∈ L−(X) and let τ∗(F ) ∈ W− where W = V × O for V ∈ TY and
O open in R. Then there exists an f ∈ C(X) such that f ⊆ F and τ̂(f) ∩W
contains some 〈y, t〉. Let f̂ = eX(f), let x̂ = e−1

τ (y), and let U ∈ TX be such

that x̂ ∈ U ∪ U∗ ⊆ e−1
τ (V ∪ V ∗). Since f̂(x̂) = t ∈ O and f̂ is continuous, we

may choose U so that f̂(U ∪ U∗) ⊆ O. Define W0 = U ×O. Then f ∩W0 �= ∅,
so that W−

0 is a neighborhood of F in L−(X).

Now let F0 ∈ W−
0 . Then there exists an f0 ∈ C(X) such that f0 ⊆ F0

and f0 ∩W0 contains some 〈x, s〉. Let ĝ = êτeX(f0) and let ŷ = eτ (x). Now
x ∈ U ⊆ U ∪ U∗, so that ŷ ∈ V ∪ V ∗. Since ĝ(ŷ) = s ∈ O and ĝ is continuous,
there exists a V0 ∈ TY such that ŷ ∈ V0∪V ∗

0 ⊆ V ∪V ∗ and ĝ(V0∪V ∗
0 ) ⊆ O. Then

for y0 ∈ V0, τ̂(f0)(y0) ∈ O, so that ∅ �= τ̂(f0) ∩ V0 ×O ⊆ τ̂(f0) ∩W . Therefore,
τ∗(F0) ∈ W−, showing that τ∗(W−

0 ) ⊆ W−, and hence τ∗ is continuous with
respect to the lower Vietoris topology. �

Instead of relating X and Y by extensions via regular open correspondences,
there is a second way of relating X and Y by using dense subspaces, as long as
X and Y have some completeness. This will induce the same ordered homeo-
morphism between L−(X) and L−(Y ) as was induced using extensions.

We define a lifting dense homeomorphism from X to Y to be a homeomor-
phism θ : X ′ → Y ′ where X ′ is a dense subspace of X and Y ′ is a dense subspace
of Y and θ is such that for every f in C(X), fθ−1 extends to an element of C(Y ),
and for every g in C(Y ), gθ extends to an element of C(X). Denote the set of
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all such θ by LDH(X, Y ). Clearly, H(X, Y ) ⊆ LDH(X, Y ), where H(X, Y ) is
the set of homeomorphisms from X onto Y .

If θ ∈ LDH(X, Y ), then for every f ∈ C(X), let θ̂(f) denote the unique

extension of fθ−1 to C(Y ). This defines a function θ̂ : C(X) → C(Y ).

����� 2.14� For each θ ∈ LDH(X, Y ), the function θ̂ : C(X) → C(Y ) is an
increasing homeomorphism.

P r o o f. Define θ̂−1 : C(Y ) → C(X) by letting θ̂−1(g) be the unique extension

of gθ to C(X). To show that θ̂−1 is indeed the inverse of θ̂, let f ∈ C(X). Then

for each x ∈ X ′, θ̂−1θ̂(f)(x) = θ̂(f)θ(x) = fθ−1(θ(x)) = f(x). Since X ′ is dense
in X, θ̂−1θ̂(f)(x) = f(x) for all x ∈ X, and hence θ̂−1θ̂(f) = f . This shows

that θ̂−1θ̂ is the identity on C(X). A similar argument shows that θ̂θ̂−1 is the

identity on C(Y ), and hence θ̂ is a bijection with inverse θ̂−1.

Because Y ′ is dense in Y , it is evident that if f1, f2 ∈ C(X) with f1 ≤ f2,

then θ̂(f1) ≤ θ̂(f2). Similarly, if g1, g2 ∈ C(Y ) with g1 ≤ g2, then θ̂−1(g1) ≤
θ̂−1(g2). So when we show that θ̂ is a homeomorphism, it will be an increasing
homeomorphism.

To show that θ̂ is continuous, let f ∈ C(X), and let W be an open subset

of Y × R with θ̂(f) ∈ W+. Since Y is binormal, there exist g1, g2 ∈ C(Y ) with

g1 < θ̂(f) < g2 and G ⊆ W where G =
{〈y, t〉 ∈ Y × R : g1(y) ≤ t ≤ g2(y)

}
.

Let f1 = θ̂−1(g1) and f2 = θ̂−1(g2). Then let W0 =
{〈x, t〉 ∈ X × R : f1(x) <

t < f2(x)
}
, which is an open subset of X × R.

We now argue that f ∈ W+
0 , by showing that f1 < f ; a similar argument

shows that f < f2. Define g0 ∈ C(Y ) by g0(y) = 1/(θ̂(f)(y) − g1(y)) for all

y ∈ Y , and let f0 = θ̂−1(g0). For each x ∈ X ′, f0(x) = θ̂−1(g0)(x) = g0θ(x) =

1/(θ̂(f)θ(x) − g1θ(x)) = 1/(fθ−1θ(x) − θ̂−1(g1)(x)) = 1/(f(x) − f1(x)) > 0.
Then for all x ∈ X ′, f1(x) = f(x)− 1/f0(x) < f(x). Since X ′ is dense in X, by
the continuity of f , f1 and f0, f1(x) = f(x)− 1/f0(x) < f(x) for all x ∈ X, and
thus f1 < f . Therefore, f ∈W+

0 .

Now let f ′ ∈ W+
0 , so that f1 < f ′ < f2. Then g1 = θ̂(f1) ≤ θ̂(f ′) ≤ θ̂(f2) =

g2. Hence θ̂(f
′) ⊆ G ⊆W , so that θ̂(f ′) ∈W+. This shows that θ̂ is continuous,

and a similar argument shows the continuity of θ̂−1. �

Now Lemma 2.14 and the Extension Theorem I.5.1 imply that θ̂ induces an
ordered homeomorphism θ∗ : L−(X) → L−(Y ).

�����	
�
�� 2.15� Let X and Y be Čech-complete binormal spaces and let
τ ∈ LROC(X, Y ). Then there exists a θ ∈ LDH(X, Y ) such that eτ is an
extension of θ, and such that θ∗ = τ∗.
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P r o o f. Let
{
Un : n ∈ N

}
and

{
Vn : n ∈ N

}
be Čech-complete sieves for X

and Y , respectively (see [7, Theorem 3.9.2]). Let T∗
C be the collection of T in

T
∗ that satisfy:

(1) for each n ∈ N, there exist U ∈ T and Un ∈ Un such that U ⊆ Un; and

(2) for each n ∈ N, there exist V ∈ τ(T ) and Vn ∈ Vn such that V ⊆ Vn.

Because of the Čech-completeness of X and Y , for each T ∈ T
∗
C ,

⋂
T =

{
xT

}

for some xT ∈ X and
⋂
τ(T ) =

{
yT

}
for some yT ∈ Y . Let X ′ =

{
xT :

T ∈ T
∗
C

}
and Y ′ =

{
yT : T ∈ T

∗
C

}
. Define θ : X ′ → Y ′ by letting θ(xT ) = yT

for each T ∈ T
∗
C .

To show that θ : X ′ → Y ′ is a well-defined function, let T1,T2 ∈ T
∗
C with

xT1
= xT2

. Suppose, by way of contradiction, that yT1
�= yT2

. Then let
V1, V2 ∈ TY be such that V1∩V2 = ∅, yT1

∈ V1, and yT2
∈ V2. Let U1 = τ−1(V1)

and U2 = τ−1(V2). Because of the maximality of τ(T1) and τ(T2), we have
V1 ∈ τ(T1) and V2 ∈ τ(T2). That means U1 ∈ T1 and U2 ∈ T2, so that
xT1

∈ U1∩U2. But then by definition of τ , V1∩V2 �= ∅, which is a contradiction.
Therefore, yT1

= yT2
, showing that θ is a well-defined function. A similar

argument shows that θ−1 is a well-defined function, and thus θ is a bijection. It
follows from the definition of eτ that eτ is an extension of θ. Therefore, θ is a
homeomorphism from X ′ onto Y ′.

To show that θ ∈ LDH(X, Y ), let f ∈ C(X). Define θ̂(f) ∈ C(Y ) by

θ̂(f) = eX(f)e−1
τ |Y . To see that θ̂(f) is an extension of fθ−1, let y ∈ Y ′. Then

e−1
τ (y) = θ−1(y) ∈ X ′ ⊆ X, so that eX(f)(e−1

τ (y)) = f(θ−1(y)). We can make

a similar argument by starting with a g ∈ C(Y ) and getting extension θ̂−1(g) of

gθ where θ̂−1(g) = eY (g)eτ |X . Therefore, θ ∈ LDH(X, Y ). Note that for each

f ∈ C(X), τ̂(f) = e−1
Y êτeX(f) = e−1

Y eX(f)e−1
τ = eX(f)e−1

τ |Y = θ̂(f). This

shows that θ̂ = τ̂ , and hence θ∗ = τ∗. �

Now the set H(X, Y ) of homeomorphisms from X onto Y can also be related
to LROC(X, Y ) if we make some additional hypotheses about X and Y . In
particular, the next proposition follows from Proposition 2.15 by using basically
the same techniques as in the proofs of [22, Lemmas 3.4, 3.5]. The term E0-space
means that singleton sets are Gδ-sets.

�����	
�
�� 2.16� Let X and Y be Čech-complete binormal spaces that are
either both realcompact or both E0-spaces, and let τ ∈ LROC(X, Y ). Then there
exists an h ∈ H(X, Y ) such that eτ is an extension of h and h∗ = τ∗.

This is a good place to observe that if h ∈ H(X, Y ), then there is an associated
τ ∈ LROC(X, Y ) defined by τ(U ) = h(U ) for all U ∈ TX . In this case, τX = X,

τY = Y , and eτ = h. If ĥ : C(X) → C(Y ) is defined by ĥ(f) = fh−1 for all

f ∈ C(X), then ĥ = τ̂ , and h∗ = τ∗ is an ordered homeomorphism from L−(X)
onto L−(Y ).

