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ABSTRACT. The concept of coloring is studied for graphs derived from lattices

with 0. It is shown that, if such a graph is derived from an atomic or distributive

lattice, then the chromatic number equals the clique number. If this number is

finite, then in the case of a distributive lattice, it is determined by the number of

minimal prime ideals in the lattice. An estimate for the number of edges in such

a graph of a finite lattice is given.
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1. Preliminaries

There are many papers which interlink graph theory and lattice theory. The

papers of Filipov [12], Gedeonová [13], Duffus and Rival [11] and Bollobas and

Rival [8] et. al. discuss the properties of graphs derived from partially ordered

sets and lattices. In the work of Filipov [12], the adjacency between two elements

is defined through the comparability relation between two elements of a poset,

i.e., a, b are adjacent if either a ≤ b or b ≤ a. These graphs are called the

comparability graphs. On the other hand, Gedeonová [13], Duffus and Rival [11]

and Bollobas and Rival [8] use the covering relation between two elements in

a lattice to define the adjacency of two elements. Such graphs are called the

covering graphs. Bollobas [7] uses the covering graph of a lattice to study coloring

in lattices.
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Some papers give properties of graphs derived from other algebraic struc-

tures. Beck [5] has introduced the notion of coloring in commutative rings. The

graphs associated with commutative rings are further investigated by Anderson

and Naseer [1], Anderson and Livingston [2]. Similar considerations for commu-

tative semigroups can be found in DeMeyer, McKenzie and Schneider [10], for

commutative von Neumann regular rings in Anderson, Levy and Shapiro [4] and

for meet-semilattices with 0 in Nimbhorkar, Wasadikar and DeMeyer [16].

Beran [6, p. 334] has introduced a graph on orthologics by defining adjacency

of nonzero a, b as a ⊥ b. In this paper we introduce and study the concept of

coloring of a graph derived from a lattice with 0 (the smallest element) on the

lines of Nimbhorkar, Wasadikar and DeMeyer [16] and characterize the chromatic

number in the case of a graph derived from a distributive lattice. We also

generalize some results from Cornish and Stewart [9] to distributive lattices

with 0. The undefined terms and notations are from Grätzer [13] and Harary [15].

Let L be a lattice (or a meet-semilattice) with 0 and let Γ(L) be the graph

in which

(a) the vertices are the elements of L,

(b) two distinct elements x, y are adjacent if and only if x ∧ y = 0.

We denote this graph by Γ(L). Let χ(L) denote the chromatic number of Γ(L),

i.e., the minimal number of colors which can be assigned to the vertices of Γ(L)

in such a way that every pair of adjacent vertices have different colors. A subset

C = {x1, x2, . . . } of L is called a clique in Γ(L), if xi, xj are adjacent for all i, j,

i �= j, i.e., if xi ∧ xj = 0 for all i �= j. If Γ(L) contains a clique with n elements

and every clique has at most n elements, then we say that the clique number of

Γ(L) is n and write Clique(L) = n. If the sizes of the cliques are not bounded,

then we define Clique(L) = ∞. We recall that the number of edges incident at

a vertex a in a graph G is called the degree of a and is denoted by deg(a).

Remark 1.1� Clearly, a graph which does not have a vertex adjacent to every

other vertex cannot be a graph of a lattice with 0. However, the graph shown in

Figure 1 is not a graph of a lattice with 0 even though, it has a vertex adjacent

to every other vertex. We note that both the chromatic number and the clique

number of this graph is 3.
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Figure 1

We consider the set S = {0, a, b, c, d, 1}. The graph determines which meets

are zero and which are nonzero. Thus a ∧ b = b ∧ c = c ∧ d = 0 and a ∧ c �= 0,

a ∧ d �= 0, b ∧ d �= 0. In order that S be a lattice, it must be closed under

the lattice meet; in particular, we must have a ∧ d ∈ S. We have the following

possibilities.

(1) a ∧ d = a =⇒ a ∧ c = a ∧ d ∧ c = 0.

(2) a ∧ d = b =⇒ a ∧ d = a ∧ d ∧ a = b ∧ a = 0.

(3) a ∧ d = c =⇒ a ∧ d = a ∧ d ∧ d = c ∧ d = 0.

(4) a ∧ d = d =⇒ b ∧ d = b ∧ a ∧ d = 0.

Each case is a contradiction. Therefore, a ∧ d /∈ S and so S cannot be a lattice.

