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ON THE EXISTENCE OF SOLUTIONS
FOR SINGULAR BOUNDARY VALUE PROBLEM
OF THIRD-ORDER DIFFERENTIAL EQUATIONS

FENG WANG* — YujuNn Cur**

(Communicated by Michal Feékan)

ABSTRACT. The singular boundary value problems of third-order differential
equations
—u"'(t) = h(t)f(t,u(t),  te(0,1),
u(0) =u/(0) =0, (1) =au'(n)
are considered under some conditions concerning the first eigenvalues correspond-
ing to the relevant linear operators, where h(t) is allowed to be singular at both
t=0and t =1, and f is not necessary to be nonnegative. The existence results
of nontrivial solutions and positive solutions are given by means of the topological
degree theory.
2010

Mathematical Institute
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1. Introduction

Many authors are interested in the existence of positive solutions for third-
order boundary value problem (see [2]-[12] and references therein). In most
work mentioned, they study the existence of positive solutions for third-order
boundary value problem by the method of upper and lower solutions, Schauder’s
fixed point theorem or the fixed point index in cone under some different condi-
tions in which f is nonnegative. In this paper, we consider the following singular
boundary value problems:

- um(t> = h(t>f(ta u<t))’ te (Oa 1),
u(0) =u'(0) =0, w(1) = au'(y),

where 0 < < 1,1 < a < 717 and h(t) is allowed to be singular at ¢ = 0
and ¢t = 1. In particular, f is not necessary to be nonnegative. We obtain

(1.1)
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the existence results of nontrivial solutions, and the existence results of positive
solutions for some cases, by means of the topological degree theory under some
conditions on f (¢, u) concerning the first eigenvalue corresponding to the relevant
linear operator. For the concepts and properties about the cone theory and the
topological degree we refer to [4], [5].

Our paper is organized as follows. Some preliminaries and lemmas are given in
Section 2. In Section 3, the main results are established. Requiring no condition
that f(t,u) > 0 when u > 0, we prove that the singular boundary value problem
(1.1) has at least one nontrivial solution. We also investigate the existence of
positive solutions in the case that f is nonnegative.

2. Preliminaries and lemmas

In Banach space C[0,1] in which the norm is defined by |lu| = Jnax lu(t)].

We set
P={ueC[0,1]: u(t) >0, te[0,1]}, (2.1)

then P is a positive cone in C[0,1]. We denote by B, = {u € C[0,1] : [ju| <}
(r > 0) the open ball of radius r and use 6 to denote the zero function in C|0, 1].

LEmMA 1. Let y(t) € C[0,1], 0<n < 1,1 <a < |, then the BVP:

—d"(t) —y(t) =0,  te(0,1),
uw(0) = u'(0) =0, (1) = au'(n)

has a unique solution

= /G(t, $)y(s)ds,
0

where
(2ts — 2)(1 — o) + 2s(a— 1), s < min{n,1),
G- L JeG—amsesa-), t<s<u,
T 21 —an) | 2ts —s*)(1—an) +t*(an —s), n<s<t,
(1 - ), max{n,t} < s

is Green’s function of the BVP

—u"(t) =0, te (0,1),
u(0) =4/ (0) =0, u'(1)=au/(n).

Proof. The proof of this lemma is easy, and we omit it. O
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Remark 1. It is obvious that the Green function G(¢,s) is continuous and
G(t,s) > 0 for any 0 < t,s < 1. In addition, we also have

max G(t,s) < g(s),

0<t<1
where g(s) = ff(f‘ns(l — ). In fact, for any fixed s € [0, 1], it is easy to see that
s(1—am) +ts(a—1), s <min{n,t},
Gilt,s) = t(l—an) +ts(a—1), t<s<n,
M= _an | s(1—an) +tlan—s), n<s<t,
t(1—s), max{n,t} < s.