551

Unauthenticated
Download Date | 2/3/17 10:47 AM



R. A. MCCOY

Example 2.17. Let X be the space of countable ordinals, and let Y be its (one
point) compactification. Then X and Y are Čech-complete binormal spaces.
Thinking of X as a subspace of Y , define τ : TX → TY as follows. For each
U ∈ TX , let τ(U ) be the interior of the closure of U in Y . Then X∗ is a
singleton set that can be identified with ω1 in Y , and so τX = Y = τY . Thus
eτ : τX → τY is the identity. It is well-known that every f in C(X) extends to an
element of C(Y ), so this gives homeomorphism τ̂ : C(X) → C(Y ). Therefore,
τ ∈ LROC(X, Y ), and τ induces the ordered homeomorphism τ∗ : L−(X) →
L−(Y ). Note that if θ is the identity map from X onto its image in Y , then θ ∈
LDH(X, Y ) and eτ is an extension of θ with θ∗ = τ∗. Of course H(X, Y ) = ∅,
and as we see, X is not realcompact and Y is not an E0-space.

Although we did not need to know that τX and τY are binormal spaces, it
happens that they are. We now show this with a general proposition. In this
proposition, when we say that a subspace X ′ of a space X is liftable, we mean
that every element of C(X ′) extends to an element of C(X).

�����	
�
�� 2.18� If X is a T1-space that has a dense liftable binormal sub-
space, then X is binormal.

P r o o f. We use Theorem I.3.3 to show that X is binormal. So let f ∈ USC(X)
and g ∈ LSC(X) with f < g. For every x ∈ X, let a(x) = (g(x) − 3f(x))/4
and b(x) = (3g(x) + f(x))/4, and let U (x) be a neighborhood of x such that
f(U (x)) ⊆ (−∞, a(x)) and g(U (x)) ⊆ (b(x),∞). Also let A be the closure in
X ×R of

⋃{
U (x)× (−∞, f(x)] : x ∈ X

}
, and let B be the closure in X ×R of⋃{

U (x)× [g(x),∞) : x ∈ X
}
.

Observe that for each x ∈ X, if x′ ∈ U (x), then f(x′) < a(x). Therefore, for
each x ∈ X, supA(x) ≤ a(x) < g(x). By the same argument, for each x ∈ X,
inf B(x) ≥ b(x) > f(x). Now define f0 : X → R by f0(x) = supA(x) for all
x ∈ X, and define g0 : X → R by g0(x) = inf B(x) for all x ∈ X. Then f0 and
g0 are finite-valued functions in USC(X) and LSC(X), respectively. It is clear
from the definitions of A and B that f ≤ f0 and g0 ≤ g. As we saw before, for
each x ∈ X, f0(x) ≤ a(x) < b(x) ≤ G0(x). Therefore, f0 < g0.

LetX ′ be a dense liftable binormal subspace ofX, and let f ′0 = f0|X′ and g′0 =
g0|X′ . Then f ′0 ∈ USC(X), g′0 ∈ LSC(X), and f ′0 < g′0. From the binormality
of X ′, there exist h′, h′1, h

′
2 ∈ C(X ′) such that f ′0 < h′1 < h′ < h′2 < g′0. Let h,

h1 and h2 be the extensions of h′, h′1 and h′2 in C(X). Since X ′ is dense in X,
the continuity of h, h1 and h2 ensures that h1 ≤ h ≤ h2.

To show that h1 < h, suppose not. Then there exists an x ∈ X \X ′ such that
h1(x) = h(x). Define k′ ∈ C(X ′) by k′(x′) = 1/(h′(x′)−h′1(x′)) for each x′ ∈ X ′.
We know k′ has an extension k in C(X). Let n ∈ N. By the continuity of h and
h1, there exists a neighborhood U of x in X such that h(x′)− h1(x

′) < 1/n for
all x′ ∈ U . Then k(x′) > n for all x′ ∈ U ∩ X ′. Since X ′ is dense in X and
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k is continuous, we have k(x) ≥ n. But this is true for all n ∈ N, which is a
contradiction. Therefore, h1 < h. A similar argument shows that h < h2.

Finally, to show that f ≤ h1, let x ∈ X. For each x′ ∈ U (x) ∩ X ′, we have
f(x) ≤ f ′0(x

′) < h′1(x
′). Since X ′ is dense in X and h1 is continuous, it follows

that f(x) ≤ h1(x). By a similar argument, h2 ≤ g. So we have f < h < g,
showing that X is binormal. �


�������� 2.19� If X and Y are binormal spces and τ ∈ LROC(X, Y ), then
τX and τY are binormal.

Corollary 2.19 gives us another way of expressing an ordered homeomorphism
τ∗ : L−(X) → L−(Y ) induced from a τ ∈ LROC(X, Y ). If X ′ is a binormal ex-
tension of X, we will call X ′ a lifting binormal extension provided that every
element of C(X) extends to an element of C(X ′). We now define a lifting bi-
normal extension homeomorphism from X to Y to be a homeomorphism from a
lifting binormal extension of X onto a lifting binormal extension of Y . Then if
τ ∈ LROC(X, Y ), we know that eτ is a lifting binormal extension homeomor-
phism from X to Y .

If η : X ′ → Y ′ is a lifting binormal extension homeomorphism from X to Y ,

define η̂ : C(X) → C(Y ) by η̂(f) = f̂η−1|Y for all f ∈ C(X) where f̂ is the exten-
sion of f in C(X ′). Then η̂ is a bimonotone homeomorphism, and by the Exten-
sion Theorem I.5.1, η̂ induces an ordered homeomorphism η∗ : L−(X) → L−(Y ).
If η = eτ for some τ ∈ LROC(X, Y ), then η∗ = τ∗.

3. Factorization Theorem

In the previous section we discovered one kind of ordered homeomorphism
from L−(X) onto L−(Y ), obtained as the induced map τ∗ from a τ∈LROC(X, Y ).
As a special case, if h is a homeomorphism from X onto Y , we can associate
h with a τ ∈ LROC(X, Y ) defined by τ(U ) = h(U ) for all U ∈ TX , and h∗ is
an ordered homeomorphism from L−(X) onto L−(Y ). In this case, the restric-

tion of h∗ to C(X) is a bimonotone homeomorphism ĥ : C(X) → C(Y ) where

ĥ(f) = fh−1 for all f ∈ C(X).

We now look at a second kind of ordered homeomorphism, this one mapping
L−(X) onto itself (or mapping L−(Y ) onto itself). We define a fiber homeo-
morphism on X to be a homeomorphism φ : X ×R → X ×R such that φ maps
{x} × R onto itself for each x ∈ X. Let FH(X) denote the set of fiber homeo-

morphisms on X. If φ ∈ FH(X), then for every f ∈ C(X), let φ̂(f) be equal
to φ(f) where f is identified with its graph in X × R. This defines a function

φ̂ : C(X) → C(X).
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����� 3.1� For each φ ∈ FH(X), the function φ̂ : C(X) → C(X) is a bimono-
tone homeomorphism.

P r o o f. Since φ is a bijection of X×R onto itself, it is clear that φ̂ is a bijection

with inverse φ̂−1 defined by φ̂−1(f) = φ−1(f) for each f ∈ C(X). Let us check

that φ̂ is bimonotone. The argument that φ̂−1 is bimonotone is similar. Let
f1, f2 ∈ C(X) with f1 ≤ f2, and let f ∈ C(X). Suppose first that f1 ≤ f
≤ f2, and let x ∈ X. Since φ restricted to {x} × R is a homeomorphism from

{x} × R onto itself, φ̂(f)(x) lies between φ̂(f1)(x) and φ̂(f2)(x). Therefore,

min
{
φ̂(f1)(x), φ̂(f2)(x)

} ≤ φ̂(f)(x) ≤ max
{
φ̂(f1)(x), φ̂(f2)(x)

}
. This is true

for all x ∈ X, so that min
{
φ̂(f1), φ̂(f2)

} ≤ φ̂(f) ≤ max
{
φ̂(f1), φ̂(f2)

}
. Now

suppose that min
{
φ̂(f1), φ̂(f2)

} ≤ φ̂(f) ≤ max
{
φ̂(f1), φ̂(f2)

}
, and let x ∈ X.

We assume that φ̂(f1)(x) ≤ φ̂(f2)(x) since the other case is similar. Then

φ̂(f1)(x) ≤ φ̂(f)(x) ≤ φ̂(f2)(x). So φ̂
−1(φ̂(f))(x) lies between φ̂−1(φ̂(f1))(x) and

φ̂−1(φ̂(f2))(x), and hence f(x) lies between f1(x) and f2(x). Since f1(x) ≤ f2(x),
we have f1(x) ≤ f(x) ≤ f2(x). This is true for all x ∈ X, so that f1 ≤ f ≤ f2.

Therefore, φ̂ is bimonotone.

Finally, we show that φ̂ is continuous. The argument that φ̂−1 is continuous is

similar. Let f ∈ C(X), and let W be an open subset of X ×R with φ̂(f) ∈W+.

Since X is binormal, there exist f1, f2 ∈ C(X) with f1 < φ̂(f) < f2 and

f1, f2 ⊆ W . Since φ̂−1 is bimonotone, it follows that min
{
φ̂−1(f1), φ̂

−1(f2)
}
<

f < max
{
φ̂−1(f1), φ̂

−1(f2)
}
. The strict inequality is because φ is a bijec-

tion. Let W0 =
{〈x, t〉 ∈ X × R : min

{
φ̂−1(f1)(x), φ̂

−1(f2)(x)
}
< t <

max
{
φ̂−1(f1)(x), φ̂

−1(f2)(x)
}}

. Then W+
0 is a neighborhood of f in C(X).