Remark 1.2� There exists a lattice L with 0 for which χ(L) = Clique(L) = ∞.

Consider the set N of natural numbers. For a, b ∈ N we write a ≤ b if and only

if a | b, i.e., b = ac for some c ∈ N. Then N becomes a lattice with the smallest

element 1 and x∧ y = gcd(x, y), x∨ y = lcm(x, y). The meet of any two primes

is 1. Since the number of primes is infinite, we get an infinite clique in the graph

Γ(N). The degree of every prime number is ∞ and χ(N) = ∞.

The following example shows that nonisomorphic lattices may have the same

graph.

Example 1. The distributive lattices shown in Figures 2 and 3 are not isomorphic

but their graph is the same; see, Figure 4.
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Figure 4

Remark 1.3� χ(L) = 1 if and only if L = {0}.
A graph G is called a star graph if it has a vertex adjacent to every other

vertex and these are the only adjacency relations. A nonzero element x in a

lattice L with 0 is called an atom, if there is no y ∈ L such that 0 < y < x. We

note that the graph of a lattice with only one atom is a star graph.

Remark 1.4� We note in passing that the following statements are equivalent

for a lattice L with 0.

(1) The chromatic number of L is 2.

(2) For all x, y ∈ L we have x ∧ y = 0 implies x = 0 or y = 0.

(3) The graph of L is a star graph.

Remark 1.5� Bollobos [5] proved that, given a natural number k, there is a

lattice L whose covering graph is not k-colorable. We note that, given a natural

number k, there exists a lattice L whose graph is not k-colorable. If X is a set

such that |X| = n ≥ 1, then the graph of its power set is not n-colorable.

We recall that a graph G is connected if there is a path between any two

distinct vertices of G, d(x, y) denotes the length of the shortest path from x to

y, and diam(G) = sup
{
d(x, y) : x, y ∈ G, x �= y

}
.

����� 1.1� If L is a lattice with 0, then Γ(L) is connected and diameter of

Γ(L) ≤ 2.

P r o o f. Let x, y ∈ Γ(L). If x, y are adjacent then d(x, y) = 1, otherwise x–0–y

is a path of length 2. Thus d(x, y) ≤ 2 for all x, y ∈ Γ(L). �
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2. Coloring in atomic and complemented lattices

A lattice L with 0 is called atomic if for any nonzero x ∈ L, there exists an

atom a ∈ L such that a ≤ x.

������� 2.1� The number of atoms in an atomic lattice L is n if and only if

Clique(L) = χ(L) = n+ 1.

P r o o f.

Case 1:

Suppose L contains a finite number of atoms. Let A = {a1, . . . , an} be the set

of atoms in L. Then A ∪ {0} is a clique with n + 1 elements. Hence χ(L) ≥
Clique(L) ≥ n+ 1.

We decompose L as follows. Put A0 = {0}, A1 = {x ∈ L : x ≥ a1}, . . . ,
Ai = {x ∈ L : x ≥ ai} −

⋃

j<i
Aj , for i = 2, . . . , n. Define a coloring f on L by

putting f(0) = 0 and f(x) = i for x ∈ Ai. We note that if x, y are adjacent,

then x ≥ ai, y ≥ aj for some distinct atoms ai, aj. Hence f(x) �= f(y). Thus f

is a coloring on L, and χ(L) ≤ n+ 1.

Conversely, suppose Clique(L) = χ(L) = n + 1. Let B be the set of atoms

in L. Then B ∪ {0} is a clique in Γ(L), which implies |B| + 1 ≤ n + 1. Hence

|B| ≤ n. If |B| = k, then as shown above, we conclude that χ(L) = k+1. Thus

n = k.

Case 2:

If L has an infinite number of atoms then clearly, Clique(L) = χ(L) = ∞.

Suppose Clique(L) = χ(L) = ∞. Let {x1, x2, . . . } be a clique in Γ(L). Since

L is atomic, for each i, there exists an atom ai such that ai ≤ xi. Since xi,

xj are adjacent for i �= j, it follows that ai � xj . Thus L cannot have a finite

number of atoms. �

The following example shows that the assumption that L is atomic is necessary

in Theorem 2.1.

Example 2. The set A =
{

1
n : n is a positive integer

} ∪ {0} with the usual

order is a bounded distributive lattice having no atom. Thus L is nonatomic.

However, χ(L) = Clique(L) = 2.

