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ABSTRACT. Sufficient conditions are obtained so that every solution of the
neutral functional difference equation

∆m(yn − pnyτ(n)) + qnG(yσ(n))− unH(yα(n)) = fn,

oscillates or tends to zero or ±∞ as n → ∞, where ∆ is the forward difference

operator given by ∆xn = xn+1 − xn, pn, qn, un, fn are infinite sequences of
real numbers with qn > 0, un ≥ 0, G,H ∈ C(R,R) and m ≥ 2 is any positive
integer. Various ranges of {pn} are considered. The results hold for G(u) ≡ u,
and fn ≡ 0. This paper corrects, improves and generalizes some recent results.
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1. Introduction

In this paper, sufficient conditions are obtained, so that every solution of

∆m(yn − pnyτ(n)) + qnG(yσ(n))− unH(yα(n)) = fn, (1.1)

oscillates or tends to zero or ±∞ as n → ∞, where ∆ is the forward difference
operator given by ∆xn = xn+1 − xn, pn, qn, un and fn are infinite sequences of
real numbers with qn > 0, un ≥ 0, G,H ∈ C(R,R). Further, we assume {τ(n)},
{σ(n)}, and {α(n)} are monotonic increasing and unbounded sequences such
that τ(n) ≤ n, σ(n) ≤ n and α(n) ≤ n for every n. Different ranges of {pn} are
considered. The positive integer m ≥ 2, can take both odd and even values.

If [x] denotes the greatest integer less than or equal to the real variable x then
for any positive integer n, τ(n) = [n/3] is an non-decreasing and unbounded
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sequence of integers less than n. In this case, note that, there does not exist
any positive integer k for which τ(n) = n − k. Hence our results generalize
the corresponding results done for (1.1) when τ(n) = n − k. Then think about
the inverse τ−1 of the function τ . Of course it always exists as a relation, but
not necessarily as a function, because it may not be single valued. Hence if we
define τ−1(n) = min{τ−1(n)} then τ−1 is a function such that τ(τ−1)(n) = n.
However, τ−1(τ(n)) �= n for every n. Hence, whenever, we require this condition
we have to assume τ(n) is strictly increasing. Then of course τ−1 would exist as
a function and τ−1(τ(n)) = n. But in that case the utility of taking τ(n) in place
of n − k is reduced, because, it seems difficult to find an example of a strictly
increasing and unbounded function τ(n) other than of the form τ(n) = n − k
where, k is a positive integer.

In the sequel, we shall need the following conditions.

(H0) G is non-decreasing and xG(x) > 0 for x �= 0.

(H1) lim inf
n→∞ σ(n)/n > 0.

(H2) H is bounded.

(H3) lim inf
|v|→∞

G(v)
v ≥ δ > 0.

(H4)
∞∑

n=0
nm−2qn = ∞ for m ≥ 2.

(H5)
∞∑

n=0
nm−1un < ∞.

(H6)
∞∑

n=0
nm−1qn = ∞.

(H7) There exists a bounded sequence {Fn} such that ∆mFn = fn, and
lim

n→∞Fn = 0.

(H8) There exists a bounded sequence {Fn} such that ∆mFn = fn.

We assume that pn satisfies one of the following conditions in this paper.

(A1) 0 ≤ pn ≤ b < 1.

(A2) −1 < −b ≤ pn ≤ 0.

(A3) −b2 ≤ pn ≤ −b1 < −1.

(A4) 1 < b1 ≤ pn ≤ b2 < ∞.

(A5) 0 ≤ pn ≤ b2 < ∞.

(A6) −∞ < −b2 ≤ pn ≤ 0.

(A7) 1 ≤ pn ≤ b2 < ∞.

Note that, the parameters b, b1, b2 used in the conditions (A1)–(A7), are positive
constants. Further note that we do not need the condition “xH(x) > 0 for x �= 0”
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in the proofs of our results, however, one may assume that for technical reasons,
to make (1.1), a neutral equation with positive and negative coefficients.

In recent years, several papers on oscillation of solutions of neutral delay
difference equations have appeared; (cf. [1, 2], [11]–[22]) and the references cited
therein. In literature we find that (1.1) is very rarely studied. We may note that
(1.1) is the discrete analogue of the equation(

y(t)− p(t)y(r(t))
)(m)

+ q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t). (1.2)

We feel, even (1.2) is not studied much for m > 2. The equation (1.1) reduces
to

∆m(yn − pnyn−k) + qnG(yn−l)− unG(yn−r) = fn, (1.3)

for τ(n) = n− k, σ(n) = n− l, α(n) = n− r.

Recently, in [14, 15] the authors obtained the oscillation and non-oscillation
criteria for oscillation of

∆(yn − pnyn−k) + qnG(yn−l)− unG(yn−r) = fn. (1.4)

The same equation (1.4) with several delay terms, under the restrictionG(u) ≡ u,
is studied in [16]. In [17] the authors have obtained oscillation and non-oscillation
results for (1.4) under restrictions G(u) ≡ u and fn ≡ 0. Sufficient conditions
for oscillation of

∆m(yn − pnyn−k) + qnG(yn−l) = fn, (1.5)

are obtained in [19]. In that paper, pn is confined to (A2) only and G is restricted
with a sublinear condition ∣∣∣∣

±c∫
0

du

G(u)

∣∣∣∣ < ∞. (1.6)

In [21] the authors studied

∆m(yn − pnyn−l) + qny
α
n−k = 0, (1.7)

where α < 1, is a quotient of odd integers and pn satisfies (A1) or (A2). They
obtained the sufficient conditions of oscillation of (1.7) under the conditions

∞∑
n=n0

qn(n− k)α(m−1) = ∞ (1.8)

and
∞∑

n=n0

qn(1 + pn−k)
α(m−1) = ∞, (1.9)

and presented the following results.
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������� 1.1� ([21, Theorem 2.1])

(a) Let m be even. If −1 < pn ≤ 0 and (1.9) hold, then all solutions of (1.7)
are oscillatory.

(b) Let m be odd. If (A2) and (1.8) hold then every solution of (1.7) oscillates
or tends to zero as n → ∞.

������� 1.2� ([21, Theorem 2.2]) If (A1) and (1.8) hold then every solution
of (1.7) oscillates or tends to zero as n → ∞.

Wemay note that, form ≥ 2, (H4) implies (H6) and if α < 1 then (1.8) implies
(H4) form ≥ 2−α

1−α . Further, all the equations, (1.3)–(1.5) and (1.7) are particular

cases of (1.1). The results in [19, 21] do not hold for a class of equations, where
G is either linear or super linear, i.e.; for example when G(u) = u or G(u) = u3.
Here in this paper an attempt is made to fill this existing gap in literature and
obtain sufficient conditions for oscillation of solutions of a more general equation
(1.1) under the weaker conditions (H4) or (H6). Moreover, we observe that the
existing papers in the literature do not have much to offer when pn satisfies (A4),
(A6) or (A7). In this direction we find that, the authors in [12] have obtained
sufficient conditions for the oscillation of solutions of the equation

∆m(yn − pnyn−k) + qnG(yn−r) = 0, (1.10)

with (A4) or (A7) and have the following results.