If f ′ ∈ C(X) with f ′ ∈ W+
0 , then min

{
φ̂−1(f1), φ̂

−1(f2)
}
< f ′ < max

{
φ̂−1(f1),

φ̂−1(f2)
}
. Again, since φ̂−1 is bimonotone, we have f1 < φ̂(f ′) < f2, with the

inequality strict because φ is a bijection. Therefore, f ∈ W+
0 and φ̂(W+

0 ) ⊆W+,

showing that φ̂ is continuous. �

Now the Extension Theorem I.5.1 says that φ̂ induces an ordered homeomor-

phism φ∗ : L−(X) → L−(X) that is an extension of φ̂, where φ∗ is defined by

φ∗(F ) =
⋃{

φ̂(f) : f ∈ C(X) and f ⊆ F
}
for all F ∈ L−(X). Since at this

stage, we only have the Extension Theorem I.5.1 proved for L−(X) and L−(Y )
with the upper Vietoris topology, we need to give an independent proof of the
continuity of τ∗ with respect to the lower Vietoris topology.

�����	
�
�� 3.2� For a binormal space X and for each φ ∈ FH(X), the
induced map φ∗ : L−(X) → L−(X) is an ordered homeomorphism.
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P r o o f. The argument for the continuity of (φ∗)−1 = (φ−1)∗ is the same as that
for the continuity of φ∗. We already know that φ∗ is an ordered homeomorphism
with respect to the upper Vietoris topology, so it suffices to consider a subbasic
open set W− of L−(X) in the lower Vietoris topology. Let F ∈ L−(X) with
φ∗(F ) ∈W−. We may assume that W = U × (a, b) where U is an open set in X
and (a, b) is an open interval. Then there exists a 〈x, t〉 ∈ φ∗(F )∩U × (a, b). So

there is an f ∈ C(X) with f ⊆ F and φ̂(f)(x) = φ∗(f)(x) = t. Let p, q ∈ R with
a < p < t < q < b. Let f1, f2 ∈ C(X) be defined by f1(x

′) = f(x′)− t+ p for all
x′ ∈ X and f2(x

′) = f(x′) − t + q for all x′ ∈ X. Let U0 be a neighborhood of
x contained in U such that f1(U0) ⊆ (a,∞) and f2(U0) ⊆ (−∞, b).

Define W0 to be the set of 〈x′, s〉 in U0 × R such that min
{
φ̂−1(f1)(x

′),
φ̂−1(f2)(x

′)
}
< s < max

{
φ̂−1(f1)(x

′), φ̂−1(f2)(x
′)
}
. Then W0 is an open subset

of X × R with f ∈ W−
0 , and hence F ∈ W−

0 . Let F ′ ∈ W−
0 , so there exists a

〈x′, s〉 ∈ F ∩W0. Then there is an f ′ ∈ C(X) with f ′ ⊆ F ′ such that f ′(x′) = s.

Then a < f1(x
′) < φ̂(f ′)(x′) < f2(x

′) < b, so that φ∗(f ′)(x′) = φ̂(f ′)(x′)
∈ (a, b). That means 〈x′, φ∗(f ′)(x′)〉 ∈ φ∗(F ′)∩U× (a, b), so that φ∗(F ′) ∈W−.
Thus F ∈W−

0 and φ∗(W−
0 ) ⊆ W−, showing that φ∗ is continuous with respect

to the lower Vietoris topology. �

Our two kinds of ordered homeomorphisms are τ∗ and φ∗ for τ ∈ LROC(X, Y )
and φ ∈ FH(X). In this section we prove the Factorization Theorem that says
every ordered homeomorphism from L−(X) onto L−(Y ) can be uniquely fac-
tored as the composition of these two kinds of ordered homeomorphisms.

������
���
�� ������� 3.3� Let X and Y be binormal spaces, and let
M : L−(X) → L−(Y ) be an ordered homeomorphism. Then there exist τ ∈
LROC(X, Y ), φ ∈ FH(X), and ψ ∈ FH(Y ) such that M can be uniquely fac-
tored as M = τ∗φ∗ and can be uniquely factored as M = ψ∗τ∗. If, in addition,
X and Y are both Čech-complete, then τ∗ = θ∗ for some θ ∈ LDH(X, Y ).
Furthermore, if X and Y are either both realcompact or both E0-spaces, then
τ∗ = h∗ for some h ∈ H(X, Y ); in particular, X and Y are homeomorphic.

By combining the Extension Theorem I.5.1 and the Factorization Theorem 3.3,
we can now characterize the bimonotone homeomorphisms between C(X) and
C(Y ).


�������� 3.4� Let X and Y be binormal spaces, and let µ : C(X) → C(Y )
be a bimonotone homeomorphism. Then there exist τ ∈ LROC(X, Y ), φ ∈
FH(X), and ψ ∈ FH(Y ) such that µ can be uniquely factored as µ = τ∗φ∗ and
can be uniquely factored as µ = ψ∗τ∗. If, in addition, X and Y are both Čech-
complete, then τ∗ = θ∗ for some θ ∈ LDH(X, Y ). Furthermore, if X and Y are
either both realcompact or both E0-spaces, then τ

∗ = h∗ for some h ∈ H(X, Y );
in particular, X and Y are homeomorphic.
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Note that the τ∗, φ∗, ψ∗, θ∗, and h∗ in Corollary 3.4 are the restrictions of
these maps to C(X) or C(Y ), and as such may have simpler ways of expressing
their definitions in terms of elements of C(X) or C(Y ).

The next corollary is also a consequence of both the Extension Theorem I.5.1
and the Factorization Theorem 3.3.


�������� 3.5� If X and Y are binormal spaces, then the following are equiv-
alent.

(1) There exists an increasing homeomorphism from C(X) onto C(Y ).

(2) There exists a bimonotone homeomorphism from C(X) onto C(Y ).

(3) There exists an ordered homeomorphism from L−(X) onto L−(Y ).

(4) There exists a lifting regular open correspondence from X to Y .

(5) There exists a lifting binormal extension homeomorphism from X to Y .

As we go through the proof of the Factorization Theorem 3.3 showing that
an ordered homeomorphism M : L−(X) → L−(Y ) can be uniquely factored, we
will see that the only places that the continuity ofM andM−1 are used is when
we need the restriction M∗ : L−(X) → L−(Y ) of M to be continuous or have
continuous inverse. So only the upper Vietoris topology will be needed. As a
result, the Factorization Theorem 3.3 is true when the topology on L−(X) and
L−(Y ) is only the upper Vietoris topology. Of course it is also true for the
Vietoris topology as well. Now because of this, Propositions 2.13 and 3.2, that
were proved independently using the lower Vietoris topology, imply the following
fact.

�����	
�
�� 3.6� If X and Y are binormal spaces and if M : L−(X) → L−(Y )
is an ordered homeomorphism under the upper Vietoris topology on L−(X) and
L−(Y ), then M is also an ordered homeomorphism under the Vietoris topology
on L−(X) and L−(Y ).

Proposition 3.6 now completes the proof of the Extension Theorem I.5.1 for
the full Vietoris topology.

For the rest of this section we prove the Factorization Theorem 3.3 by breaking
the argument into a number of lemmas. So for the following lemmas, let X
and Y be binormal spaces and let M : L−(X) → L−(Y ) be a given ordered
homeomorphism.

����� 3.7� Let F1, F2 ∈ L−(X) be such that F1(x)∩ F2(x) �= ∅ for all x ∈ X.
Then the following are true.

(1) F1 ∩ F2 and (F1 ∪ F2)max are in L−(X), and
M (F1) ∩M (F2) and (M (F1) ∪M (F2))max are in L−(Y ).

(2) M (F1 ∩ F2) =M (F1) ∩M (F2).

(3) M ((F1 ∪ F2)max) = (M (F1) ∪M (F2))max.
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P r o o f. The parts involving intersection were proved in Lemma I.5.2. It is im-
mediate that F1∪F2 is a locally bounded member of L (X), so that (F1 ∪ F2)max

∈ L−(X). It is also immediate that M (F1) ∪ M (F2) is a locally bounded
member of L (Y ), and hence (M (F1) ∪M (F2))max ∈ L−(Y ). Now M (F1) ⊂
M ((F1∪F2)max) andM (F2) ⊆M ((F1∪F2)max), so that (M (F1)∪M (F2))max ⊆
M ((F1 ∪F2)max). Using this argument, but with M−1, we have (F1 ∪F2)max =
(M−1(M (F1)) ∪M−1(M (F2)))max ⊆ M−1((M (F1) ∪M (F2))max). Therefore,
M ((F1 ∪ F2)max) ⊆ (M (F1) ∪M (F2))max, which gives the equality. �

For f0, f1 ∈ C(X), we use the notation f0∧f1 for min
{
f0, f1

}
and the notation

f0 ∨ f1 for max
{
f0, f1

}
. Now for each f0, f1 ∈ C(X) with f0 ≤ f1, define

F (f0, f1) =
{〈x, t〉 ∈ X × R : f0(x) ≤ t ≤ f1(x)

}
,

which is an element of L−(X). Also for each g0, g1 ∈ C(Y ) with g0 ≤ g1, define

G(g0, g1) =
{〈y, t〉 ∈ Y × R : g0(y) ≤ t ≤ g1(y)

}
,

which is an element of L−(Y ). Lemmas I.5.3 and I.5.5 imply the following
lemma.

����� 3.8� Let f0, f1 ∈ C(X), and let g0 =M (f0) and g1 =M (f1). Then the
following are true.

(1) If f0 ≤ f1, then M (F (f0, f1)) = G(g0 ∧ g1, g0 ∨ g1).
(2) If g0 ≤ g1, then M (F (f0 ∧ f1, f0 ∨ f1)) = G(g0, g1).

(3) If f0 < f1, then g0 ∧ g1 < g0 ∨ g1.
(4) If g0 < g1, then f0 ∧ f1 < f0 ∨ f1.
For each f0, f1 ∈ C(X) with f0 ≤ f1, for each open subset U of X, and for

each i ∈ {
0, 1

}
let Fi(f0, f1, U ) = F (f0, f1) ∩ U × R ∪ fi. Also for each g0, g2 ∈

C(Y ), for each open subset V of Y , and for each i ∈ {
0, 1

}
, let Gi(g0, g1, V ) =

G(g0, g1) ∩ V × R ∪ gi. The following lemma shows when Fi(f0, f1, U ) and
Gi(g0, g1, V ) are in L−(X) and L−(Y ).

����� 3.9� Let f0, f1 ∈ C(X) with f0 ≤ f1, let U be an open subset of X, and
let i ∈ {

0, 1
}
. If U ∈ TX , then Fi(f0, f1, U ) ∈ L−(X). Conversely, if f0 < f1

and Fi(f0, f1, U ) ∈ L−(X), then U ∈ TX .