������� 2.2� Let G be the graph obtained by adjoining a pendant vertex to

the complete graph Kn−1. Then G = Γ(L) if and only if L = Mn, where

Mn = {0, a1, . . . , an−2, 1} is the lattice in which ai ∧ aj = 0 and ai ∨ aj = 1 for

i �= j.
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P r o o f. Clearly, the graph, Γ(Mn), of Mn is G.

Conversely, consider G. Label the pendant vertex as 1 and the vertex adjacent

to it as 0 and the remaining vertices as ai, i = 1, . . . , n− 2. Since ai is adjacent

to aj for i �= j, we have ai ∧ aj = 0. Suppose, i �= j. If ai ∨ aj = ak, then

the absorption identity implies ai = ai ∧ (ai ∨ aj) = ai ∧ ak. Now, if i �= k, it

follows that ai ∧ ak = 0; hence, we may conclude ai = 0 in this case. This is

a contradiction. On the other hand if ai ∨ aj = ai, then aj = aj ∧ (ai ∨ aj) =

aj ∧ ak = 0. This shows that ai ∨ aj = 1. Thus {0, a1, . . . , an−2, 1} is the

lattice Mn. �

We have the following corollary from this lemma.

	���

��� 2.1� The graph G, obtained by adjoining a pendant vertex to the

complete graph Kn, for n ≥ 4, is a graph such that G �= Γ(L) for any distributive

lattice L with 0.

Remark 2.1� We note that for n ≥ 4, the graph Γ(Mn) of the lattice Mn has

a subgraph homeomorphic to K5. Hence by Kuratowski’s theorem (see; Harary

[15, Theorem 11.13]), Γ(Mn) cannot be planar in this case. In fact Γ(Mn) is

planar if and only if n ≤ 3.

Let L be a lattice with 0. We say that Γ(L) is n-regular, if every nonzero

vertex, other than 1, is of degree n. We have the following result.

������� 2.3� The graph Γ(L) of a lattice L with n elements is n−2-regular if

and only if L = Mn.

A nonempty subset I of a lattice L is called an ideal of L if I satisfies the

conditions

(i) a, b ∈ I imply a ∨ b ∈ I,

(ii) a ∈ I, x ≤ a implies x ∈ I.

A nonzero ideal I of a lattice L with 0 is called a minimal ideal if there is no

nonzero ideal J such that J ⊂ I. We note that I is a minimal ideal of L if and

only if I = (x] for some atom x ∈ L. If Y denotes the set of all minimal ideals

of L then the graph, Γ(X), of the meet-semilattice X = Y ∪ {(0]} is a complete

graph. Let L be a lattice with 0 then the set Id(L) of ideals of L is a poset under

set inclusion. It is known that this poset is an algebraic lattice. Moreover, the

subposet K[Id(L)] of its compact elements is order isomorphic to L under the

isomorphism x �→ (x]; see, Grätzer [14, Theorem 13, p. 106]. The proof of the

following two theorems follow by using this observation.
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������� 2.4� The complete graph Kn is a subgraph of Γ(X) if and only if L

has at least n− 1 atoms.

������� 2.5� Suppose L is an atomic lattice. The complete graph Kn is a

subgraph of Γ(X) if and only if Kn is a subgraph of Γ(L).

Remark 2.2� We note that the assumption that L is atomic is necessary in

Theorem 2.5. Consider the lattice L in Example 2. It is not atomic and

Clique(L) = 2. Thus K2 is a subgraph of Γ(L). However, K2 is not a sub-

graph of Γ(X) as L does not have a nonzero minimal ideal.

A lattice L with the smallest element 0 and the largest element 1 is called

complemented if for each x ∈ L, there exists a y ∈ L such that x ∧ y = 0 and

x ∨ y = 1, we write y = x′ and call x′, a complement of x. It is known that in a

distributive lattice an element can have at most one complement.

����� 2.1� If a complemented distributive lattice L contains an infinite in-

creasing chain, then Clique(L) = ∞.

P r o o f. Let a1 < a2 < · · · be an increasing chain in L. Put yi = ai+1 ∧ a′i.
If yi = 0, then by the distributivity, we get ai = ai ∨ (ai+1 ∧ a′i) = ai+1, a

contradiction.

Suppose yi = yj . Without loss of generality, we may assume i < i + 1 ≤ j.

Then ai+1 ≤ aj and we get yj = aj+1 ∧ a′j = ai+1 ∧ a′i ∧ a′j = 0, a contradiction.