������� 1.3� ([12, Theorem 2.6]) Let pn satisfy (A7). If the condition
∞∑

n=n0

qn = ∞, (1.11)

holds, then the following are valid statements.

(i) Every solution of (1.10) oscillates, if m is even.

(ii) Every solution of (1.10) oscillates or lim inf
n→∞

yn = 0 if m is odd.

������� 1.4� ([12, Theorem 2.7]) Let pn satisfy (A4). If (1.11) holds then
the following statements are true.

(i) Every solution of (1.10) oscillates for m even.

(ii) Every solution of (1.10) oscillates or tends to zero as n → ∞ if m is odd.

Unfortunately, the following example contradicts the above theorems of [12].

Example 1.1. Consider the neutral equation

∆m(yn − 4yn−1) + 4
n+1
3 y

1
3
n−2 = 0, (1.12)

where m may be any odd or even integer. Here, pn satisfies (A4) and (A7).
Clearly, (1.12) satisfies all the conditions of Theorems 1.3 and 1.4. But, (1.12)
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has an unbounded positive solution yn = 2n which tends to ∞ as n → ∞. Thus,
this example contradicts Theorems 1.3 and 1.4. Here, G(u) = u1/3, is sublinear.
This example further establishes that the results of [19, 21] do not hold when
pn is in (A4) or (A7).

The authors of the papers [12, 19, 21] have studied sub-linear equation, and
their results do not hold for linear or super linear equations (i.e. (1.5) satisfying
(H3) or (1.7) with α ≥ 1). In this paper we study (1.1) with pn in all possible
ranges and the neutral equation (1.5), as a particular case of (1.1), could be
linear or super-linear. Our results hold good for G(u) ≡ u, fn ≡ 0 and un ≡ 0.
The last but not the least, this paper corrects, generalizes and improves some of
the results of [11, 12, 14, 16, 17, 19, 21].

Let N1 be a fixed nonnegative integer. Let N0 = min{τ(N1), σ(N1), α(N1)}.
By a solution of (1.1) we mean a real sequence {yn} which is defined for all
positive integer n ≥ N0 and satisfies (1.1) for n ≥ N1. Clearly, if the initial
condition

yn = an for N0 ≤ n ≤ N1, (1.13)

is given then the equation (1.1) has a unique solution satisfying the given initial
condition (1.13). A solution {yn} of (1.1) is said to be oscillatory if for every
positive integer n0 ≥ N1, there exists n ≥ n0 such that ynyn+1 ≤ 0, otherwise
{yn} is said to be non-oscillatory.

2. Some lemmas

In this section we present some lemmas that would be used for our results in
next section. The following lemma which can be easily proved, generalizes [11,
Lemma 2.1].

����� 2.1� Let {fn}, {qn} and {pn} be sequences of real numbers defined for
n ≥ N0 > 0 such that

fn = qn − pnqτ(n), n ≥ N1 ≥ N0,

where τ(n) ≤ n, is member of a monotonic increasing unbounded sequence.
Suppose that pn satisfies one of conditions (A2), (A3) or (A5). If qn > 0 for
n ≥ N0, lim inf

n→∞ qn = 0 and lim
n→∞ fn = L exists then L = 0.

����� 2.2� ([3, 12]) Let zn be a real valued function defined for n ∈ N(n0) =
{n0, n0 + 1, . . .}, n0 ≥ 0 and zn > 0 with ∆mzn of constant sign on N(n0) and
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not identically zero. Then there exists an integer p, 0 ≤ p ≤ m − 1, with m+ p
odd for ∆mzn ≤ 0 and (m+ p) even for ∆mzn ≥ 0, such that

∆izn > 0 for n ≥ n0, 0 ≤ i ≤ p,

and

(−1)p+i∆izn > 0, for n ≥ n0, p+ 1 ≤ i ≤ m− 1.

	�
���
��� 2.1� Define the factorial function (cf. [8, page 20]) by

n(k) := n (n− 1) . . . (n− k + 1) ,

where k ≤ n and n ∈ Z and k ∈ N. Note that n(k) = 0, if k > n.

Then we have

∆n(k) = kn(k−1), (2.1)

where n ∈ Z, k ∈ N and ∆ is the forward difference operator. One can show, by
summing up (2.1) that

n−1∑
i=m

i(k) =
1

k + 1

(
n(k+1) −m(k+1)

)
, (2.2)

holds. Now set

bk (n,m) :=

⎧⎨
⎩

1, k = 0
n∑

j=m

bk−1 (n, j) , k ∈ N.
(2.3)

Here, we evaluate bk by recursion. Clearly, for k = 1 in (2.3), we have

b1 (n,m) =

n∑
j=m

b0 (n, j) =

n∑
j=m

1 = (n+ 1−m) = (n+ 1−m)
(1)

.

By (2.2) and for k = 2 in (2.3), we get

b2 (n,m) =

n∑
j=m

b1 (n, j) =

n∑
j=m

(n+ 1− j)(1)

=

n+1−m∑
i=1

i(1) =
1

2
(n+ 2−m)

(2) − 1

2
1(2) =

1

2
(n+ 2−m)

(2)
.

Note that 1(2) = 0. By (2.2) and for k = 3 in (2.3), we get

b3 (n,m) =

n∑
j=m

b2 (n, j) =
1

2

n∑
j=m

(n+ 2− j)
(2)

=
1

2

n+2−m∑
i=2

i(2) =
1

6

[
(n+ 3−m)

(3) − 2(3)
]
=

1

3!
(n+ 3−m)

(3)
.
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Using a simple induction, we obtain

bk (n,m) =
1

k!
(n+ k −m)(k) . (2.4)

����� 2.3� Let p ∈ N and x(n) be a non oscillatory sequence which is positive
for large n. If there exists an integer p0 ∈ {0, 1, . . . , p− 1} such that ∆p0w (∞)
exits (finite) and ∆iw (∞) = 0 for all i ∈ {p0 + 1, . . . , p− 1}. Then

∆pw(n) = −x(n), (2.5)

implies

∆p0w(n) = ∆p0w (∞) +
(−1)

p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i+ p− p0 − 1− n)
(p−p0−1)

x (i) ,

(2.6)
for all sufficiently large n.

P r o o f. Summing up (2.5) from n to ∞, we get

∆p−1w (∞)−∆p−1w(n) = −
∞∑
i=n

x (i) ,

or simply

∆p−1w(n) =
∞∑
i=n

x (i) =
∞∑
i=n

b0 (i, n)x (i) . (2.7)

Summing up (2.7) from n to ∞, we get

∆p−2w(n) = ∆p−2w (∞)−
∞∑
i=n

∞∑
j=i

b0 (j, i)x (j) = −
∞∑
j=n

j∑
i=n

b0 (j, i)x (j)

= −
∞∑
j=n

b1 (j, n) x (j) = −
∞∑
i=n

b1 (i, n)x (i) . (2.8)

Again summing up (2.8) from n to ∞, we obtain

∆p−3w(n) =

∞∑
j=n

∞∑
i=j

b1 (i, j)x (i) =

∞∑
i=n

i∑
j=n

b1 (i, j)x (i)

=

∞∑
i=n

b2 (i, n)x (i) .