If s <min{n,t}, then

Gy(t,s) = 1~ an [s(1—am) +ts(a —1)]
1 1
— < —35) < .
< Omas(l n) < 1 Omas(l s) < g(s)
If t <s <, then
1
Gy(t,s) = 1~ an [t(1 —an) + ts(a — 1)]
1 1
1—-n)< 1—-35)<
< Lastimms o asti—) <l
If n < s <t then
1
Gultrs) = | 51— an) +tlan — )]
1
=, =t rantt =]
1
Sy [s(1—s)+as(l—s)] = g(s).
If max{n,t} < s, then
1 1+ o
= — < - = .
Gty = | | =9 < [0 15 = g0

Therefore, G¢(t, s) < g(s), (t,s) € [0,1]x [0, 1]. Then for any (¢, s) € [0,1]x][0, 1],
we have

G(t,s) = /GT(T, s)dr < /g(s) dr =tg(s) < g(s).
0 0

In this paper we suppose that
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(H1) h: (0,1) — [0, +00) is continuous, h(t) # 0 and

/ g(t)h(t) dt < +oo. (2.2)

(Hg) f:10,1] x (—00,400) = (—00, +00) is continuous.

As is well known, the singular nonlinear boundary value problem (1.1) can
be converted into the equivalent Hammerstein nonlinear integral equation

u(t) = /G’(t, s)h(s)f(s,u(s))ds, t € [0,1]. (2.3)
0
Let
(Au)(t) = /G(t, s)h(s)f(s,u(s))ds, t €10,1], (2.4)
0
(Tu)(t) = /G’(t, s)h(s)u(s)ds, t € [0,1]. (2.5)
0

By the method similar to that in [15], we have:

LEMMA 2. Suppose that (Hy), (Ha) are satisfied, then A: C[0,1] — C[0,1] is a
completely continuous operator and T: C[0,1] — C[0,1] is a completely contin-
wous linear operator, T(P) C P.

Notice that T'(P) C P, it follows that »(T") > 0. It is obvious that if the
operator A has a fixed point u, then u is the solution of (1.1).

LEMMA 3. Suppose that the condition (Hy) is satisfied, then for the operator T
defined by (2.5), the spectral radius r(T) # 0 and T has a positive eigenfunction
corresponding to its first eigenvalue \y = (r(T))~L.

We also need the following lemmas in [5].

LEMMA 4. Let P be a cone in a real Banach space E, Q0 a bounded open subset

of E, and A: PN — P a completely continuous operator. Assume that there
exists a ug € P, ug # 6, such that

u — Au # pug
for allu € PN OQ and p > 0, then the fized point index
i(A,PNQ,P)=0.
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LEMMA 5. Let P be a cone in a real Banach space E, Q) a bounded open subset
of E with € PN, and A: PN Q) — P a completely continuous operator. If

Au # pu
for allu € PNOQ and p > 1, then the fized point index
i(A,PNQ,P)=1.

3. Main results

THEOREM 6. Suppose that the conditions (Hy), (Ha) are satisfied. If there exists
a constant b > 0 such that

min_f(t,u) > —b, for all w € (—o0,+00), (3.1)
te[0,1]
liminf min 7% 5 (3.2)
u—0 te[0,1]  |ul
lim sup max f(tu) < A, (3.3)

u——+00 te(0,1] u
where A1 is the first eigenvalue of T defined by (2.5). Then the singular boundary
value problem (1.1) has at least one nontrivial solution.