Thus the yi are distinct.

Again as above, ai+1 ∧ a′j = 0 implies yi ∧ yj = 0 for i �= j. Thus {yi : i =

1, 2, . . .} is an infinite clique in L. �

The Examples 3 and 4 given below show that the condition of distributivity

and that of complementedness cannot be deleted in Lemma 2.1.

Example 3. An integer a is divisible by an integer b if a = bc for some integer

c. Thus 0 is divisible by all integers including 0 itself. Let L = A ∪ {0, 1, 3},
where A = {x : x is a positive even integer not divisible by 3}. Then L is a

complemented lattice under the divisibility order with the smallest element 1

and the largest element 0. Clearly, L is not distributive as every element in A is

a complement of 3. We note that L contains an infinite increasing chain, namely

2 < 4 < · · · , but Clique(L) = 3.

Example 4. The set L =
{

n
n+1 : n is a positive integer

}∪ {0, 1} with the usual

order is a bounded distributive lattice but it is not complemented. L contains

an infinite increasing chain, namely, 1
2 < 2

3 < · · · . We note that Clique(L) = 2.
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A nonzero element x ∈ L is called a zerodivisor if there exists a nonzero y ∈ L

such that x ∧ y = 0. We denote the set of all zerodivisors in L by Z(L).

����� 2.2� Let L be a lattice with 0, 1. If 1 =
n∨

i=1
ai for some atoms ai ∈ L,

then every nonzero element in L is a zerodivisor.

P r o o f. Let x ∈ L, x �= 0, 1. There exists some ai � x. Then x ∧ ai = 0. �

����� 2.3� Let L be a distributive lattice with 0 and 1. Suppose that L contains

a nonzero element x such that x �= 1 and x has a complement. Let f be an

automorphism of L such that f(a) = a for every a ∈ Z(L)∪{0}. Then f(a) = a

for every a ∈ L.

P r o o f. For any a ∈ L, we note that a∧ x, a∧ x′ ∈ Z(L)∪ {0}, where x′ is the
complement of x. Since a = a∧ 1 = a∧ (x∨ x′) = (a∧ x)∨ (a∧ x′), we conclude
f(a) = a. �

3. Coloring in distributive lattices

In this section we prove the following result.

������� 3.1� If L is a distributive lattice with 0, then χ(L) = Clique(L).

This will be accomplished through a series of results.

If Clique(L) = ∞, then χ(L) ≥ Clique(L) implies χ(L) = ∞. Thus it is

sufficient to prove the result when Clique(L) < ∞.

A proper ideal I of L is called a prime ideal if x ∧ y ∈ I implies either

x ∈ I or y ∈ I. A prime ideal is called a minimal prime ideal, if it does not

contain any other prime ideal. For a nonempty S ⊆ L, let Ann(S) = {y ∈ L :

x ∧ y = 0 for each x ∈ S}. We call Ann(S) the annihilator of S. In general

Ann(S) is not an ideal of L. However, if L is distributive, then Ann(S) is an

ideal of L. If S = {x}, we denote Ann(S) by Ann(x). Ann(S) is called a maximal

annihilator ideal if Ann(S) �= L and Ann(S) ⊆ Ann(T ) for some T ⊆ L implies

Ann(S) = Ann(T ).

����� 3.1� Let L be a distributive lattice with 0. If Ann(S) is maximal in the

set {Ann(T ) : T ⊂ L}, then Ann(S) = Ann(x) for some x ∈ L, x �= 0.

P r o o f. Since Ann(S) �= L, there exists x ∈ S, x �= 0. Then Ann(x) �= L.

Clearly, Ann(S) ⊆ Ann(x). By the maximality, we conclude Ann(S) = Ann(x).

�
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We prove an analogue of [9, Proposition 2.1] of Cornish and Stewart for

distributive lattices with 0.

����� 3.2� If L is a distributive lattice with 0 and S ⊆ L, then the following

statements are equivalent.

(1) Ann(S) is a maximal annihilator.

(2) Ann(S) is a prime ideal.

(3) Ann(S) is a minimal prime ideal.

P r o o f.

(1) =⇒ (2): By Lemma 3.1 Ann(S) = Ann(x) for any x ∈ S, x �= 0. Let

a∧b ∈ Ann(x) and a /∈ Ann(x). Then a∧b∧x = 0, a∧x �= 0 and b ∈ Ann(a∧x).