P r o o f. We only prove this for i = 0 since the other case is similar. Let 〈x, t〉
be an almost lsc point of F0(f0, f1, U ). If 〈x, t〉 ∈ f0, then 〈x, t〉 ∈ F0(f0, f1, U );
so we assume that 〈x, t〉 /∈ f0, and hence that f0(x) < t ≤ f1(x). Since U is
regular open, it suffices to show that x ∈ int(U). Let m = (t + f0(x))/2. By
the continuity of f0, there exists a neighborhood U0 of x such that f0(U0) ⊆
(−∞,m). By the almost lsc property of 〈x, t〉, there exists a neighborhood U1 of
x contained in U0 such that every nonempty open subset of U1 contains a point x

′
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with F0(f0, f1, U )(x′)∩ (m,∞) �= ∅. To see that U1 ⊆ U , let x1 ∈ U1, and let U2

be a neighborhood of x1 contained in U1. Then there exists an x′ ∈ U2 such that
F0(f0, f1, U )(x′)∩(m,∞) contains a point; say s. Then f0(x

′) < m < s, and thus
x′ ∈ U . This shows that x ∈ U1 ⊆ U , and hence that x ∈ int(U) = U . Therefore,
〈x, t〉 ∈ F0(f0, f1, U ), which shows that F0(f0, f1, U ) = F0(f0, f1, U )max, and it
follows that F0(f0, f1, U ) ∈ L−(X).

Conversely, let f0 < f1 and F0(f0, f1, U ) ∈ L−(X). To show that U is
regular open, let x ∈ int(U). We will show that 〈x, f1(x)〉 is an almost lsc point
of F0(f0, f1, U ). Let O be a neighborhood of f1(x). By the continuity of f1,
there exists a neighborhood U0 of x contained in int(U) such that f1(U0) ⊆ O.
Let U1 be any nonempty open subset of U0. Since U1 ⊆ U , there exists an
x1 ∈ U1∩U . But then f1(x1) ∈ F0(f0, f1, U )(x1)∩O. This shows that 〈x, f1(x)〉
is an almost lsc point of F0(f0, f1, U ). Now F0(f0, f1, U ) = F0(f0, f1, U )max, so
that 〈x, f1(x)〉 ∈ F0(f0, f1, U ). Since f0(x) < f1(x), we have x ∈ U , showing
that U is regular open. �

Lemma 3.9 has its obvious analog in the space L−(Y ) involving the
Gi(g0, g1, V ). Now for each F ∈ L−(X) and G ∈ L−(Y ), define XF =

{
x ∈ X :

|F (x)| > 1
}
and YG =

{
y ∈ Y : |G(y)| > 1

}
. For example, if F = Fi(f0, f1, U )

given above where U ∈ TX and f0 < f1, then XF = U .

����� 3.10� For each F ∈ L−(X) and G ∈ L−(Y ), XF is open in X and YG
is open in Y .

P r o o f. Let x ∈ XF . Then F (x) = [a, b] where a < b. Let m = (a + b)/2.
Since F is lsc, x has a neighborhood U in X such that for every x′ ∈ U , F (x′)∩
(−∞,m) �= ∅ and F (x′) ∩ (m,∞) �= ∅. Then for every x′ ∈ U , |F (x′)| > 1, so
that x ∈ U ⊆ XF . Therefore, XF is open in X. A similar proof shows that YG
is open in Y . �

����� 3.11� Let f0, f1 ∈ C(X) with f0 < f1, let g0 = M (f0), let g1 =M (f1),
and let i ∈ {

0, 1
}
. Then the following are true.

(1) If U ∈ TX and F1, F2 ∈ L−(X) are such that F1∩F2 = fi, (F1∪F2)max =
Fi(f0, f1, U ) and F1 �= fi, then there exists a U1 ∈ TX such that F1 =
Fi(f0, f1, U1).

(2) If V ∈ TY and G1, G2 ∈ L−(Y ) are such that G1∩G2 = gi, (G1∪G2)max =
Gi(g0 ∧ g1, g0 ∨ g1, V ) and G1 �= gi, then there exists a V1 ∈ TY such that
G1 = Gi(g0 ∧ g1, g0 ∨ g1, V1).

P r o o f. We only prove (2) since the proof of (1) is similar. Define Y1 =
{
y ∈ Y :

g0(y) < g1(y)
}

and Y2 =
{
y ∈ Y : g0(y) > g1(y)

}
. Clearly, Y1 and Y2 are

disjoint sets that are open in Y because of the continuity of g0 and g1; but also
Y1 ∪ Y2 = Y by Lemma 3.8.
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Let G = Gi(g0 ∧ g1, g0 ∨ g1, V ). We show that V1 = YG1
∈ TY . Suppose, by

way of contradiction, that there exists a y0 ∈ YG1
such that 〈y0, g1−i(y0)〉 /∈ G1.

Since G1 ⊆ G, we know that y0 ∈ V . We may assume that y0 ∈ Y1 since the
other case that y0 ∈ Y2 is similar. Because Y1 ∩ YG1

is a neighborhood of y0
by Lemma 3.10, the continuity of gi ensures that there exists a neighborhood
V0 of y0 contained in Y1 ∩ YG1

and a neighborhood O0 of g1−i(y0) such that
gi ∩ V0 ×O0 = ∅.

Now G1 = (G1)max, so that 〈y0, g1−i(y0)〉 /∈ (G1)max. Then 〈y0, g1−i(y0)〉 is
not an almost lsc point of G1, so there exists a neighborhood O of g1−i(y0) con-
tained in O0 such that for every neighborhood V ′ of y0 there exists a nonempty
open subset V ′′ of V ′ with G1(y) ∩ O = ∅ for all y ∈ V ′′.

Since y0 ∈ V , we have 〈y0, g1−i(y0)〉 ∈ G = (G1∪G2)max, so that there exists a
neighborhood V ′of y0 contained in V0 such that for every nonempty open subset
V ′′ of V ′, (G1 ∩G2)(y)∪O �= ∅ for some y ∈ V ′′. From the previous paragraph,
there exists a nonempty open subset V ′′ of V ′ such that G1(y) ∩ O = ∅ for all
y ∈ V ′′. Let y ∈ V ′′ with (G1 ∩G2)(y) ∩O �= ∅.

Now G1 ∩G2 = gi and gi ∩ V ′′ ×O = ∅, so that there exists a t ∈ G2(y)∩O.
Then t �= gi(y), and since y ∈ YG1

, there exists an s ∈ G1(y) such that s is
between gi(y) and t. SinceG1∩G2 = gi, we have s /∈ G2(y). But gi(y), t ∈ G2(y),
which contradicts the connectedness of G2(y).

Therefore, for every y ∈ YG1
, 〈y, g1−i(y)〉 ∈ G1. Now define V1 = YG1

. Since
g0 ∧ g1 < g0 ∨ g1, we have G1 = Gi(g0 ∧ g1, g0 ∨ g1, V1). Then by Lemma 3.9, it
follows that V1 ∈ TY . �

����� 3.12� Let f0, f1 ∈ C(X), let g0 = M (f0), let g1 = M (f1), and let
i ∈ {

0, 1
}
. Then the following are true.

(1) If f0 < f1, then for each U ∈ TX , there exists a Vi ∈ TY such that
M (Fi(f0, f1, U )) = Gi(g0 ∧ g1, g0 ∨ g1, Vi).

(2) If f0 < f1, then for each V ∈ TY , there exists a Ui ∈ TX such that
M (Fi(f0, f1, Ui)) = Gi(g0 ∧ g1, g0 ∨ g1, V ).

(3) If g0 < g1, then for each U ∈ TX , there exists a Vi ∈ TY such that
M (Fi(f0 ∧ f1, f0 ∨ f1, U )) = Gi(g0, g1, Vi).

(4) If g0 < g1, then for each V ∈ TY , there exists a Ui ∈ TX such that
M (Fi(f0 ∧ f1, f0 ∨ f1, Ui)) = Gi(g0, g1, V ).

P r o o f. To prove statement (1), let U ∈ TX , let F1 = Fi(f0, f1, U ), and let
G1 = M (F1). Since F1 ⊆ F (f0, f1), we have G1 ⊆ G(g0 ∧ g1, g0 ∨ g1) by
Lemma 3.8. Define V = YG1

and G′ = Gi(g0 ∧ g1, g0 ∨ g1, V ), and let F ′ =
M−1(G′). Then G1 ⊆ G′, so that F1 ⊆ F ′. Define F2 = F ′ ∩ (X \ U)× R ∪ fi,
and let G2 = M (F2). Observe that F1 ∩ F2 = fi, so that by Lemma 3.7,
G1 ∩G2 =M (F1) ∩M (F2) =M (F1 ∩ F2) =M (fi) = gi.
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To show that (F1 ∪ F2)max = F ′, first note that F1 ∪ F2 ⊆ F ′, which implies
that (F1 ∪ F2)max ⊆ F ′. Let 〈x, t〉 ∈ F ′. To show that 〈x, t〉 ∈ (F1 ∪ F2)max, we
need to show that 〈x, t〉 is an almost lsc point of F1∪F2. Let O be a neighborhood
of t. Since F ′ is lsc at 〈x, t〉, there exists a neighborhood U of x such that for
all x′ ∈ U , F ′(x′) ∩ O �= ∅. Let U ′ be a nonempty open subset of U . Now U ′ is
not contained in the boundary of XF1

, so either U ′ ∩XF1
�= ∅ or U ′ ∩XF2

�= ∅.
If x′ ∈ U ′ ∩ XF1

or if x′ ∈ U ′ ∩ XF2
, then in either case, (F1 ∪ F2)(x

′) ∩ O =
F ′(x′) ∩ O �= ∅. This finishes the argument that 〈x, t〉 is an almost lsc point of
F1 ∪ F2. Therefore, F

′ ⊆ (F1 ∪ F2)max, so that (F1 ∪ F2)max = F ′.
Now by Lemma 3.7, (G1∪G2)max = (M (F1)∪M (F2))max =M ((F1∪F2)max)

= M (F ′) = G′. Then since G′ �= gi, statement (2) of Lemma 3.11 says that
G1 = Gi(g0 ∧ g1, g0 ∨ g1, Vi) for some Vi ∈ TY . This finishes the proof of
statement (1) of this lemma. Statement (2) of this lemma can be proved in
a similar way, except statement (1) of Lemma 3.11 must be used instead of
statement (2). Statements (3) and (4) also have similar proofs. �

For each t ∈ R, let f t = X × {
t
}
be the constant t function on X, and let

gt = M (f t). Lemma 3.12 allows us to define for each U ∈ TX a τ0(U ) ∈ TY

such that M (F0(f
0, f1, U )) = G0(g

0 ∧ g1, g0 ∨ g1, τ0(U )) and for each V ∈ TY a
τ−1
0 (V ) ∈ TX such that M (F0(f

0, f1, τ−1
0 (V ))) = G0(g

0 ∧ g1, g0 ∨ g1, V ). Since

M is a bijection, we see that τ−1
0 (τ0(U )) = U and τ0(τ

−1
0 (V )) = V . Therefore,

this defines a bijection τ0 : TX → TY . Observe that the ordered property of M
ensures that τ0 is ordered in the sense that if U1, U2 ∈ TX with U1 ⊆ U2 then
τ0(U1) ⊆ τ0(U2), and if V1, V2 ∈ TY with V1 ⊆ V2 then τ−1

0 (V1) ⊆ τ−1
0 (V2).