Proof. It follows from (3.2) that there exists r; > 0 such that
F@Eu) > Alul for all |u| <. (3.4)

For every u € B,,, we have from (3.4) that
1
(Au)(t) > M /G’(t, s)h(s)|u(s)|ds > 0, t€[0,1],
0
and thus A(B,,) C P. For any u € 0B,,, N P, it follows from (3.4) that
1
(Au)(t) > N\ /G(t, s)h(s)u(s)ds = A (Tu)(t), t € 0,1]. (3.5)
0

We may suppose that A has no fixed point on 9B,, (otherwise, the proof
completes). Let u* be the positive eigenfunction of T' corresponding to A1, thus
u* = \Tu*. Now we show that

u— Au # pu* forall wedB,, NP, pu>0. (3.6)

If, otherwise, there exist uy € 0B,, NP and 79 > 0 such that u; — Au; = Tou*,
then 75 > 0 and
w; = Auq + Tou” > Tou”.
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Put
7" =sup{7: w > 71U} (3.7)
It is easy to see that 7" > 79 > 0 and u; > 7*u*. We have from T(P) C P that
MTup > 75Ty = 7*u™.
Therefore by (3.5),
up = Aug + ou* > M Tuq + 7ou™ > 770" + Tou”,

which contradicts the definition of 7*. Hence (3.6) is true. Since A(B,,) C P,
we have from the permanence property of fixed point index and Lemma 4 that

deg(I — A, B,,,0) =i(A,B,, N P,P) =0, (3.8)
where deg denotes the topological degree.
1
Letting u(t) = b [ G(t,s)h(s)ds, obviously, & € P. It easy to see from
0

(3.1) that A: C[0,1] — P — &. Define Au = A(u — ) + @, u € C[0,1], then
A:C[0,1] —» P.
It follows from (3.3) that there exist 2 > r1 + ||ul| and 0 < o < 1 such that

ft,u) <ohu for all u > ro. (3.9)

Let Tyu = oM Tu, u € C[0,1]. Then Ty : C[0,1] — C0, 1] is a bounded linear
operator and 77 (P) C P. Let

M = 2max{ sup flG(s,s)h(s)|f(s,u(s))\ds,2||ﬂ||}. (3.10)

u€ B, 0
It is clear that M < 4o00. Let

W:{uEP:u:,uZu,OS,ugl}. (3.11)

In the following, we prove that W is bounded.
For any u € W, set v(t) = min{u(t) — u(t), 2} and denote

e(u) = {t €[0,1]: u(t) —u(t) >re}.
490
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When u(t) — u(t) < 0, v(t) = u(t) — u(t) > u(t) —re > —ra, and so |[v]] < ra.
Thus for u € W, we have fro (3.9)

u(t) = p(Au)(t)

IN
o
Q
=
N
=
z
=
»
=
N
o
»
+
A

+ / G(t, s)h(s)f(s,u(s) —u(s))ds + u(t)

[0, 1}\6(10
1
<0A1/G (t,s) ds+/G (s,v(s))ds + 2u(t)
0
1
1/G u(s)ds + M = (Thu)(t) + M,
0

where M is defined as (3.10). Thus ((I —T1)u)(t) < M, t € [0,1].

Since Ap is the first eigenvalue of T' and 0 < o < 1, the first eigenvalue of T,
(r(T1))~% > 1. Therefore, the inverse operator (I — 7)™ ! exists and

(I-T) ' =T4+T+TF+  + T+ (3.12)
It follows from T1(P) C P that (I — Ty)"'(P) C P. So we have u(t) <
(I —T1)"'M,te0,1] and W is bounded.

Select 73 > max{r,sup W + ||u} and thus A has no fixed point on dB,.,.

In fact, if there exists u; € 0B,, such that gul = uq, then uy € W and
|u1|| = rs > sup W, which is a contradiction. Then we have from Lemma 5 and
the permanence property that

deg(I — A, B,,,0) = i(A,B,, N P,P) = 1. (3.13)

Set the completely continuous homotopy H (A, u) = A(u — Au) + A\u, (A, u) €
[0,1] X By,. If there exists (Ao, uz2) € [0,1] x 0B,, such that H(\g,u2) = us,
then A(us — Aou) = ug — Aou and A(ug — Ao + u) = ug — Ao + u. Thus