Let t ∈ Ann(x), then t∧x = 0 leads to t∧ a∧x = 0, i.e., t ∈ Ann(a∧x). Hence

Ann(x) ⊆ Ann(a∧x). By the maximality of Ann(x), we get Ann(x) = Ann(a∧x)
or Ann(a ∧ x) = L. Since a ∧ x �= 0, the second possibility cannot hold. Thus

b ∈ Ann(x).

(2) =⇒ (3): Since Ann(S) is prime, it is a proper ideal of L. Let y ∈ S,

y �= 0. Let Q be a prime ideal of L such that Q ⊂ Ann(S). Let x ∈ Ann(S)−Q.

Clearly, y /∈ Ann(S) and x ∧ y = 0. Then x ∧ y = 0 ∈ Q implies either x ∈ Q or

y ∈ Q, a contradiction. Hence Q = Ann(S).

(3) =⇒ (1): Suppose Ann(S) ⊂ Ann(T ), Ann(T ) �= L. There exists x ∈ T

such that x �= 0, which implies that x /∈ Ann(T ). Let y ∈ Ann(T ) − Ann(S).

Now, x ∧ y = 0 implies by (3) that either x ∈ Ann(S) or y ∈ Ann(S), a

contradiction. �

A partially ordered set P is said to satisfy the ascending chain condition

(ACC) provided every strictly ascending chain in P is finite.

����� 3.3� If L is a distributive lattice with 0 such that Clique(L) < ∞, then

the set {Ann(x) : x ∈ L, x �= 0} satisfies the ascending chain condition.

P r o o f. Suppose Ann(a1) ⊂ Ann(a2) ⊂ · · · . Let xj ∈ Ann(aj) − Ann(aj−1),

j = 2, 3, . . . . If we let yn = xn ∧ an−1 (n = 2, 3, . . . ), then yn �= 0. For i < j, we

have xi ∈ Ann(ai) ⊆ Ann(aj−1). Thus xi∧aj−1 = 0, consequently, yi∧yj = 0 for

i �= j. Thus the set {yn : n = 2, 3, . . .} is an infinite clique, a contradiction. �

������� 3.2� Let L be a distributive lattice with 0 and Clique(L) < ∞. Then

L has only a finite number of distinct minimal prime ideals, Pi, 1 ≤ i ≤ n.

These ideals satisfy
n⋂

i=1
Pi = (0] and

⋂

i �=j

Pi �= (0] for all j. Further, no element

of L−
n⋃

i=1

Pi is a zerodivisor.
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P r o o f. By Lemma 3.3 and Lemma 3.1, L has only a finite number of max-

imal annihilator ideals and these ideals have the form Ann(yi), 1 ≤ i ≤ n,

yi �= 0. Lemma 3.2 implies that Ann(yi) are minimal prime ideals of L. Let

x ∈
n⋂

i=1

Ann(yi), x �= 0. Then x ∈ Ann(yi) for each i, i.e., yi ∈ Ann(x) for

each i. By the maximality of Ann(yi), Ann(x) ⊆ Ann(yi) for some i. This

implies yi ∈ Ann(yi) for some i, a contradiction. Hence x = 0.

Let P be a prime ideal of L. Then
n⋂

i=1

Ann(yi) = (0] implies Ann(yi) ⊆ P for

some i. Thus Ann(yi) are the only minimal prime ideals of L.

Suppose
⋂

i �=j

Ann(yi) = (0] for some j. Let xi ∈ Ann(yi) − Ann(yj). Then
∧

i �=j

xi ∈
⋂

i �=j

Ann(yi) = (0]. Since Ann(yj) is prime, this implies xi ∈ Ann(yj) for

some i, a contradiction.

If y, z ∈ L, z �= 0 and y ∧ z = 0. Then y ∈ Ann(z) ⊆ Ann(yi) for some i

implies y /∈ L−
n⋃

i=1

Ann(yi). Thus if y ∈ L−
n⋃

i=1

Ann(yi), then y ∧ z �= 0 for any

nonzero z ∈ L. �
Remark 3.1� This theorem shows that every minimal prime ideal of L has the

form Ann(x) for some x ∈ L.

����� 3.4� If for some x, y ∈ L, Ann(x) and Ann(y) are distinct prime ideals

then x ∧ y = 0.