Also if T is a subfamily of TX that has the finite intersection property, then{
τ0(U ) : U ∈ T

}
has the finite intersection property.

In a similar way Lemma 3.12 allows us to define an ordered bijection
τ1 : TX → TY such that for each U ∈ TX , M (F1(f

−1, f0, U )) = G1(g
−1 ∧ g0,

g−1 ∨ g0, τ1(U )) and for each V ∈ TY , M (F1(f
−1, f0, τ−1

1 (V ))) = G1(g
−1 ∧ g0,

g−1 ∨ g0, V ). Now τ1 has the same properties as those given above for τ0.

����� 3.13� Let f0, f1 ∈ C(X), let g0 = M (f0), let g1 = M (f1), let U ∈ TX ,
and let i ∈ {

0, 1
}
. Then the following are true.

(1) If f0 ≤ f1, then M (Fi(f0, f1, U )) = Gi(g0 ∧ g1, g0 ∨ g1, τi(U )).

(2) If g0 ≤ g1, then M (Fi(f0 ∧ f1, f0 ∨ f1, U )) = Gi(g0, g1, τi(U )).

P r o o f. The proofs of these two statements are similar, so we only give the
proof of (1). Also, for convenience, we only show this for i = 0 since the proof
for i = 1 is similar. Let F = F0(f0, f1, U ) and G = M (F ). We first prove this
for the case that f0 < f1. Let f

′
0 = f0∧ f0 and f ′1 = f1∨ f1, and let g′0 =M (f ′0)

and g′1 =M (f ′1). Note that f ′0 < f ′1.
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First let us show that M (F0(f
′
0, f

′
1, U )) = G0(g

′
0 ∧ g′1, g

′
0 ∨ g′1, τ0(U )). By

Lemma 3.12, there exists a V ∈ TY such that M (F0(f
′
0, f

′
1, U )) = G0(g

′
0 ∧ g′1,

g′0∨g′1, V ). Since F0(f
0, f1, U ) ⊆ F0(f

′
0, f

′
1, U ), we haveG0(g

0∧g1, g0∨g1, τ0(U ))
⊆ G0(g

′
0 ∧ g′1, g′0 ∨ g′1, V ), so that τ0(U ) ⊆ V . Also by Lemma 3.12, there ex-

ists a U ′ ∈ TX such that M (F0(f
′
0, f

′
1, U

′)) = G0(g
′
0 ∧ g′1, g′0 ∨ g′1, τ0(U )). Since

G0(g
′
0 ∧ g′1, g′0 ∨ g′1, τ0(U )) ⊆ G0(g

′
0 ∧ g′1, g

′
0 ∨ g′1, V ), we have F0(f

′
0, f

′
1, U

′) ⊆
F0(f

′
0, f

′
1, U ), so that U ′ ⊆ U . But also G0(g

0 ∧ g1, g0 ∨ g1, τ0(U )) ⊆ G0(g
′
0 ∧ g′1,

g′0∨g′1, τ0(U )), so that F0(f
0, f1, U ) ⊆ F0(f

′
0, f

′
1, U

′), which implies that U ⊆ U ′.
Then U ′ = U , and hence G0(g

′
0 ∧ g′1, g

′
0 ∨ g′1, V ) = M (F0(f

′
0, f

′
1, U )) =

M (F0(f
′
0, f

′
1, U

′)) = G0(g
′
0 ∧ g′1, g′0 ∨ g′1, τ0(U )), showing that V = τ0(U ).

Now we can use this argument in reverse to show that M (F0(f0, f1, U )) =
G0(g0 ∧ g1, g0 ∨ g1, τ0(U )). By Lemma 3.12, there exists a V ∈ TY such
that G = G0(g0 ∧ g1, g0 ∨ g1, V ). Since F ⊆ F0(f

′
0, f

′
1, U ), we have G ⊆

G0(g
′
0 ∧ g′1, g

′
0 ∨ g′1, τ0(U )), so that V ⊆ τ0(U ). Also by Lemma 3.12, there

exists a U ′ ∈ TX such that M (F0(f0, f1, U
′)) = G0(g0 ∧ g1, g0 ∨ g1, τ0(U )).

Since G ⊆ G0(g0 ∧ g1, g0 ∨ g1, τ0(U )), it follows that F ⊆ F0(f0, f1, U
′), so that

U ⊆ U ′. But also G0(g0 ∧ g1, g0 ∨ g1, τ0(U )) ⊆ G0(g
′
0 ∧ g′1, g′0 ∨ g′1, τ0(U )), so

that F0(f0, f1, U
′) ⊆ F0(f

′
0, f

′
1, U ), and hence U ′ ⊆ U . Then U ′ = U , and thus

G =M (F0(f0, f1, U )) =M (F0(f0, f1, U
′)) = G0(g0∧ g1, g0∨ g1, τ0(U )), showing

that V = τ0(U ). This finishes the argument that G = G0(g0 ∧ g1, g0 ∨ g1, τ0(U ))
when f0 < f1.

We now give an argument for the general case that f0 ≤ f1. Let W be the
family of open subset of X × R containing f0, where W is directed downward
by inclusion. For each W ∈ W , let fW0 ∈ C(X) with fW0 ⊆ W and fW0 < f0,
and let gW0 = M (fW0 ). Also for each W ∈ W , define FW = F0(f

W
0 , f1, U ),

and let GW = M (FW ). Since fW0 < f1, by our argument above, each GW =
G0(g

W
0 ∧ g1, gW0 ∨ g1, τ0(U )). Now it is evident that the net 〈FW 〉W converges

to F in L−(X). So by the continuity of M , the net 〈GW 〉W converges to G in
L−(Y ). For each W , F ⊆ FW , so that G ⊆ GW . Also, since 〈fW0 〉W converges
to f0 in L−(X), we see that 〈gW0 〉W converges to g0 in L−(Y ). From this it
follows that G = G0(g0 ∧ g1, g0 ∨ g1, τ0(U )). �

����� 3.14� If U is a subfamily of TX having the finite intersection property,
then

{
τ0(U ) : U ∈ U

} ∪ {
τ1(U ) : U ∈ U

}
has the finite intersection property.

Also if V is a subfamily of TY having the finite intersection property, then{
τ−1
0 (V ) : V ∈ V

} ∪ {
τ−1
1 (V ) : V ∈ V

}
has the finite intersection property.

P r o o f. First let us show that for each U ∈ TX , τ0(U ) ∩ τ1(U ) �= ∅. From
this it easily follows that

{
τ0(U ) : U ∈ U

} ∪ {
τ1(U ) : U ∈ U

}
has the

finite intersection property. Suppose, by way of contradiction, that there exists
a U ∈ TX with τ0(U ) ∩ τ1(U ) = ∅. Let V0 ∈ TY be such that V0 ⊆ τ0(U ), and

let U0 = τ−1
0 (V0). Then τ1(U0) ⊆ τ1(U ), so that τ0(U0) ∩ τ1(U0) = ∅.
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Now there exists a g ∈ C(Y ) with g ⊆ G(g−1 ∧ g1, g−1 ∨ g1) such that
g(y) = (g−1∨g1)(y) for all y ∈ τ0(U0) and g(y) = (g−1∧g1)(y) for all y ∈ τ1(U0).
Let f = M−1(g), so that f ⊆ F (f−1, f1). From Lemma 3.13, we see that
M (F0(f

−1, f1, U0)) = G0(g
−1 ∧ g1, g−1 ∨ g1, τ0(U0)) and M (F1(f

−1, f1, U0)) =
G1(g

−1∧g1, g−1∨g1, τ1(U0)). Let f0 =M−1(g−1∧g1) and f1 =M−1(g−1∨g1).
We have M (F (f0 ∧ f1, f0 ∨ f1)) = G(g−1 ∧ g1, g−1 ∨ g1) = M (F (f−1, f1)).

Therefore, F (f0 ∧ f1, f0 ∨ f1) = F (f−1, f1), and it follows that f0 ∧ f1 = f−1

and f0 ∨ f1 = f1. From this we see that for any x ∈ X, either f0(x) = −1 and
f1(x) = 1, or f0(x) = 1 and f1(x) = −1. Now G0(g

−1 ∧ g1, g−1 ∨ g1, τ0(U0)) ⊆
G(g−1 ∧ g1, g), so that F0(f

−1, f1, U0) ⊆ F (f0 ∧ f, f0 ∨ f) by Lemma 3.8. Then
for any x ∈ U0, either f0(x) = −1 and f(x) = 1, or f0(x) = 1 and f(x) = −1.
Also G1(g

−1 ∧ g1, g−1 ∨ g1, τ1(U0)) ⊆ G(g, g−1 ∨ g), so that F1(f
−1, f1, U0) ⊆

F (f ∧ f1, f ∨ f1) by Lemma 3.8. Then for any x ∈ U0, either f1(x) = −1 and
f(x) = 1, or f1(x) = 1 and f(x) = −1. But for x ∈ U0, these three either/or
values for f0(x), f1(x) and f(x) cannot all hold. Since U0 is nonempty, this gives
us our contradiction.