By the emerging pattern, we have

∆jw(n) = (−1)
p−j−1

∞∑
i=n

bp−j−1 (i, n) x (i) , j ∈ {p0 + 1, . . . p− 1} .
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Then by letting j = p0 + 1, we get

∆p0+1w(n) = (−1)
p−p0−2

∞∑
i=n

bp−p0−2 (i, n) x (i) . (2.9)

Summing up (2.9) from n to ∞ and arranging we get

∆p0w(n) = ∆p0w (∞) + (−1)
p−p0−1

∞∑
i=n

bp−p0−1 (i, n) x (i) . (2.10)

From (2.4) and (2.10) it follows that

∆p0w(n) = ∆p0w (∞) +
(−1)

p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i+ p− p0 − 1− n)
(p−p0−1)

x (i) .

Hence the Lemma is proved. �

����� 2.4� If {wn} is a sequence of real numbers such that ∆iwn > 0 for
i = 0, 1, 2, . . . p, and ∆p+1wn < 0, for n ≥ n0, p ≥ 1, then there exists a scalar
L > 0 and a positive integer n2 such that n ≥ n2 implies wn > Lnp−1.

P r o o f. From the given conditions, it is clear that, ∆p−1wn is increasing. Hence,
we can find n1 ≥ n0 and a scalar A > 0 such that n ≥ n1 implies

∆p−1wn ≥ A. (2.11)

Choose k ≥ n1 + 1. Then summing (2.11) from n = n1 to k − 1, we obtain

∆p−2wk > A(k − n1),

for k ≥ n1+1. First taking n ≥ n1+2 and then summing up the above inequality
from k = n1 + 1 to n− 1 we obtain

∆p−3wn >
A(n− n1)

(2)

2
,

for n ≥ n1+2. Continuing the above iteration p− 3 times more and using (2.2),
we easily find

wn >
A(n− n1)

(p−1)

(p− 1)!
,

for n ≥ n1+p−1. Since n(r) ≥ (n− r+1)r, it follows from the above inequality
that

wn >
A(n− n1 − p+ 2)p−1

(p− 1)!
,
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for n ≥ n1+p−1. Clearly, lim
n→∞

(
1− (n1+p−2)

n

)p−1

= 1. Hence for any 1 > ε > 0,

we can find n2 ≥ n1 + p− 1 such that n ≥ n2 implies

1− ε <

(
1− (n1 + p− 2)

n

)p−1

< 1 + ε.

Choose 0 < L < A
(p−1)! = B such that L

B < 1 − ε. Hence, for n ≥ n2 we obtain

wn > Lnp−1. �
Remark 2.1� Suppose that {wn} is a real sequence and L is a positive scalar
and defined as in Lemma 2.4. If {zn} is a sequence, which satisfies the condition
that zn ≥ wn − ε for n ≥ n3 ≥ n2, where ε > 0 is any preassigned arbitrary
positive number, then there exists a positive scalar C < L and a positive integer

n4 ≥ max
(
( ε
L−C )

1
p−1 , n3

)
such that n ≥ n4 implies zn ≥ Cnp−1.

����� 2.5� ([9]) If
∑

un and
∑

vn are two positive term series such that

lim
n→∞

(
un

vn

)
= l,

where l is a non-zero finite number, then the two series converge or diverge
together. If l = 0 then

∑
vn is convergent implies the convergence of

∑
un. If

l = ∞ then
∑

vn is divergent implies the divergence of
∑

un.

Remark 2.2� Since (n−r+1)r < n(r) < nr for r ≤ n, the following conclusions
follow directly from Lemma 2.5.

(i) (H4) holds if and only if
∞∑

n=n0

(n− n0 +m− 2)(m−2)qn = ∞.

(ii) (H5) holds if and only if
∞∑

n=n0

(n− n0 +m− 1)(m−1)un < ∞.

(iii) (H6) holds if and only if
∞∑

n=n0

(n− n0 +m− 1)(m−1)qn = ∞.

Remark 2.3� If the condition
∣∣ ∞∑
n=n0

nm−1fn
∣∣ < ∞ is satisfied, then (H7) holds.

Indeed, using Lemma 2.5 and Remark 2.2, we define

Fn =
(−1)m

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)fj .

Then ∆mFn = fn and lim
n→∞Fn = 0. We may observe that, (H7) implies (H8).

Further, (H7) implies and is implied by the following condition

there exists a bounded sequence {Fn} such that
∆mFn = fn, and lim

n→∞Fn = η.
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In fact, the implies part is obvious. Conversely, if lim
n→∞Fn = η �= 0, then we

may put Ln = Fn − η. Then lim
n→∞Ln = 0 and ∆mLn = fn. Hence (H7) holds.

Before we state and prove our last lemma in this section we have to prepare
some ground work for the purpose. In order to move in that direction, let y = yn
be an unbounded non-oscillatory solution of (1.1) for n ≥ N1. Define for n ≥ n0,

zn = yn − pnyτ(n) . (2.12)

Further, assuming that (H2) and (H5) hold, we define for n ≥ n0

Tn =
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)uiH(yα(i)). (2.13)

Then,

∆mTn = −unH(yα(n)). (2.14)

Set,

wn = zn + Tn − Fn. (2.15)

Now we state our lemma.

����� 2.6� Suppose that pn satisfies the condition (A7). Assume that there
exists a positive integer k such that τ(n) = n − k. Let (H0)–(H3), (H5)–(H7)
hold. Then for every non-oscillatory solution yn of (1.1) with zn, Tn, and
wn defined as in (2.12), (2.13) and (2.15) respectively, either lim

n→∞wn = 0 or

lim
n→∞wn = −∞.

P r o o f. Let yn be an eventually positive solution of (1.1) for n ≥ n0 ≥ N1.
Then for n ≥ n0, using (2.12)–(2.15) in (1.1), we obtain

∆mwn = −qnG(yσ(n)) ≤ 0. (2.16)

Hence wn,∆wn,∆
2wn, . . . ,∆

m−1wn are monotonic for n ≥ n1 and of one sign.
From (2.13) it follows, due to (H2), (H5), Lemma 2.5 and Remark 2.2, that

Tn → 0 as n → ∞. (2.17)

Consequently,

lim
n→∞

wn = lim
n→∞

zn = λ, (2.18)

where −∞ ≤ λ ≤ ∞. By the method of contradiction, we show that λ �= ∞.
Suppose that λ = ∞. Then wn > 0 and ∆wn > 0 for n ≥ n1. Due to (2.16) and
Lemma 2.2, it follows that there exists n2 > n1 and an integer p, 0 ≤ p ≤ m− 1,
m− p is odd, such that n ≥ n2 implies

∆iwn > 0 for i = 0, 1, 2, . . . , p,

(−1)m+i−1∆iwn > 0 for i = p+ 1, p+ 2, . . . ,m− 1.
(2.19)
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Hence lim
n→∞∆pwn = l, exists and lim

n→∞∆iwn = 0 for i = p+ 1, p+ 2, . . .m − 1.