P r o o f. Since Ann(x) �= Ann(y), there exists t ∈ Ann(y) − Ann(x) or t ∈
Ann(x)− Ann(y). In the first case, t ∧ y = 0 ∈ Ann(x) implies y ∈ Ann(x), by

the primeness of Ann(x). Thus x ∧ y = 0. Similarly, in the second case we get

x ∧ y = 0. �
����� 3.5� Suppose L is a distributive lattice with 0 and Clique(L) < ∞. Let

a ∈ Γ(L) be a nonzero element such that deg(a) = n and there is no nonzero

element b ∈ Γ(L) such that deg(b) > n. Then Ann(a) is a prime ideal and no

two elements in L−Ann(a) are adjacent to each other in Γ(L).

P r o o f. Since L is a distributive lattice, Ann(a) is an ideal. Suppose that

x ∧ y ∈ Ann(a), x /∈ Ann(a), y /∈ Ann(a). Then t = x ∧ a �= 0, t ∧ y = 0 and

Ann(x) ∪ Ann(a) ⊆ Ann(t) shows that deg(t) ≥ n + 1, a contradiction. Thus

x ∈ Ann(a). This also shows that x ∧ y �= 0, for x, y ∈ L − Ann(a), i.e., x, y

cannot be adjacent to each other in Γ(L). �

Now we give a characterization of the chromatic number of a distributive

lattice.
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������� 3.3� For a distributive lattice L with 0, the following statements are

equivalent.

(1) χ(L) is finite.

(2) Clique(L) is finite.

(3) The ideal (0] of L is the intersection of a finite number of prime ideals.

P r o o f.

(1) =⇒ (2): For any graph L, it is known that Clique(L) ≤ χ(L).

(2) =⇒ (3): Follows from Theorem 3.2.

(3) =⇒ (1): Let (0] = P1∩· · ·∩Pn , where Pi , i = 1, . . . , n are prime ideals.

Define a coloring f on L by putting f(0) = 0 and f(x) = min{i : x /∈ Pi} for

x �= 0. If x, y are two nonzero adjacent elements, then x /∈ Pi and y /∈ Pj for

some prime ideals Pi and Pj . Since x ∧ y = 0, we conclude y ∈ Pi and x ∈ Pj .

Thus f(x) �= f(y) and so f is a coloring on L. This implies χ(L) ≤ n+ 1. �

In the next result, we give a relationship between the chromatic number and

the number of minimal prime ideals of L.

������� 3.4� Let L be a distributive lattice with 0. If χ(L) is finite, then

L has only a finite number of minimal prime ideals. If n is this number, then

χ(L) = Clique(L) = n+ 1.

P r o o f. It follows from Theorem 3.2 that L has only a finite number of minimal

prime ideals, say Pi, 1 ≤ i ≤ n,
n⋂

i=1
Pi = (0] and

⋂

i �=j

Pi �= (0]. As in the

proof of Theorem 3.3, we can show χ(L) ≤ n + 1. Choose nonzero x1 ∈ ⋂

i �=1

Pi,

x2 ∈ ⋂

i �=2

Pi, . . . , xn ∈ ⋂

i �=n

Pi. The set {0, x1, . . . , xn} is a clique in L. Thus

n+ 1 ≤ Clique(L). This implies the result. �

Since an ideal of a distributive lattice is a distributive lattice, the proof of the

following corollary is immediate.

	���

��� 3.1� Let L be a distributive lattice with 0. For any ideal I of L,

Clique(I) = χ(I).

The following example shows that the condition of distributivity in Theo-

rem 3.4 is needed.

Example 5. The lattice shown in Figure 6 is not distributive and {0, a, b, c} is

a clique. Thus Clique(L) = 4 = χ(L). However, the number of minimal prime
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ideals is 0. Thus χ(L) cannot be determined by the number of minimal prime

ideals in the case of a nondistributive lattice.

a

1

0

b c

Figure 6

4. Complemented graphs

Anderson et al [4] define and obtain some results on complemented zero divisor

graphs on commutative von Neumann regular rings. We introduce these concepts

in graphs derived from distributive lattices. Let L be a distributive lattice with

0. For a, b ∈ L, we write a ⊥ b if and only if a and b are adjacent in Γ(L) and

there is no nonzero vertex which is adjacent to both a and b. Thus we have

a ⊥ b if and only if a ∧ b = 0 and Ann(a) ∩ Ann(b) ⊆ {0, a, b}. We say that a

graph G is complemented if for each a ∈ G, a �= 0, a �= 1, there exists b ∈ G,

b �= 0, called a complement of a such that a ⊥ b. For a, b ∈ G, we write a ∼ b

provided the following conditions are met:

(i) The vertices a, b are not adjacent in G,

(ii) for all x ∈ G, we have x is adjacent to a if and only if x is adjacent to b.