Let us show that for each V ∈ TY , τ
−1
0 (V ) ∩ τ−1

1 (V ) �= ∅. Although this ar-
gument is similar to that of the first part, there are enough differences that
we give the details. Suppose, by way of contradiction, that there exists a
V ∈ TY with τ−1

0 (V ) ∩ τ−1
1 (V ) = ∅. Let U0 ∈ TX be such that U0 ⊆ τ−1

0 (V ),

and let V0 = τ0(U0). Then τ−1
1 (V0) ⊆ τ−1

1 (V ), so that τ−1
0 (V0) ∩ τ−1

1 (V0)
= ∅. Let g0 = g−1 ∧ g1, let g1 = g−1 ∨ g1, let f0 = M−1(g0), and let f1 =
M−1(g1). Since f−1 < f1, we have g0 < g1 by Lemma 3.8. As we saw earlier,
M (F (f0 ∧ f1, f0 ∨ f1)) = G(g0, g1) =M (F (f−1, f1)).

Now there exists an f ∈ C(X) with f ⊆ F (f0 ∧ f1, f0 ∨ f1) such that f(x) =
(f0 ∨ f1)(x) for all x ∈ τ−1

0 (V0) and f(x) = (f0 ∧ f1)(x) for all x ∈ τ−1
1 (V0). Let

g = M (f), so that g ⊆ G(g0, g1). Then by Lemma 3.13, M (F0(f0 ∧ f1, f0 ∨ f1,
τ−1
0 (V0)) = G0(g0, g1, V0) and M (F1(f0 ∧ f1, f0 ∨ f1, τ−1

1 (V0)) = G1(g0, g1, V0).
Define g′0 =M (f0 ∧ f1) and g′1 =M (f0 ∨ f1).

We have G(g′0 ∧ g′1, g′0 ∨ g′1) = M (F (f0 ∧ f1, f0 ∨ f1)) = G(g0, g1). It follows
that g′0 ∧ g′1 = g0 and g′0 ∨ g′1 = g1, so that for any y ∈ Y , either g′0(y) = g0(y)
and g′1(y) = g1(y), or g

′
0(y) = g1(y) and g

′
1(y) = g0(y). Now F0(f0 ∧ f1, f0 ∨ f1,

τ−1
0 (V0)) ⊆ F (f0∧f1, f), so that G0(g0, g1, V0) ⊆ G(g′0∧g, g′0∨g) by Lemma 3.8.
Then for any y ∈ V0, either g

′
0(y) = g0(y) and g(y) = g1(y), or g

′
0(y) = g1(y)

and g(y) = g0(y). Also F1(f0 ∧ f1, f0 ∨ f1, τ
−1
1 (V0)) ⊆ F (f, f0 ∨ f1), so that

G1(g0, g1, V0) ⊆ G(g ∧ g′1, g ∨ g′1) by Lemma 3.8. Then for any y ∈ V0, either
g′1(y) = g0(y) and g(y) = g1(y), or g′1(y) = g1(y) and g(y) = g0(y). Since
g0(y) < g1(y), these three either/or values for g

′
0(y), g

′
1(y) and g(y), when y ∈ V0,

cannot all hold. Since V0 is nonempty, this gives the desired contradiction. �
����� 3.15� The ordered bijections τ0 : TX → TY and τ1 : TX → TY are
equal.
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P r o o f. Suppose there exists a U ∈ TX such that τ0(U ) �= τ1(U ), say

τ0(U ) \ τ1(U ) �= ∅. Since τ1(U ) is regular open, we have τ0(U ) \ τ1(U ) �= ∅.
Let V ∈ TY be nonempty with V ⊆ τ0(U ) \ τ1(U ). Now V ⊆ τ0(U ), so that
τ−1
0 (V ) ⊆ U . Also since V ∩ τ1(U ) = ∅, we have τ−1

1 (V ) ∩ U = ∅. But then

τ−1
0 (V ) ∩ τ−1

1 (V ) = ∅, which contradicts Lemma 3.14. �

We now define τ : TX → TY to be τ0 : TX → TY (and also τ1 : TX → TY ).
To show that τ ∈ ROC(X, Y ), we need the following lemma.

����� 3.16� For every U1, U2 ∈ TX , U1 ∩ U2 �= ∅ if and only if τ(U1) ∩
τ(U2) �= ∅.
P r o o f. Suppose that U1 ∩ U2 �= ∅ while τ(U1) ∩ τ(U2) = ∅. Let V1 and V2 be

disjoint elements of TY with τ(U1) ⊆ V1 and τ(U2) ⊆ V2. Let g1, g2 ∈ C(Y )

be contained in G(g0 ∧ g1, g0 ∨ g1) such that g1(y) = g1(y) for y ∈ τ(U1),

g1(y) = g0(y) for y ∈ Y \ V1, g2(y) = g1(y) for y ∈ τ(U2), and g2(y) = g0(y)
for y ∈ Y \ V2. Let f1 = M−1(g1) and f2 = M−1(g2). Note that f0 ≤ f1 and
f0 ≤ f2. Let G1 = G(g0 ∧ g1, g0 ∨ g1), G2 = G(g0 ∧ g2, g0 ∨ g2), F1 =M−1(G1),
and F2 = M−1(G2). Then by Lemma 3.8, F1 = F (f0, f1) and F2 = F (f0, f2).
Now G1 ⊆ G0(g

0 ∧ g1, g0 ∨ g1, V1) and G2 ⊆ G0(g
0 ∧ g1, g0 ∨ g1, V2), so that

F1 ⊆ F0(f
0, f1, τ−1(V1)) and F2 ⊆ F0(f

0, f1, τ−1(V2)). Since V1 ∩ V2 = ∅, we
have τ−1(V1) ∩ τ−1(V2) = ∅. But then f1 ∧ f2 = f0. Also we have G0(g

0 ∧ g1,
g0 ∨ g1, τ(U1)) ⊆ G1 and G0(g

0 ∧ g1, g0 ∨ g1, τ(U2)) ⊆ G2, so that F0(f
0, f1, U1)

⊆ F1 and F0(f
0, f1, U2) ⊆ F2. Then for every x ∈ U1, f1(x) = 1, and for every

x ∈ U2, f2(x) = 1. But there exists an x ∈ U1∩U2. For this x, f1(x) = 1 = f2(x),
so that f1 ∧ f2 �= f0. This contradiction shows that if U1 ∩ U2 �= ∅, then

τ(U1) ∩ τ(U2) �= ∅. The converse is proved in a similar way. �

This shows that τ ∈ ROC(X, Y ), so that we have extensions τX and τY of
X and Y defined, and we have the homeomorphism eτ : τX → τY . To show
that τ ∈ LROC(X, Y ), we need the next lemma.

����� 3.17� Every element of C(X) can be extended to an element of C(τX),
and every element of C(Y ) can be extended to an element of C(τY ).

P r o o f. Let f ∈ C(X), and let [T ] ∈ X∗. In order to extend f to X ∪ {
[T ]

}
,

we want to show that for each n ∈ N, there exists a U ∈ TX such that [T ] ∈ U∗

and such that for every x1, x2 ∈ U , |f(x1) − f(x2)| < 1/n. Suppose, by way
of contradiction, that there exists an n ∈ N such that for every U ∈ TX with
[T ] ∈ U∗, there are x1, x2 ∈ U so that |f(x1) − f(x2)| ≥ 1/n. Define U ={
U ∈ TX : [T ] ∈ U∗}. Now

⋂
τ(T ) = {y} for some y ∈ Y , and for this y, we

have y ∈ τ(U ) for all U ∈ U .

Observe that inf
{
sup{f(x) : x ∈ U} : U ∈ U

} − sup
{
inf{f(x) : x ∈ U} :

U ∈ U
} ≥ 1/n. Then let a, b ∈ R with sup

{
inf{f(x) : x ∈ U} : U ∈ U

}
<
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a < b < inf
{
sup{f(x) : x ∈ U} : U ∈ U

}
. For each U ∈ U , by the

continuity of f , there exist Ua, Ub ∈ TX that are contained in U , and are such
that f(Ua) ⊆ (−∞, a] and f(Ub) ⊆ [b,∞). Let U∗ be the interior of the closure
of

⋃{
Ua : U ∈ U

}
in X, so that U∗ ∈ TX . Note that Ua ⊆ U∗ for all U ∈ U .

It is evident that for each U ∈ U , Ub ∩ U∗ = ∅.
Define F = F0(f ∧ fa, f ∨ fa, U∗), which is an element of L−(X). Also let

ga = M (f ∧ fa), gb = M (f ∨ f b), and G = M (F ) = G0(ga ∧ gb, ga ∨ gb, τ(U∗)).
Now for every U ∈ U , τ(Ua) ⊆ τ(U∗) and τ(Ub) ∩ τ(U∗) = ∅. Also for each
U ∈ U , F0(f

a, f b, Ua) ⊆ F , so that G0(g
a ∧ gb, ga ∨ gb, τ(Ua)) ⊆ G. Since every

neighborhood of y contains τ(Ua) for some U ∈ U , it follows that inf G(y) ≤
ga∧gb(y) < ga∨gb(y) ≤ supG(y). Now for each U ∈ U , F0(f

a, f b, Ub)∩F = fa,
so that G0(g

a ∧ gb, ga ∨ gb, τ(Ub)) ∩G = ga.

Let t ∈ R be such that ga ∧ gb(y) < t < ga ∨ gb(y) and t �= ga(y). Note that
〈y, t〉 ∈ G. Let O1 and O2 be disjoint open intervals contained in the interval
(ga∧gb(y), ga∨gb(y)) such that t ∈ O1 and g

a(y) ∈ O2. Let V0 be a neighborhood
of y with ga(V0) ⊆ O2. Now for each neighborhood V of y contained in V0, there
is a U ∈ U such that τ(U ) ⊆ V , and hence Ub ×O1 ∩G = ∅. But then G is not
lsc at 〈y, t〉, which is a contradiction.