If p = 0, then 0 ≤ λ < ∞, a contradiction. Hence 1 ≤ p ≤ m − 1. Applying
Lemma 2.3 to (2.16), we obtain for n ≥ n2

∆pwn = l +
(−1)m−p−1

(m− p− 1)!

∞∑
i=n

(i− n+m− p− 1)(m−p−1)qiG(yσ(i)). (2.20)

This implies

∞∑
i=n

(i− n+m− p− 1)(m−p−1)qiG(yσ(i)) < ∞, for n ≥ n2. (2.21)

In view of Lemma 2.5 and Remark 2.2, we have

∞∑
i=n3

im−p−1qiG(yσ(i)) < ∞. (2.22)

From this, it follows, due to (H6), that lim inf
n→∞ (G(yσ(n))/n

p) = 0. Hence

lim inf
n→∞ (yσ(n)/n

p) = 0, by (H0) and (H3). As lim
n→∞σ(n) = ∞ and by (H1),

σ(n) > γn for large n, we obtain lim inf
n→∞ (yn/n

p) = 0. Due to Lemma 2.4, we

can find M0 > 0 such that wn > M0n
p−1 for n ≥ n3 ≥ n2. For any 0 < ε, from

(2.15) it follows due to (H7) and (2.17) that zn ≥ wn − ε for large n. From this,
it follows, again by Remark 2.1 that there exists M1, with 0 < M1 < M0, and
yn − pnyτ(n) > M1n

p−1 for n ≥ n4 > n3. That is

yn > yτ(n) +M1n
p−1, n ≥ n4, (2.23)

due to (A7). Let,

N0 > max

{
(p− 2)k

3
, n4

}
, M = min{yn : N0 ≤ n ≤ N0 + k}

and

0 < β < min

{
M

(N0 + k)p
,
M1

2pk

}
.

Define, for n ≥ N0,

A(n) =

⎧⎨
⎩(M1 − pβk)np−1 + β

p∑
i=2

(−1)i
(
p
i

)
kinp−i, p ≥ 2

M1 − βk, p = 1.
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If p is odd, then we may write

p∑
i=2

(−1)i
(
p

i

)
kinp−i =

[(
p

2

)
k2np−2 −

(
p

3

)
k3np−3

]

+

[(
p

4

)
k4np−4 −

(
p

5

)
k5np−5

]

+ · · ·+
[(

p

p− 1

)
kp−1n−

(
p

p

)
kp

]
,

to obtain
p∑

i=2

(−1)i
(
p

i

)
kinp−i > 0,

because (
p

i

)
kinp−i >

(
p

i+ 1

)
ki+1np−i−1,

if and only if

n > k

(
p

i+ 1

)/(
p

i

)
=

(p− i)k

i+ 1

for i = 2, 4, . . . , p− 1. Further, n ≥ N0 implies that

n ≥ N0 >
(p− 2)k

3
>

(p− 4)k

5
· · · > k

p
.

If p is even then we put the terms in pair as above with the last single positive
term (−1)p

(
p
p

)
kp. Thus A(n) > 0 for n ≥ N0. Since yn ≥ M forN0 ≤ n ≤ N0+k

and β(N0 + k)p < M , then yn > βnp for N0 ≤ n ≤ N0 + k. Since τ(n) = n− k,
then N0 + k ≤ n ≤ N0 + 2k implies N0 ≤ τ(n) ≤ N0 + k. Using (2.23), we
obtain, for N0 + k ≤ n ≤ N0 + 2k,

yn > yτ(n) +M1n
p−1 > β(τ(n))p +M1n

p−1

≥ β(n− k)p +M1n
p−1 > βnp,

because, for p ≥ 2,

βnp < A(n) + βnp = (M1 − pβk)np−1 + β
[
(n− k)p − np + pknp−1

]
+ βnp

= M1n
p−1 + β(n− k)p,

and for p = 1, βn < A(n) + βn = M1 + β(n − k). Proceeding as above we
have yn > βnp for n ≥ N0. Hence lim inf

n→∞ [yn/n
p] ≥ β > 0, a contradiction.

Thus, λ �= ∞. If λ �= −∞ then λ is finite. This implies (−1)m+i∆iwn < 0
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for i = 1, 2, . . . ,m − 1, and lim
n→∞∆iwn = 0, i = 1, 2, . . . ,m − 1. Then applying

Lemma 2.3 to (2.16), we obtain

wn = λ+
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qiG(yσ(i)), (2.24)

for n ≥ n1, where n1 is some large positive integer. Thus,

1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qiG(yσ(i)) < ∞, n ≥ n1. (2.25)

Using Lemma 2.5 and Remark 2.2 in the above inequality, we obtain
∞∑
i=n

im−1qiG(yσ(i)) < ∞, n ≥ n1. (2.26)

From this, it follows, due to (H6), that lim inf
n→∞ G(yn)= 0, and hence lim inf

n→∞ yn= 0,

by (H0). Then application of Lemma 2.1 yields lim
n→∞

zn = 0. Thus lim
n→∞

wn = 0,

by (2.18). Hence the lemma is proved. The proof for the case when yn < 0
eventually, is similar. �

3. Sufficient conditions

In this section, we present the results to find sufficient conditions so that
every solution of (1.1) oscillates or tends to zero as n → ∞.

������� 3.1� Let m ≥ 2. Suppose that, pn satisfies one of the conditions (A1)
or (A2). If (H0)–(H5) and (H8) hold, then every unbounded solution of (1.1)
oscillates.

P r o o f. Let y = yn be an unbounded non-oscillatory solution of (1.1) for
n ≥ N1. Then yn > 0 or yn < 0. Suppose yn > 0 eventually. There exits
a positive integer n0, and yn > 0, yτ(n) > 0, yσ(n) > 0 and yα(n) > 0 for
n ≥ n0 ≥ N1. Using the assumptions (H2) and (H5), for n ≥ n0, we set zn,
Tn, and wn as in (2.12), (2.13), and (2.15) to obtain (2.14) and (2.16). Hence
wn, ∆wn, . . .∆

m−1wn are monotonic and of one sign for n ≥ n1 ≥ n0. Then
lim

n→∞wn = λ, where −∞ ≤ λ ≤ +∞. From (2.13) it follows, due to (H2), (H5),

Lemma 2.5 and Remark 2.2, that (2.17) holds. Since yn is unbounded, there
exists a subsequence {ynk

} such that

ynk
→ ∞ as k → ∞,

and
y(nk) = max{yn : n1 ≤ n ≤ nk}. (3.1)

373

Unauthenticated
Download Date | 2/3/17 9:25 PM



R. N. RATH — B. L. S. BARIK — S. K. RATH

We may choose nk large enough so that τ(nk) ≥ n1, σ(nk) ≥ n1 and α(nk) ≥ n1.
Then from (2.17) and (H8) it follows that, for 0 < ε, we can find a positive integer
n2 such that k ≥ n2 ≥ n1 implies |Tnk

| < ε and |Fnk
| < γ, for some constant

γ > 0. Hence for k ≥ n2, if (A1) holds, then we have

wnk
≥ ynk

(1− p)− ε− γ.