A complemented graph G is called uniquely complemented, if a ⊥ b, a ⊥ c imply,

a ∼ c. We say that an element a ∈ L is regular if a∧ b = 0 implies b = 0 for any

b ∈ L.

����� 4.1� For a, b in a distributive lattice L, the following statements are

equivalent.

(1) a ⊥ b.

(2) a ∧ b = 0 and a ∨ b is regular.
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P r o o f.

(1) =⇒ (2): Clearly, a ∧ b = 0. Suppose (a ∨ b) ∧ x = 0. By distributivity,

(a ∧ x) ∨ (b ∧ x) = 0 and so a ∧ x = b ∧ x = 0 leads to x = 0.

(2) =⇒ (1): Suppose a ∧ x = b ∧ x = 0. Then distributivity implies

(a ∨ b) ∧ x = 0 and so x = 0. Thus a ⊥ b. �

����� 4.2� Let a, b, c be nonzero elements in a distributive lattice L with 0.

If a ⊥ b and a ⊥ c, then Ann(b) = Ann(c).

P r o o f. If b ∧ c = 0 then a ⊥ b implies c = 0, a contradiction. Let d ∈ Ann(b).

Then d∧b = 0 and so d∧c∧b = 0. Similarly, a ⊥ c implies d∧a∧c = 0. By a ⊥ b

we get d ∧ c = 0. Thus d ∈ Ann(c). Similarly, we get Ann(c) ⊆ Ann(b). �

In view of Lemma 4.2 we conclude that the graph of a distributive lattice

with 0 is uniquely complemented if and only if it is complemented.

Examples 6.

1) Star graph is not complemented.

2) The graph of a Boolean lattice L is complemented. For x ∈ Γ(L), its

complement x′ satisfies x ⊥ x′.

5. Combinatorial results

In this section all the lattices under consideration are finite.

Bollobas and Rival in [8] have shown that the number of edges in the covering

graph of a lattice with n elements is less than 3n
3
2 edges.

In the next theorem we give an estimate for the number of edges in Γ(L), for

a finite lattice L.

������� 5.1� Suppose L = {0, a1, . . . , am, 1} is a finite lattice. If n is the

number of distinct edges in Γ(L), then

m+ 1 ≤ n ≤ m(m+ 1)

2
+ 1. (1)

P r o o f. We note that 0 is adjacent to each element. Hence the minimum number

of edges in Γ(L) is m+1. It is known that the number of edges in the complete

graph Kn on n vertices is n(n−1)
2 (see [15, p. 16] from Harary). If the set

{0, a1, . . . , am} forms a Km+1, then the number of edges is m(m+1)
2 . The element

1 is adjacent to 0 only. Thus the maximum number of distinct edges in Γ(L) is

1 + m(m+1)
2 . Thus m+ 1 ≤ n ≤ 1 + m(m+1)

2 . �
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We note the following.

Remark 5.1� If L has only one atom, then the number of edges in Γ(L), is

m+ 1. Thus equality holds on the left hand side inequality of (1).

Remark 5.2� If each ai in L = {0, a1, . . . , am, 1} is an atom then each ai is

adjacent to each aj , i �= j. Thus the total number of edges is 1 + m(m+1)
2 . Thus

in this case equality holds on the right hand side inequality of (1).

����� 5.1� If L has more than one atom and L is nonmodular, then strict

inequality occurs at both the places in (1).

P r o o f. Let L = {0, a1, . . . , am, 1} Suppose that a1, a2 are the two atoms.

Then a1, a2 are adjacent to each other and so {a1, a2} is an edge in Γ(L). If

the number of edges in Γ(L) is n, then m + 1 < n. Since L is nonmodular, by

Dedekind’s modularity criterion (see [14, Theorem 2, p. 80] from Grätzer), L

has a sublattice isomorphic to the lattice n5, shown in Figure 7. Thus L has two

elements ai, aj comparable with each other. Thus {ai, aj} cannot be an edge in

Γ(L). Therefore, n < 1 + m(m+1)
2 . �

a

1

0

b

c

Figure 7

Remark 5.3� Equalities hold in (1) if and only if either L = {0} or L = {0, 1},
i.e., if and only if either m = 0 or 1 with the convention that a0 = 0 and a1 = 1.