—Xu+u e W and

lug = Aou +ull = [Jug| = (1 = Ao)l|ull = 73 — [[ul| > sup W,
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a contradiction! From the homotopy invariance of topological degree and (3.13)

we have
deg(I - Aa BTsa 9) = deg(‘[ - H(07 ')a BT‘379>

= deg(I — H(L,+), Br,,0) (3.14)
= deg(I — A, B,,,0) = 1.
By (3.8) and (3.14) we have that
deg(I — A, By,\By,,0) = deg(I — A, By,,0) — deg(I — A, B,,,0) = 1

which implies that A has at least one fixed point on B,,\B,,. This means that
the singular nonlinear boundary value problem (1.1) has at least one nontrivial
solution. 0

Remark 2. The condition (3.1) implies that f is not necessary to be nonnega-
tive.

COROLLARY 1. Suppose that the conditions (Hy), (Hz) are satisfied. If there
exists a constant b* > 0 such that

*

b
> — > —b* 1
tg[lénl]f(t ,u) M for all uw>—b", (3.15)

where M = mguf fG (t,s)h(s)ds and in addition, (3.2) and (3.3) hold, then the
te]

singular boundary value problem (1.1) has at least one nontrivial solution.

Proof. Denote
(t,u), u > —b*

Define
(Aju)(t /G (t,s)h(s)f1(s,u(s))ds, t €10,1].

By Theorem 1 we know that A; has at least one nonzero fixed point u. Then

/G flsu(s))dsz—?\;/G(t s)h(s)ds > —b*.
0 0
From (3.16) we have that fi(¢,u(t)) = f(t,u(t)), t € [0,1], then
/G s)fi(s,u(s))ds = /G(t, s)h(s) f(s,u(s)) ds.
0 0

Thus @ is the nontrivial solution of singular boundary value problem (1.1). O
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THEOREM 7. Suppose that the conditions (Hy), (Ha) are satisfied. If

uf(t,u) >0 for all tel0,1], ue€ (—o0,+00), (3.17)
lminf min 7Y 5 (3.18)

u—=0 tel0,1] U

t
lim sup max f(tu) < A1, (3.19)

|u|—+o0 t€[0,1] U

where A1 is the first eigenvalue of T defined by (2.5). Then the singular boundary
value problem (1.1) has at least one positive solution and one negative solution.

Proof. From (3.17) we have that A(P) C P. Similar to the proof of Theorem 1
in which b = 0, we have by Lemmas 4 and 5 that there exist 0 < r; < 75 such
that
i(A,Br, NP,0)=1, (A Br, NP0 =0. (3.20)
Then
i(A, (B, N P)\(B# NP),0) =i(A, By, N P,0) —i(A, By, N P,0) = —

So A has a fixed point in (Bz, N P)\(Br NP) and (1.1) has at least one positive
solution.
Denote fa(t,u) = —f(t,—u) for all t € [0,1], u € (—o0, +00), and define

1
(Agu)(t /G s) fa(s, u(s)) ds, t € 0,1].
0

Then A2(P) C P and As has a fixed point u € P\{6}, i.e., Ayu = 1.
Since fa(t,u(t)) = —f(t, —u(t)) for all t € [0, 1], we have

—a(t) = / G(t, s)h(s)f(s, —t(s)) ds = (A(—0))(t)  forall te|0,1].

So —u is the negative solution of (1.1). O

Remark 3. In Theorem 2, f is not required to be bounded below, and in
particular, the existence of positive solutions is obtained in Theorem 2 though
A may be not a cone mapping.

4. An example

In this section, we give the following example to illustrate the application of
our main result obtained in Section 3.
Let
1 1 —u?

=, (4.1)
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Then A is singular at ¢t = 0,1 and f is unbounded from below and sign-changing
for w > 0. It is easy to prove that all the conditions in Theorem 1 are satisfied.
As a result, BVP (1.1) with A(t) and f(¢,u) given by (4.1) has at least one
nontrivial solution.

Acknowledgement. The authors express their sincere gratitude to the referee
for very valuable comments.
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