Similarly, if (A2) holds, then for k ≥ n2, we have

wnk
≥ ynk

− ε− γ.

Taking k → ∞, we find lim
n→∞wn = ∞, because of the monotonic nature of

wn. Hence wn > 0, ∆wn > 0 for n ≥ n2 ≥ n1. Since ∆mwn �≡ 0 and is in
negative, it follows from Lemma 2.2 that there exists a positive integer p such
that m−p is odd and for n ≥ n3 ≥ n2, we have ∆

jwn > 0 for j = 0, 1, . . . , p and
∆jwn∆

j+1wn < 0 for j = p, p+1, . . . ,m−2. Then lim
n→∞∆pwn = l (finite) exists.

Hence p ≥ 1. Applying Lemma 2.3 to (2.16), we obtain (2.20). Consequently
(2.21) and then (2.22) follows due to Lemma 2.5 and Remark 2.2. Because of
(H4), the inequality (2.22) yields

lim inf
n→∞

G(yσ(n))

np−1
= 0,

for n ≥ n3. Then we claim lim inf
n→∞

yσ(n)

np−1 = 0. Otherwise, there exists n4 ≥ n3

and γ > 0 such that n ≥ n4 implies yσ(n) > γnp−1. By (H0) and (H3), we

obtain
G(yσ(n))

np−1 > γδ > 0, for n ≥ n4, a contradiction. Hence our claim holds.
Next, we assert

lim inf
n→∞

yn
np−1

= 0.

Otherwise, there exists n4 ≥ n3 and γ > 0 such that n ≥ n4 implies yn

np−1 > γ> 0.
As lim

n→∞ σ(n) = ∞, we can find n5 ≥ n4 such that σ(n) ≥ n4 for n ≥ n5. Then
yσ(n)

(σn)p−1 > γ for n ≥ n5. Due to (H1), we find n6 and a positive scalar µ such

that n ≥ n6 ≥ n5 implies σ(n) > µn. Consequently, for n ≥ n6, we have
yσ(n) > γ(µn)p−1. Hence

yσ(n)

np−1 > γµp−1 > 0, for n ≥ n6, a contradiction. Thus
our assertion that lim inf

n→∞
yn

np−1 = 0, holds. Since p ≥ 1, due to Lemma 2.4, we

can choose B > 0, such that

wn > Bnp−1 for n ≥ n4 ≥ n3 + p− 1.

Thus,

lim inf
n→∞

yn
wn

= 0. (3.2)

Set, for n ≥ n4,

p∗n = pn
wτ(n)

wn
.
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It is clear from (H8), (2.17) and lim
n→∞wn = ∞, that

lim
n→∞

(Fn − Tn)

wn
= 0.

Then we have

1 = lim
n→∞

[wn

wn

]

= lim
n→∞

[
yn − pnyτ(n) − (Fn − Tn)

wn

]

= lim
n→∞

[
yn
wn

− p∗nyτ(n)
wτ(n)

− (Fn − Tn)

wn

]

= lim
n→∞

[ yn
wn

− p∗nyn
wn

]
.

(3.3)

Since {wn} is a increasing sequence, then
wτ(n)

wn
< 1. If pn is defined as in

(A1) then 0 ≤ p∗n < pn ≤ b < 1. However, if pn is defined as in (A2) then
0 ≥ p∗n ≥ pn ≥ −b > −1. Hence it is clear that if pn satisfies (A1) or (A2) then
p∗n also satisfies (A1) or (A2) accordingly. Hence use of Lemma 2.1 yields, due
to (3.2), that

lim
n→∞

[
yn
wn

− p∗nyτ(n)
wτ(n)

]
= 0,

a contradiction to (3.3). Hence the unbounded solution {yn} cannot be eventu-
ally positive. Next, if yn is an eventually negative solution of (1.1) for large n
then we set xn = −yn to obtain xn > 0 and then (1.1) reduces to

∆m
(
xn − pnxτ(n)

)
+ qnG̃(xσ(n))− unH̃(xα(n)) = f̃n, (3.4)

where
f̃n = −fn, G̃(v) = −G(−v) and H̃(v) = −H(−v). (3.5)

Further,
F̃n = −Fn implies ∆m(F̃n) = f̃n. (3.6)

In view of the above facts, it can be easily verified that the following conditions
hold.

(H̄0) G̃ is non-decreasing and xG̃(x) > 0 for x �= 0.

(H̄2) H̃ is bounded.

(H̄3) lim inf
|v|→∞

G̃(v)
v ≥ δ > 0.

(H̄8) There exists a bounded sequence {F̃n} such that ∆m(F̃n) = f̃n.

Proceeding as in the proof for the case yn > 0, we obtain a contradiction. Hence
yn is oscillatory and the proof is complete. �

The following example illustrates the above theorem.
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Example 3.1. The neutral equation

∆3
(
yn − 1

2
yn−1

)
+ 135yn−2 = 0 (3.7)

satisfies all the conditions of Theorem 3.1. Hence, all the unbounded solutions
are oscillatory. As such, yn = (−2)n, is an unbounded solution, which oscillates.
But the results of [19, 21] cannot be applied to this equation, because G(u) = u
is linear.

������� 3.2� Let m ≥ 2. Suppose that, pn satisfies one of the conditions
(A1)–(A4). If (H0) and (H5)–(H7) hold, then every bounded solution of (1.1)
oscillates or tends to zero as n → ∞.

P r o o f. Let y = yn be a bounded solution of (1.1) for n ≥ N1. If it oscillates
then there is nothing to prove. If it does not oscillate then yn > 0 or yn < 0
eventually. Suppose yn > 0 for large n. There exists a positive integer n0 and
yn > 0, yτ(n) > 0, yσ(n) > 0 and yα(n) > 0 for n ≥ n0 ≥ N1. Set zn, Tn and
wn as in (2.12), (2.13) and (2.15) respectively, to obtain (2.14) and (2.16). Note
that Tn is well defined due to the boundedness of yn and satisfies (2.17). Then
wn, ∆wn, . . . ,∆

m−1wn are monotonic and of one sign for n ≥ n1 ≥ n0. Since yn
is bounded, zn and wn are bounded. Using (2.17), (H7) and monotonic nature
of wn, we obtain lim

n→∞ zn = lim
n→∞wn = λ, which exists finitely. Then applying

Lemma 2.3 to (2.16), we obtain (2.24). Consequently (2.25) and (2.26) hold. The
inequality (2.26), due to (H6) yields lim inf

n→∞ G(yσ(n)) = 0. Since lim
n→∞σ(n) = ∞,

it can be easily shown that lim inf
n→∞ G(yn) = 0. This implies due to (H0) that

lim inf
n→∞ yn = 0. From Lemma 2.1, it follows that lim

n→∞ zn = 0. If pn is in (A1)

then

0 = lim
n→∞ zn = lim sup

n→∞
(yn − pnyτ(n))

≥ lim sup
n→∞

yn + lim inf
n→∞

(−pnyτ(n))

≥ (1− b) lim sup
n→∞

yn.