This shows that for each n ∈ N, there exists a U (n) ∈ TX such that [T ] ∈
U (n)∗ and such that for every x1, x2 ∈ U (n), |f(x1) − f(x2)| < 1/n. Since
y ∈ τ(U (n)) for each n,

{
τ(U (n)) : n ∈ N

}
has the finite intersection property,

and hence
{
U (n) : n ∈ N

}
has the finite intersection property. So we may

assume that each U (n+1) ⊆ U (n). Now for each n, choose an xn ∈ U (n). Then
ifm,n ∈ N withm ≤ n, we have |f(xm)−f(xn)| < 1/m. Therefore, the sequence

〈f(xn)〉 is a Cauchy sequence and thus has a limit, that we denote by f̂([T ]).

Now by letting f̂(x) = f(x) for all x ∈ X, we have defined f̂ : X ∪ {
[T ]

} → R

that is an extension of f .

To show that f̂ is continuous at [T ], let n ∈ N. Since 〈f(xm)〉 converges to

f̂([T ]), there exists an m ≥ 2n such that |f(xm) − f̂([T ])| < 1/(2n). Let

x ∈ U (2n). Then |f̂(x) − f̂([T ])| = |f(x) − f̂([T ])| ≤ |f(x) − f(xm)| +
|f(xm)−f̂([T ])| < 1/(2n)+1/(2n) = 1/n. So f̂(U (2n)∪{[T ]

}
) ⊆ (f̂([T ])−1/n,

f̂([T ]) + 1/n), showing that f̂ is continuous at [T ].

We have shown that we can extend f continuously to X∗ one point at a time.
Then by the regularity of R, f can be extended continuously to all of X∗, giving
us an element of C(τX) that extends f . A similar proof shows that each element
of C(Y ) can be extended to an element of C(τY ). �

Therefore, τ ∈ LROC(X, Y ), so that τ induces an ordered homeomorphism
τ∗ : L−(X) → L−(Y ).

Our final goal is to define a φ ∈ FH(X) such that M = τ∗φ∗. Consider the
ordered homeomorphism (τ∗)−1M : L−(X) → L−(X). To simplify notation, we
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denote (τ∗)−1M by N . Also for each t ∈ R, denote N(f t) by ht. Observe that
Lemmas 3.7 through 3.12 are true for any ordered homeomorphism, so that they
apply to N . Now define φ : X × R → X × R by φ(〈x, t〉) = 〈x, ht(x)〉 for each
〈x, t〉 ∈ X × R.

����� 3.18� Let f0, f1 ∈ C(X), let ĝ0 = eYM (f0), let ĝ1 = eYM (f1), let
x ∈ X, and let ŷ = eτ (x). Then f0(x) = f1(x) if and only if ĝ0(ŷ) = ĝ1(ŷ).

P r o o f. Both directions have similar proofs, so we only argue the implication
in one direction. Suppose, by way of contradiction, that f0(x) = f1(x) but
ĝ0(ŷ) �= ĝ1(ŷ). Let g0 =M (f0), let g1 =M (f1), let f2 = f0∧f1, let f3 = f0∨f1,
let g2 = M (f2), let g3 = M (f3), let ĝ2 = eY (g2), and let ĝ3 = eY (g3). Finally,
define F (f2, f3) and G =M (F ) = G(g2 ∧ g3, g2 ∨ g3).

Let T ∈ T
∗ contain

{
U ∈ TX : x ∈ U

}
, so that

⋂
T = {x}. For each

U ∈ T . Let FU = F0(f2, f3, U ) and GU = M (FU) = G0(g2 ∧ g3, g2 ∨ g3, τ(U )).
We can think of T as a directed set, directed downward by inclusion. So
〈FU 〉U∈T and 〈GU〉U∈T are nets in L−(X) and L−(Y ). We will obtain our con-
tradiction by showing that 〈FU 〉U∈T converges to f2 in L−(X) while 〈GU 〉U∈T

does not converge to any element of C(Y ) in L−(Y ); then because M maps
C(X) onto C(Y ), this would contradict the continuity of M .

To show that 〈FU 〉U∈T converges to f2 in L−(X), let W be an open subset
of X × R with f2 ⊆ W . Then there exist a U0 ∈ T and an open interval O
containing f2(x) such that U0 × O ⊆ W . Since f2 and f3 are continuous and
f2(x) = f3(x), there is a U1 ∈ T with U1 ⊆ U0 such that f2(U1) ⊆ O and
f3(U1) ⊆ O. Then FU1

⊆ U1 ×O ∪ f2 ⊆W . So for all U ∈ T with U ⊆ U1, we
have FU ⊆ FU1

⊆W ; showing that 〈FU 〉U∈T converges to f2 in L−(X).

To show that 〈GU 〉U∈T does not converge to any element of C(Y ) in L−(Y ),
let us start by observing that f0, f1 ⊆ F , so that g0, g1 ⊆ G. That means
g2 ∧ g3 ≤ g0 ≤ g2 ∨ g3 and g2 ∧ g3 ≤ g1 ≤ g2 ∨ g3. Since Y is dense in τY , we
have ĝ2 ∧ ĝ3 ≤ ĝ0 ≤ ĝ2 ∨ ĝ3 and ĝ2 ∧ ĝ3 ≤ ĝ1 ≤ ĝ2 ∨ ĝ3. Now ĝ0(ŷ) �= ĝ1(ŷ), so
that ĝ2(ŷ) �= ĝ3(ŷ); say ĝ2(ŷ) < ĝ3(ŷ). Let a, b ∈ R with ĝ2(ŷ) < a < b < ĝ3(ŷ),
and let I be the closed interval [a, b]. By the continuity of ĝ2 and ĝ3, there exists
a V0 ∈ TY with ŷ ∈ V0∪V ∗

0 such that ĝ2(V0∪V ∗
0 ) ⊆ (−∞, a) and ĝ3(V0∪V ∗

0 ) ⊆
(b,∞). Now V0 ∈ τ(T ), so that U0 ∈ T where U0 = τ−1(V0). Note that if
U ∈ T with U ⊆ U0, then for each y ∈ τ(U ), I ⊆ GU (y). Let g be any element
of C(Y ), let ε = (b−a)/2, and letW =

{〈y, t〉 ∈ Y ×R : g(y)−ε < t < g(y)+ε
}
,

which is open in Y ×R. Then for every y ∈ Y , I �⊆W (y). That means for each
U ∈ T with U ⊆ U0, GU �⊆ W . Since g ⊆ W , we see that 〈GU 〉U∈T does not
converge to g in L−(Y ). �

����� 3.19� Let s, t ∈ R with s < t, and let i ∈ {
0, 1

}
. Then for each U ∈ TX ,

N(Fi(f
s, f t, U )) = Fi(h

s ∧ ht, hs ∨ ht, U ).
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P r o o f. We only prove this for i = 0 since the proof of the other case is similar.
By Lemma 3.12, there exists a U0 ∈ TX such that N(F0(f

s, f t, U )) = F0(h
s∧ht,

hs ∨ ht, U0). Since U and U0 are regular open sets, we will know that U0 = U if
we show that U0 = U . Suppose, by way of contradiction, that U0 �= U .

First suppose that U \U0 �= ∅. Then there exists an x ∈ U \U0. Let f ∈ C(X)
with f ⊆ F0(f

s, f t, U ) such that f(x) = t and f(x′) = s for all x′ ∈ X \U . Then
by Lemma 3.18, N(f)(x) = eYM (f)(eτ(x)) �= eYM (fs)(eτ (x)) = N(fs)(x).
But N(f), N(fs) ⊆ F0(h

s ∧ ht, hs ∨ ht, U0) and F0(h
s ∧ ht, hs ∨ ht, U0)(x) ={

hs ∧ ht(x)}, a singleton set; which is a contradiction.

Now suppose that U0 \U �= ∅. Then there exists an x ∈ U0 \U . Let h ∈ C(X)
with h ⊆ F0(h

s ∧ ht, hs ∨ ht, U0) such that h(x) = hs ∨ ht(x) and h(x′) =
hs ∧ ht(x′) for all x′ ∈ X \ U0. Let f = N−1(h) and f ′ = N−1(hs ∧ ht). Then
eYM (f)(eτ(x)) = N(f)(x) = h(x) �= hs ∧ ht(x) = N(f ′)(x) = eYM (f ′)(eτ (x)).
Now Lemma 3.18 implies that f(x) �= f ′(x). But f, f ′ ⊆ F0(f

s, f t, U ) and
F0(f

s, f t, U )(x) =
{
s
}
, a singleton; which is a contradiction. �

����� 3.20� For each x ∈ X, either ht(x) increases as t increases in R, or
ht(x) decreases as t increases in R.

P r o o f. Let us fix x ∈ X. This argument makes repeated use of Lemma 3.8 as
applied to N , rather thanM . Since f0 < f1, it follows that either h0(x) < h1(x)
or h0(x) > h1(x); say the former. Let s, t ∈ R with s < t. We assume that 1 ≤ s,
since the other cases have similar arguments. Since F (f0, f1) ⊆ F (f0, fs) ⊆
F (f0, f t), we have F (h0∧h1, h0∨h1) ⊆ F (h0∧hs, h0∨hs) ⊆ F (h0∧ht, h0∨ht).
From the first containment, we see that h1(x) is between h0(x) and hs(x). Now
h0(x) < h1(x), so that h1(x) ≤ hs(x). The second containment gives us hs(x)
between h0(x) and ht(x), and hence hs(x) ≤ ht(x). But fs < f t, so that
hs(x) < ht(x). Thus ht(x) is increasing for this fixed x as t increases in R. �

����� 3.21� Let x ∈ X, let r, t ∈ R with r < t, and let q ∈ F (hr∧ht, hr∨ht)(x).
Then there exists an s ∈ [r, t] such that hs(x) = q.