In the following theorems we estimate the clique number and the chromatic

number of direct products of lattices.

Remark 5.4� If L1 and L2 are two lattices, then in general, Clique(L1 ×L2) �=
Clique(L1) × Clique(L2) and χ(L1 × L2) �= χ(L1) × χ(L2), for example take

L1 = {0, a} and L2 = {0, b}.
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We have the following theorem.

������� 5.2� Let Li, i = 1, . . . , n, be lattices with 0 and with Clique(Li) = mi.

Let L = L1 × · · · × Ln. Then Clique(L) =
n∑

i=1

mi − n+ 1.

P r o o f. Let {0, ai,1, . . . , ai,mi−1} be a clique in Li, i = 1, . . . , n. We note that

B =
{
(0, . . . , 0), (a1,1, 0, . . . , 0), . . . (a1,m1−1, 0, . . . , 0), . . . , (0, . . . , 0, an,mn−1)

}
is

a clique in L with
n∑

i=1

(mi − 1) + 1 = 1− n+
n∑

i=1

mi = t elements. Hence

Clique(L) ≥ t.

Suppose that {a1, . . . , ak} is a clique in L. Let ai = (bi,1, . . . , bi,n), i =

1, . . . , k. The set {b1,1, . . . , bk,1} is a subset of L1 such that bi,1 ∧ bj,1 = 0 for

all i, j, i �= j. Since Clique(L1) = m1, we conclude k ≤ m1. More generally,

we get k ≤ mi for each i. This implies nk ≤
n∑

i=1
mi, consequently, n(k − 1) ≤

n∑

i=1

mi − n. Since, n and k − 1 are positive integers, we get k − 1 ≤
n∑

i=1

mi − n

i.e. k ≤
n∑

i=1

mi − n+ 1 = t. Thus Clique(L) = t. �

Using similar techniques, we get the following theorem.

������� 5.3� Let Li, i = 1, . . . , n, be lattices with 0 with χ(Li) = mi. If

L = L1 × · · · × Ln, then χ(L) =
n∑

i=1
mi − n+ 1.

Acknowledgement� The authors are thankful to the referee for fruitful sug-

gestions. The authors are also grateful to Professor N. K. Thakare and Professor

B. N. Waphare for many suggestions during the preparation of this paper.

REFERENCES

[1] ANDERSON, D. D.—NASEER, M.: Beck’s coloring of a commutative ring, J. Algebra

159 (1993), 500–514.

[2] ANDERSON, D. F.—LIVINGSTON, P.: The zero-divisor graph of a commutative ring,

J. Algebra 217 (1999), 434–447.

[3] ANDERSON, D. F.—FRAZIER, A.—LAUVE, A.—LIVINGSTON, P. S.: The zero-

divisor graph of a commutative ring II. In: Lecture Notes in Pure and Appl. Math.,

Marcel Dekker, New York, 2001, pp. 61–72.

[4] ANDERSON, D. F.—LEVY, R.—SHAPIRO, J.: Zero-divisor graphs, von Neumann reg-

ular rings and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221–241.

[5] BECK, I.: Coloring of commutative rings, J. Algebra 116 (1988), 208–226.

[6] BERAN, L.: Orthomodular Lattices, D. Reidel, Dordrecht, 1985.

[7] BOLLOBOS, B.: Colouring lattices, Algebra Universalis 7 (1977), 313–314.

433

Unauthenticated
Download Date | 2/3/17 9:25 PM



S. K. NIMBHOKAR — M. P. WASADIKAR — M. M. PAWAR

[8] BOLLOBOS, B.—RIVAL, I.: The maximal size of the covering graph of a lattice, Algebra

Universalis 9 (1979), 371–373.

[9] CORNISH, W. H.—STEWART, P. N.: Rings with no nilpotent elements and with the

maximum condition on annihilators, Canad. Math. Bull. 17 (1974), 35–38.

[10] DEMEYER, F. R.—MCKENZIE, T.—SCHNEIDER, K.: The zero-divisor graph of a

commutative semigroup, Semigroup Forum 65 (2002), 206–214.

[11] DUFFUS, D.—RIVAL, I.: Path length in the covering graph of a lattice, Discrete Math.

19 (1977), 139–158.

[12] FILIPOV, N. D.: Comparability graphs of partially ordered sets of different types, Colloq.

Math. Soc. János Bolyai 33 (1980), 373–380.
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