This implies lim sup
n→∞

yn = 0. Hence yn → 0 as n → ∞. If pn is in (A2) or (A3)

then, since yn ≤ zn, it follows that yn → 0 as n → ∞. If pn satisfies (A4), then
zn ≤ yn − b2yτ(n). Hence, it follows that

0 = lim inf
n→∞

zn ≤ lim inf
n→∞

[yn − b2yτ(n)]

≤ lim sup
n→∞

yn + lim inf
n→∞ [−b2yτ(n)]

= (1− b2) lim sup
n→∞

yn.
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Then lim sup
n→∞

yn = 0. Thus, lim
n→∞ yn = 0. If yn is eventually negative for large

n, then we may proceed with xn = −yn as in the proof of the Theorem 3.1 and
note that, xn is a positive solution of (3.4) with (3.5) and (3.6). Moreover, the
condition (H̄0) along with the following one holds.

(H̄7) There exists a bounded sequence F̃n such that

∆mF̃n = f̃n and lim
n→∞ F̃n = 0.

Then proceeding as above, we prove lim
n→∞ yn = 0. Thus the theorem is proved.

�

Remark 3.1� The above theorem holds when G is linear, super linear, or sub-
linear.

Next, we give few examples to establish the significance of our results.

Example 3.2. Consider the neutral equation

∆m

(
yn − 1

2
yn−1

)
+ n−myαn−2 = n−m2α(2−n), (3.8)

where m ≥ 2, α is a positive rational, being the quotient of two odd integers.
Here, pn = 1

2 , satisfies (A1) and qn = n−m, fn = n−m2α(2−n). It is clear that

∞∑
n=n0

nm−1fn < ∞.

Hence by Remark 2.3, it follows that

Fn =
(−1)m

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)j−m2α(2−j).

Obviously, |Fn| < ∞. Hence the equation (3.8) satisfies all the conditions of
Theorem 3.2. Hence every bounded non-oscillatory solution tends to zero as
n → ∞. In particular yn = 2−n is a solution of (3.8), which tends to zero as
n → ∞. If α ≥ 1, then (3.8) does not come under the purview of the results in
[19, 21], hence those results fail to deliver any conclusion. Further, even if α < 1
then m ≥ 2 implies m− αm + α > 1. This further implies (1.8) does not hold.
Hence Theorem 1.2 cannot be applied to (3.8). Thus Theorem 3.2 along with
Theorem 3.1 of this paper improves and generalizes Theorem 1.2.

Example 3.3. Consider the neutral equation

∆m

(
yn +

1

2
yn−1

)
+ n−myαn−2 = (−1)m2−n−m+1 + n−m2α(2−n), (3.9)

where m ≥ 2, α is a positive rational, which is the quotient of two odd inte-
gers. Here, pn = −1

2 , satisfies (A2) and qn = n−m, fn = (−1)m2−n−m+1 +
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n−m2α(2−n). Easily, we can verify that,
∞∑

n=n0

nm−1fn < ∞ and the equa-

tion (3.9) satisfies all the conditions of Theorem 3.2 for (A2). Hence yn = 2−n is a
solution of (3.9), which tends to zero as n → ∞. If α ≥ 1, then results of [19, 21]
cannot be applied to (3.9). Further, if α < 1 then neither Theorem 1.1(b) nor
[19, Corollary 3] can be applied, because (1.8) does not hold. Thus Theorem 3.2
along with Theorem 3.1 of this paper improves and generalizes Theorem 1.1(b)
and [19, Corollary 3].

Example 3.4. Consider the equation

∆4(yn) +
1

n4
yαn−1 = 2−n−4 +

2(−n+1)α

n4
, (3.10)

where α is a positive rational, being the quotient of two odd integers. Here,

pn = 0, satisfies (A1) and (A2) and qn = 1
n4 , fn = 2−n−4 + 2(−n+1)α

n4 . It is easy

to verify that
∞∑

n=n0

n3fn < ∞ and equation (3.10) satisfies all the conditions

of Theorem 3.2 for (A2). Hence yn = 2−n is a solution of (3.10), which tends
to zero as n → ∞. If α ≥ 1, then the results of the papers [19, 21] cannot be
applied to (3.10). Further, even if α < 1 then Theorem 1.1(a) cannot be applied,
because (1.9) doesnot hold. Thus Theorem 3.2 along with Theorem 3.1 of this
paper improves and generalizes Theorem 1.1(a) and [19, Corollary 3].

������� 3.3� Suppose that m ≥ 2, and that (A6) holds. Assume that

lim inf
n→∞

τ(n)
n

> 0 and σ(τ(n)) = τ(σ(n)). Let (H0)–(H3), (H5) and (H7) hold.

Further assume that
(H9) G(−u) = −G(u).

(H10) For u > 0, v > 0, there exists a scalar β > 0 such that
G(u)G(v) ≥ G(uv) and G(u) +G(v) ≥ βG(u+ v).

(H11)
∞∑
n0

nm−2q∗n = ∞, where q∗n = min[qn, qτ(n)].

Then every solution of (1.1) oscillates or tends to zero as n → ∞.

P r o o f. Let y = {yn} be an eventually positive solution of (1.1) for n ≥ n0

≥ N1. Then set zn, Tn, and wn as in (2.12), (2.13) and (2.15) respectively to
get (2.16) for n > n1 ≥ n0. Hence wn, ∆wn, ∆

2wn, . . . ,∆
m−1wn are monotonic

and of one sign for n ≥ n1. As (2.17) holds, from (H7), it follows that (2.18)
holds i.e.;

lim
n→∞

wn = lim
n→∞

zn = λ, where −∞ ≤ λ ≤ ∞.

If λ < 0, then zn < 0, for large n, a contradiction. If λ = 0, then yn ≤ zn, implies
lim

n→∞ yn = 0. If λ > 0, then wn > 0 for n ≥ n2. Then from Lemma 2.2, it follows
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that, there exists an integer p, 0 ≤ p ≤ m − 1, such that m − p is odd, and for
n ≥ n3 ≥ n2, we have ∆jwn > 0 for j = 0, 1, . . . , p and (−1)m+j−1∆jwn > 0
for j = p+ 1, p+ 2, . . . ,m− 1. Hence lim

n→∞∆pwn = l exists and lim
n→∞∆iwn = 0

for i = p + 1, p + 2, . . . ,m − 1. Note that, 0 < λ < ∞ implies p = 0, but
λ = ∞ implies p > 0 such that m − p is odd. Applying Lemma 2.3 to (2.16),
we obtain(2.20) and consequently (2.21) follows. In view of Lemma 2.5 and
Remark 2.2, we obtain for N2 ≥ n3,

∞∑
i=N2

im−p−1qiG(yσ(i)) < ∞. (3.11)

Note that, since τ(n) is monotonic increasing, its inverse function τ−1(n) exists,
such that τ(τ−1(n)) = n. Since qi > q∗τ−1(i), it follows that

∞∑
i=N2

im−p−1q∗τ−1(i)G(yσ(i)) < ∞.