P r o o f. Suppose, by way of contradiction, that for every s ∈ [r, t], hs(x) �= q.
By Lemma 3.20, we may assume that hs(x) is increasing as s increases in [r, t],
since the other case that hs(x) is decreasing has a similar argument. Let A ={
s ∈ [r, t] : hs(x) < q

}
and let B =

{
s ∈ [r, t] : hs(x) > q

}
. Clearly A ∩B = ∅

and A ∪ B = [r, t]. Since hs(x) is increasing, hr(x) < ht(x), so that r ∈ A
and t ∈ B. Also since hs(x) is increasing, every element of A is less than each
element of B. Therefore, A and B are intervals, and there exists an s ∈ (r, t)
such that either A = [r, s] and B = (s, t], or A = [r, s) and B = [s, t]. Let us
suppose that A = [r, s] and B = (s, t]. In this case we need to use i = 0, whereas
in the other case we would need to use i = 1.
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Now hs(x) < q < ht(x), so by the continuity of hs and ht, there exists an open
neighborhood U0 of x in TX such that hs(x′) < q < ht(x′) for all x′ ∈ U0. Let U
be the set of U ∈ TX with x ∈ U ⊆ U0; so U is a base for x. For each U ∈ U ,
define FU = F (hs ∧ht, hs∨ht)∩U × (−∞, q]∪hs, and let F ′

U = N−1(FU ). This
defines nets 〈FU 〉U and 〈F ′

U 〉U in L−(X) over the set U directed downward by
inclusion. Since {x}× [hs(x), q] ⊆ FU for every U ∈ U , we see that 〈FU 〉U does
not converge to hs in L−(X).

If we can show that 〈F ′
U 〉U converges to fs in L−(X), then we have a con-

tradiction to the fact that N is continuous. Since fs ∈ C(X), it does not
matter whether L−(X) has the Vietoris topology or the upper Vietoris topo-
logy. Let W be an open subset of X × R with fs ∈ W+. Then there exist
a U1 ∈ U and an open interval (a, b) that contains s and is contained in [r, t]
such that U1 × [a, b] ⊆ W . Now q < hb(x), so by the continuity of hb, x
has a neighborhood U2 ∈ TX contained in U1 such that q < hb(x′) for all
x′ ∈ U2. Then N(F0(f

s, f b, U2)) = F0(h
s∧hb, hs∨hb, U2) by Lemma 3.19. Now

FU2
⊆ F0(h

s∧hb, hs∨hb, U2), so that F
′
U2

⊆ F0(f
s, f b, U2) ⊆ U2×[s, b]∪fs ⊆W .

Then for every U ∈ U that is contained in U2, we have F
′
U ⊆ F ′

U2
⊆W , showing

that 〈F ′
U 〉U converges to fs in L−(X). �

����� 3.22� The function φ : X × R → X × R is a bijection.

P r o o f. Lemma 3.8 ensures that for each s, t ∈ R with s �= t, hs(x) �= ht(x) for
all x ∈ X. Therefore, φ is one-to-one.

For each x ∈ X, define R(x) =
∞⋃

n=1
F (h−n ∧ hn, h−n ∨ hn)(x), which is a

connected subset of R. Now Lemma 3.21 implies that φ({x}×R) = {x}×R(x).
So it remains to show that each R(x) = R.

Suppose, by way of contradiction, that for some x ∈ X, there exists a b ∈ R

such that t < b for all t ∈ R(x). The argument for the case that all t > b is
similar, but uses i = 1 instead of i = 0. From Lemma 3.20, we may assume that
ht(x) is increasing as t increases in R, because if ht(x) is decreasing, the proof
is similar. Then h0(x) < b; define c = b − h0(x). Let h ∈ C(X) be defined by
h(x′) = h0(x′)+ c for all x′ ∈ X. Since for each n ∈ N, hn(x) < b = h(x), by the
continuity of hn and h, x has a neighborhood Un ∈ TX such that hn(x′) < h(x′)
for all x′ ∈ Un. We may choose these Un such that each Un+1 ⊆ Un. Observe
that for each n, F0(h

0∧hn, h0∨hn, Un) ⊆ F0(h
0∧h, h0∨h, Un) ∈ L−(X). Define

F =
∞⋃

n=1
F0(h

0 ∧ hn, h0 ∨ hn, Un), which is thus an element of L−(X). Note

that for each n, N(F0(f
0, fn, Un)) = F0(h

0 ∧ hn, h0 ∨ hn, Un) by Lemma 3.19.
Then if F ′ = N−1(F ), we have for each n, F0(f

0, fn, Un) ⊆ F ′. But each
F0(f

0, fn, Un)(x) = [0, n], which implies that [0,∞) ⊆ F ′(x), contradicting the
local boundedness of F ′. �
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����� 3.23� The bijection φ : X × R → X × R is a fiber homeomorphism.

P r o o f. To show that φ is continuous, let 〈x, s〉 ∈ X×R, let U be a neighborhood
of x, and let (a, b) be an open interval containing hs(x). By Lemma 3.20, we
may assume that ht(x) increases as t increases in R, because if ht(x) decreases,
the proof is similar. Let p, q ∈ R be such that a < p < hs(x) < q < b. By
Lemma 3.21, there exist r, t ∈ R with r < s < t such that hr(x) = p and
ht(x) = q. Since a < hr(x) and ht(x) < b, by the continuity of hr and ht, x
has a neighborhood U0 contained in U such that hr(U0) ⊆ (a,∞) and ht(U0) ⊆
(−∞, b). Now let 〈x′, s′〉 ∈ U0 × (r, t). Then a < hr(x′) < hs

′
(x′) < ht(x′) < b,

so that hs
′
(x′) ∈ (a, b). Therefore, U0 × (r, t) is a neighborhood of 〈x, s〉 and

φ(U0 × (r, t)) ⊆ U × (a, b). This shows the continuity of φ.

To show that φ−1 is continuous, let 〈x, s〉 ∈ X × R, let U be a neighborhood
of x, and let (a, b) be an open interval containing s. Again, we may assume
that ht(x) increases as t increases in R. Let p, q ∈ R be such that ha(x) <
p < hs(x) < q < hb(x). By the continuity of ha and hb, x has a neighborhood
U0 contained in U such that ha(U0) ⊆ (−∞, p) and hb(U0) ⊆ (q,∞). Now let
〈x′, s′〉 ∈ U0 × (p, q). By Lemma 3.21, there exits a t ∈ R such that ht(x′) = s′.
Then ha(x′) < p < ht(x′) < q < hb(x′), which implies that a < t < b, and
hence 〈x′, t〉 ∈ U × (a, b). Therefore, U0 × (p, q) is a neighborhood of 〈x, hs(x)〉
and φ−1(U0 × (p, q)) ⊆ U × (a, b). This shows the continuity of φ−1. Now it is
evident that φ is a fiber homeomorphism. �

Now since φ ∈ FH(X), we know from Proposition 3.2 that φ induces an
ordered homeomorphism φ∗ : L−(X) → L−(X).

����� 3.24� The ordered homeomorphism φ∗ is equal to the ordered homeo-
morphism N .

P r o o f. The Extension Theorem I.5.1 implies that two ordered homeomor-
phisms from L−(X) onto L−(X) are equal if they agree on C(X). So let
f ∈ C(X) and let x ∈ X. Then φ∗(f) = φ(f), where the second f is equal to its
graph in X×R. Now φ(f)(x) = hf(x)(x) = N(ff(x))(x) = (τ∗)−1M (ff(x))(x) =
eYM (ff(x))(eτ (x)). But since ff(x)(x) = f(x), we have Lemma 3.18 implying
that eYM (ff(x))(eτ (x)) = eYM (f)(eτ(x)) = (τ∗)−1M (f)(x) = N(f)(x), show-
ing that φ∗ = N . �

So Lemma 3.24 gives us our factorization M = τ∗φ∗. For the uniqueness of
this factorization, we have the following.

����� 3.25� If τ1, τ2 ∈ LROC(X, Y ) and φ1, φ2 ∈ FH(X) are such that
τ∗1φ

∗
1 = τ∗2φ

∗
2, then τ

∗
1 = τ∗2 and φ∗1 = φ∗2.

P r o o f. Now τ∗1φ
∗
1 = τ∗2φ

∗
2 implies that (τ∗2 )

−1τ∗1 = φ∗2(φ
∗
1)

−1 = φ∗2(φ
−1
1 )∗ =

(φ2φ
−1
1 )∗. Let t be any element of R. Then τ∗1 (f

t) = τ̂1(f
t) = e−1

Y êτeX(f t).
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Since f t is the constant t function on X, eX(f t) is the constant t function on
τX. Also êτeX(f t) is the constant t function on τY , and hence τ∗1 (f

t) is the
constant t function on Y ; call this last function gt. Now (τ∗2 )

−1(gt) = f t by the
same reasoning. Therefore, for each t ∈ R, (φ2φ

−1
1 )∗(f t) = f t, which says that

φ2φ
−1
1 is the identity map on X ×R. Thus φ∗2(φ

∗
1)

−1 = (φ2φ
−1
1 )∗ is the identity

map on L−(X). Therefore, φ∗1 = φ∗2, and it follows that τ∗1 = τ∗2 . �

This shows that M can be uniquely factored as M = τ∗φ∗ where τ ∈
LROC(X, Y ) and φ ∈ FH(X). Similar arguments also show that M can be
uniquely factored as M = ψ∗τ∗ where τ ∈ LROC(X, Y ) and ψ ∈ FH(Y ).
These lemmas now complete the proof of the Factorization Theorem 3.3.

We end by considering some questions that we frame in terms of three open
ended problems.

������� 1� To what extent can these results for L−(X) be generalized to
spaces of lower semicontinuous set-valued maps with nonempty compact convex
images in a separable Banach space?

������� 2� Can one characterize various topological properties of L−(X) in
terms of properties of X? For example, it is known that L(X) is metrizable if
and only if X is compact and metrizable ([11]). Is the same true for L−(X)?

������� 3� We have a characterization of the bimonotone homeomorphisms
between C(X) and C(Y ). Can one understand the general homeomorphisms
between C(X) and C(Y ), and is this somehow related to homeomorphisms be-
tween L−(X) and L−(Y )?
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