Then replacing i by τ(i) in the above inequality and multiplying by the scalar
G(b2), we obtain

G(b2)

∞∑
i=N3

(τ(i))m−p−1q∗iG(yσ(τ(i))) < ∞,

where N3 ≥ τ−1(N2). Since lim inf
n→∞ τ(n)/n > 0 implies τ(n)/n > a > 0 for

n ≥ N4 ≥ N3, and pn ≥ −b2, then due to (H0), we obtain

∞∑
i=N4

im−p−1q∗iG(−pσ(i))G(yσ(τ(i))) < ∞.

This with the use of (H10) yields

∞∑
i=N4

im−p−1q∗iG(−pσ(i)yσ(τ(i))) < ∞.

Since σ(τ(i)) = τ(σ(i)), the above inequality takes the form

∞∑
i=N4

im−p−1q∗iG(−pσ(i)yτ(σ(i))) < ∞. (3.12)

From (3.11) and the fact that qn ≥ q∗n, we obtain

∞∑
i=N4

im−p−1q∗iG(yσ(i)) < ∞. (3.13)

379

Unauthenticated
Download Date | 2/3/17 9:25 PM



R. N. RATH — B. L. S. BARIK — S. K. RATH

Further, using (H10), (3.12) and (3.13), one may get

β

∞∑
i=N4

im−p−1q∗iG(zσ(i)) < ∞. (3.14)

If p = 0 then (H11) and (3.14) implies lim inf
n→∞ nG(zσ(n)) = 0. Applying the

assumption lim
n→∞σ(n) = ∞ and (H0), we obtain lim

n→∞ zn = 0, a contradiction.

If p > 0 then by Lemma 2.4, there exists A > 0 such that wn > Anp−1 for
n ≥ N5 ≥ N4. For any ε > 0, using (H7) and (2.17), we obtain zn ≥ wn − ε, for
n ≥ N6 ≥ N5. Thus, due to Remark 2.1, we can find 0 < B < A such that

zn > Bnp−1 for n ≥ N7 ≥ N6. (3.15)

By (H1), we have σ(n)/n > b > 0 for n ≥ N8 ≥ N7. Then further use of (3.15)
and (H3) yields

∞∑
i=N8

im−p−1q∗iG(zσ(i)) ≥ Bδ

∞∑
i=N8

im−p−1q∗i (σ(i))
p−1

≥ δBbp−1
∞∑

i=N8

im−2q∗i = ∞,

by (H11), a contradiction due to (3.14). Hence the proof for the case yn > 0 is
complete. If yn < 0, eventually for large n, then we may proceed with xn = −yn
as in the proof of the Theorem 3.1 and note that, xn is a positive solution of
(3.4) with (3.5) and (3.6). Further, we note that, (H9) implies G = G̃. In view
of this, it is easy to verify that the conditions (H̄0) and (H̄3) hold along with
the the following two conditions.

(H̄9) G̃(−u) = −G̃(u).

(H̄10) For u > 0, v > 0, there exists a scalar β > 0 such that

G̃(u)G̃(v) ≥ G̃(uv) and G̃(u) + G̃(v) ≥ βG̃(u+ v).

Also, it is not difficult to see that (H̄2) and (H̄7) hold. Then proceeding as
above, in the proof for the case yn > 0, we prove that lim

n→∞ yn = 0 and complete

the proof of the theorem. �

Remark 3.2� The prototype of the function G satisfying (H0), (H3), (H9) and
(H10) is G(u) = (β + |u|µ)|u|λ sgnu, where λ > 0, µ > 0, λ+ µ ≥ 1, β ≥ 1. For
verification we may take help of the well known inequality (see [7, p. 292])

up + vp ≥
{
(u+ v)p, 0 ≤ p < 1,

21−p(u+ v)p, p ≥ 1.

For our next result we need the following hypothesis.
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(H12) Suppose that for every sub-sequence {qnj
} of {qn}, we have

∞∑
j=0

(nj)
m−1qnj

= ∞.

������� 3.4� Suppose that pn satisfies the condition (A7). Further assume
that there exists a positive integer k such that τ(n) = n − k. Let (H0)–(H3),
(H5), (H7) and (H12) hold. Then

(i) every bounded solution of (1.1) oscillates or tends to zero as n → ∞.

(ii) every unbounded solution of (1.1) oscillates or tends to ±∞ as n → ∞.

P r o o f. Clearly (H12) implies (H6). Now, let us prove (i) and assume y = {yn}
be any non-oscillatory positive solution of (1.1) which is bounded. We have to
prove lim

n→∞ yn = 0. Set zn, Tn and wn as in (2.12), (2.13), (2.15) respectively to

get (2.16). Since (H12) implies (H6), we apply Lemma 2.6 to get lim
n→∞wn = 0 or

lim
n→∞

wn = −∞. Since yn is bounded, wn is bounded, and hence lim
n→∞

wn = −∞
is not possible. Thus lim

n→∞wn = 0. Then we apply Lemma 2.3 to (2.16) to

get (2.24). Consequently (2.25) and (2.26) follows. Then we apply (H6) to get
lim inf
n→∞

G(yσ(n)) = 0. This implies lim inf
n→∞

yσ(n) = 0, because of (H0). Then

applying the condition, lim
n→∞

σ(n) = ∞, we obtain lim inf
n→∞

yn = 0. Suppose

lim sup
n→∞

yn = ω > 0. Then we can find a subsequence such that yτ(nj) > η > 0,

for j ≥ n1. Hence
∞∑

j=n1

(nj)
n−1qnj

G(yτ(nj)) > G(η)

∞∑
j=n1

(nj)
n−1qnj

= ∞,

a contradiction to (2.26). The proof for the case yn < 0 for large n is similar.

Next, let us prove (ii) and assume y = {yn} be an unbounded positive solution
of (1.1). Then we procced as in case (i) above, apply Lemma 2.6 to obtain
lim

n→∞wn = 0 or lim
n→∞wn = −∞. In this case we claim lim

n→∞wn = 0 cannot hold.

Otherwise, as in the proof for the case (i) we prove (2.26) holds. Since yn is
unbounded then we can find a subsequence such that yτ(nj) > ζ > 0, for j > n1.
Hence ∞∑

j=n1

(nj)
n−1qnj

G(yτ(nj)) > G(ζ)
∞∑

j=n1

(nj)
n−1qnj

= ∞,

a contradiction to (2.26). Thus lim
n→∞wn = −∞. We observe that (2.18) holds

because of (H7) and (2.17). Hence lim
n→∞

zn = −∞. From (A7) and (2.12) it

follows that, yτ(n) ≥ −zn
b2

. This implies lim
n→∞ yn = +∞. The proof for the case,

yn < 0 for large n, is similar. �
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Remark 3.3� For m ≥ 2, the condition

∞∑
n=N1

q∗n = ∞, (3.16)

implies (H11). Further the condition (3.16) implies (1.11). However, if qn is
monotonic then both (3.16) and (1.11) are equivalent. Indeed, if qn is decreasing
then q∗n = qn. Hence the equivalence of (3.16) and (1.11) is immediate. On the
other hand if qn is increasing then assume that (1.11) holds. Then q∗n = qτ(n).

Hence
∞∑

n=N1

q∗n =
∞∑

n=N1

qτ(n) =
∞∑

k=τ(N1)

qk = ∞. Thus, (3.16) and (1.11) are

equivalent, when qn is monotonic. Now we quote a result from [12], which uses
the condition (3.16).

������� 3.5� ([12, Theorem 2.10]) Let pn be in (A5) and r ≥ k. If (1.6) and
(3.16) hold then every solution of (1.10) oscillates.

Remark 3.4� First of all, we note that the above theorem holds for sublinear
equations. It does not hold for linear or super linear equations. However, Theo-
rem 3.4 holds for linear and super linear equations, to complement Theorem 3.5.
It is important to note that our Example 1.1 contradicts the above theorem,
because, from the neutral equation (1.12), we find qn = 4(n+1)/3, which is mono-
tonic. Clearly, (1.11) holds, which is equivalent to (3.16). Thus the neutral
equation (1.12) satisfies all the conditions of the Theorem 3.5, but it has a so-
lution yn = 2n, which does not oscillate. Thus the Theorem 3.5 is contradicted.
Hence one may find a result similar to Theorem 3.5 for sublinear equations.

Remark 3.5� Using [5, Krasnoselskii’s Fixed Point Theorem] and proceeding
as in the proofs of the results of [15], one may easily establish that under the
conditions (H5), (H8) and with any one of the conditions (A1)–(A4), if every
solution of (1.1) oscillates or tends to zero as n → ∞ then (H6) holds. This result
would obviously hold, even if qn changes sign. In that case we have to replace qn
by |qn| in (H6). Further, this result would improve [12, Theorems 4.1, 4.2], where
there are restrictions on m and on the bounds of Fn. Further it would generalize
and extend the necessary part of [11, Theorem 2.3], and [14, Theorem 2.4]. In
all these results of [11, 12, 14] the authors require (H0) and the condition that
G is Lispchitzian in intervals of the form [a, b].

We conclude this paper with two open problems which may be helpful for
further research.

������� 3.1� Can we do the Theorem 3.3 under a condition weaker than
(H11)?
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������� 3.2� Can we do Theorem 3.4 with the assumption (H6) in place of
(H12)?
Or with any other condition weaker than (H12)?
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REFERENCES

[1] AGARWAL, R. P. et al: Oscillatory and nonoscillatory behaviour of second order neutral

delay difference equations, Math. Comput. Modelling 24 (1996), 5–11.
[2] AGARWAL, R. P.—GRACE, S. R.: Oscillation of higher order nonlinear difference equa-

tions of neutral type, Appl. Math. Lett. 12 (1999), 77–83.
[3] AGARWAL, R. P.: Difference Equations and Inequalities, Marcel Dekker, New York,

2000.
[4] CHENG, S. S.—PATULA, W. T.: An existence theorem for a non linear difference equa-

tion, Nonlinear Anal. 20 (1993), 193–203.
[5] ERBE, L. H.—KONG, Q. K.—ZHANG, B. G.: Oscillation Theory for Functional Dif-

ferential Equations, Marcel Dekker, New York, 1995.
[6] GYORI, I.—LADAS, G.: Oscillation Theory of Delay Differential Equations with Appli-

cations, Clarendon Press, Oxford, 1991.
[7] HILDERBRANDT, T. H.: Introduction to the Theory of Integration, Academic Press,

New York, 1963.
[8] KELLEY, W. G.—PETERSON, A. C.: Difference Equations: An Introduction With

Applications, Academic Press, New York, 1991.
[9] MALLIK, S. C.—ARORA, S.: Mathematical Analysis, New Age International (P) Ltd.

Publishers, New Delhi, 2001.
[10] MICKENS, R. E.: Difference Equations, Van Nostrand Reinhold Company Inc., New

York, 1987.
[11] PARHI, N.—TRIPATHY, A. K.: Oscillation of forced nonlinear neutral delay difference

equations of first order, Czechoslovak Math. J. 53 (2003), 83–101.
[12] PARHI, N.—TRIPATHY, A. K.: Oscillation of a class of non-linear neutral difference

equations of higher order, J. Math. Anal. Appl. 284 (2003), 756–774.

[13] RATH, R. N.—PADHY, L. N.: Necessary and sufficient conditions for oscillation of
solutions of a first order forced nonlinear difference equation with several delays, Fasc.
Math. 35 (2005), 99–113.

[14] RATH, R. N.—PADHY, L. N.—MISRA, N.: Oscillation and non-oscillation of neutral
difference equations of first order with positive and negative coefficients, Fasc. Math. 37
(2007), 57–65.

[15] RATH, R. N.—RATH, S. K.—BARIK, B. L. S.: Non-oscillation criteria for the solutions
of higher order functional difference equations of neutral type, Internat. J. Difference
Equations 3 (2008), 289–304.

[16] SUNDARAM, P.—SADHASIVAM, V.: On forced first order neutral difference equations
with positive and negative coefficients, J. Indian Acad. Math. 26 (2004), 211–227.

[17] TANG, X. H.—YU, J. S.—PENG, D. H.: Oscillation and non-oscillation of neutral

difference equations with positive and negative coefficients, Comput. Math. Appl. 39
(2000), 169–181.

383

Unauthenticated
Download Date | 2/3/17 9:25 PM



R. N. RATH — B. L. S. BARIK — S. K. RATH

[18] THANDAPANI, E. et al: Asymptotic behaviour and oscillation of solutions of neutral
delay difference equations of arbitrary order, Math. Slovaca 47 (1997), 539–551.

[19] THANDAPANI, E. et al: Oscillation of higher order neutral difference equation with a
forcing term, Int. J. Math. Math Sci. 22 (1999), 147–154.

[20] THANDAPANI, E.—MAHALINGAM, K.: Necessary and sufficient conditions for oscil-
lation of second order neutral difference equations, Tamkang J. Math. 34 (2003), 137–145.

[21] YILDIZ, M. K.—OCALAN, O.: Oscillation results for higher order non-linear neutral
delay difference equations, Appl. Math. Lett. 20 (2007), 243–247.

[22] YONG ZHOU—HUANG, Y. Q.: Existence for non-oscillatory solutions of higher order
non-linear neutral difference equations, J. Math. Anal. Appl. 280 (2003), 63–76.

Received 3. 6. 2008

Accepted 10. 5. 2009
*Corresponding author:

Department of Mathematics
Veer Surendra Sai University of Technology
BURLA, 768018
Sambalpur, District Orissa
INDIA

E-mail : radhanathmath@yahoo.co.in

**Department of Mathematics
K. I. S. T
Bhubaneswar, Orissa
INDIA

E-mail : bls barikmath@yahoo.co.in

***Department of M. C. A
Gandhi Eng. College
Bhubaneswar, Orissa

INDIA

E-mail : rath subhendu@gmail.com

384

Unauthenticated
Download Date | 2/3/17 9:25 PM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldMT
    /ArialMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice




