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ABSTRACT. Many nonlinear models as e.g. models of chemical reactions are
described by systems of differential equations which have no explicit solution. In
such cases the statistical analysis is much more complicated than for nonlinear
models with explicitly given response functions. Numerical approaches need to
be applied in place of explicit solutions. This paper describes how the analysis
can be done when the response function is only implicitly given by differential

equations. It is shown how the unknown parameters can be estimated and how
these estimations can be applied for model discrimination and for deriving opti-
mal designs for future research. The methods are demonstrated with a chemical
reaction catalyzed by the enzyme Benzaldehyde lyase.
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1. Introduction

Many scientific processes can be approximately described by mathematical
models. If one has to deal with material fluxes or other continuously time-
dependent changes or reactions, these models often contain implicitly given
nonlinear differential equations. The advantage of expressing for example bio-
chemical or physical systems by mathematical models is, that various statistical
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tools for estimating unknown model-parameters or discriminating between alter-
native models are available. Some of these statistical methods shall be discussed
in this paper concerning their applicability for implicitly given nonlinear models.
They are applied to an example of recent biocatalytic research, where the model
is a differential equation model describing enzyme catalyzed reactions.

The example is given by an in-vitro catalysis, performed by the enzyme Ben-
zaldehyde lyase. The Benzaldehyde lyase (BAL) is an enzyme which catalyzes
among other reactions the production of benzoins from aromatic aldehydes and
the compounding of aromatic aldehydes with aliphatic aldehydes. The modes of
operation of the BAL in the catalysis are not completely understood up to now.
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Figure 1. First model for the reaction from BA to DHPP [Reaction Model A]

In this paper, we consider the enzymatical transformation of benzaldehyde
(BA) and dimethoxyaldehyde (DALD) to the end product (R)-3,3-dimethoxy-
1-phenyl-2-hydroxypropan-1-one (DHPP). Considering the function of the BAL
in other reactions, there are two most preferable reaction models for the trans-
formation given by Figure 1 and Figure 2 (see [1] and [9]).

The two models differ in particular in the reaction of the intermediate product
benzoin (BZ) to DHPP: two additional molecules DALD are required in Reaction
Model A while only one molecule DALD is needed in Reaction Model B. In
addition the produced benzaldehyde in Reaction Model B can be converted
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Figure 2. Second model for the reaction from BA to DHPP [Reaction
Model B]

anew (hinted at in Fig. 2 by a dashed arrow). This leads to the following reaction
equations, which reduce the reaction system to its most necessary elements:

Reaction Model A

dcBA

dt
= −2r1, (1)

dcBZ

dt
= r1 − r3, (2)

dcDHPP

dt
= 2r3, (3)

Reaction Model B

dcBA

dt
= −2r1 + r3, (4)

dcBZ

dt
= r1 − r3, (5)

dcDHPP

dt
= r3, (6)
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with

r1 = Vmax,BABZ ∗
(

cBA

Km,BABZ + cBA

)2

, (7)

r3 = Vmax,BZDHPP ∗ cBZ

Km,BZDHPP + cBZ
. (8)

The main parts of the models are given by Michaelis-Menten kinetics. The
squared term in (7) is caused by the fact that two molecules BA are trans-
formed to one molecule BZ. Here, Vmax,... are the unknown maximum reaction
speeds, Km,... the unknown Michaelis-Menten constants, and c... are the mea-
sured concentrations in the experimental time series, therefore time-dependent.
The parameters Vmax,... include the known initial concentration of the enzyme
cE0 such that corrected reaction speeds are given by

Vmax,corr =
Vmax,...

cE0
.

Thus, the unknown parameter vector of both models is

θ = (Vmax,BABZ ;Vmax,BZDHPP ;Km,BABZ ;Km,BZDHPP ) ∈ R
4. (9)

The measurements of the concentrations cBA, cBZ and cDHPP at different time
points determine that the observations are multivariate. It is assumed that
measurement errors are the only cause for randomness. Since the equations 1 to
3 and 4 to 6, respectively, have no explicit solutions, both models are multivariate
implicitly given nonlinear models.

In Section 2, we first discuss how an unknown parameter vector θ of a mul-
tivariate implicitly given nonlinear model can be estimated. We compare there
four different estimates: an estimate based on least squares, a trimmed least
squares estimator, a Monte Carlo estimator and an MC-estimator with extra-
noise. In Section 3, these methods are then applied to the estimation of the
parameter vector θ given at (9) from the measured concentrations cBA, cBZ and
cDHPP . Based on the parameter estimates, a discrimination between Model A
and B is possible and optimal designs for parameter estimation as well as for the
discrimination between several models can be derived. The problem of model
discrimination is treated in Section 4 and design considerations are presented in
Section 5. In this study not only the time points but also the initial concentra-
tions of the enzyme BAL and the initial substrate BA are chosen appropriately
for the design.
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2. Parameter estimation
in implicitly given nonlinear models

Assume that a multivariate observation yn = (yn1, . . . , ynI) at a time point
tn is given by

yn = (yn1, . . . , ynI) = (g1(tn, θ), . . . , gI(tn, θ)) + (εn1, . . . , εnI),

for n = 1, . . . , N , where θ∈Θ⊂R
L is an unknown parameter vector, εn1, . . . , εnI

are measurement errors and g(t, θ) = (g1(t, θ), . . . , gI(t, θ)) is given by the I-di-
mensional nonlinear differential equation system

d

dt
g1(t, θ) = h1(g1(t, θ), . . . , gI(t, θ); θ)

d

dt
g2(t, θ) = h2(g1(t, θ), . . . , gI(t, θ); θ)

...
d

dt
gI(t, θ) = hI(g1(t, θ), . . . , gI(t, θ); θ)

with

g(t0, θ) = a0,

where t0 is the initial time point and a0 the vector of initial conditions. The
time points satisfy t0 < t1 < t2 < · · · < tN . The differential equation system can
be solved stepwise by the one-step method of Euler: Let τ0 < τ1 < · · · < τS be
equidistant time points in [t0, tN ] so that {t0, t1, . . . , tN} ⊂ {τ0, . . . , τS}. Taylor’s
theorem provides

d

dt
gi(τj , θ) =

gi(τj+1, θ)− gi(τj, θ)

τj+1 − τj
+Ej

⇐⇒ gi(τj+1, θ) = gi(τj , θ) + (τj+1 − τj)
d

dt
gi(τj , θ)− (τj+1 − τj) Ej ,

where Ej → 0 if τj+1−τj → 0. There exist several one-step methods which differ
mainly by stopping rules based on the magnitude of (τj+1 − τj) Ej (see e.g. [2],
[14]). In this paper, we used the method of D o r m a n d–P r i n c e , an explicit
Runge-Kutta method of fourth order, which is implemented in Matlab R©.

Any solver for differential equations provides for each θ solutions

g̃1(τ1, θ), g̃2(τ1, θ), . . . g̃I(τ1, θ),
g̃1(τ2, θ), g̃2(τ2, θ), . . . g̃I(τ2, θ),

...
...

...
g̃1(τS , θ), g̃2(τS , θ), . . . g̃I(τS , θ).
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The determination of the solutions at the time points t1, . . . , tN yields the can-
didate matrix

g̃(θ) = (g̃ni(θ))n=1,...,N, i=1,...,I =

⎛⎜⎜⎜⎝
g̃1(t1, θ) g̃2(t1, θ) . . . g̃I(t1, θ)
g̃1(t2, θ) g̃2(t2, θ) . . . g̃I(t2, θ)

...
...

...
g̃1(tN , θ) g̃2(tN , θ), . . . g̃I(tN , θ)

⎞⎟⎟⎟⎠ .

The parameter vector θ shall be chosen in the way that the difference between
the candidate matrix g̃(θ) and the matrix of observations

y = (yni)n=1,...,N, i=1,...,I

is as small as possible. The difference between the candidate matrix and the
matrix of observations can be measured by a weighted sum of squares leading
to the weighted least squares estimator.

���������� 1� The weighted least squares estimator θ̂LS for multivariate im-
plicitly defined nonlinear models is defined as

θ̂LS = argmin
θ∈Θ

N∑
n=1

I∑
i=1

wni(yni − g̃ni(θ))
2,

where (wni)n=1,...,N, i=1,...,I are given nonnegative weights.

The weighted least squares estimator can be calculated by the Matlab R© func-
tion lsqnonlin which is based on the Levenberg-Marquardt algorithm ([13]). This
algorithm is an extension of the Gauss-Newton algorithm and is in our case based
on the vector of weighted residuals

r(θ) = (r1(θ), . . . , rN ·I(θ))� (10)

=
(√

w11(g̃11(θ)− y11), . . . ,
√
wN1(g̃N1(θ)− yN1), . . . ,

√
w1I(g̃1I(θ)− y1I), . . . ,

√
wNI(g̃NI(θ)− yNI)

)�

and its derivative at θ(q)

K(θ(q)) =
∂

∂θ
r(θ)

∣∣∣∣
θ=θ(q)

∈ R
N ·I×L. (11)

Then the iteration step of the algorithm is given by

θ(q+1) = θ(q) + δ(q)

where δ(q) is determined by

δ(q) = −
(
K(θ(q))�K(θ(q))

)−1

K(θ(q))� r(θ(q))
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in the Gauss-Newton algorithm and determined by

δ(q) = −
(
K(θ(q))�K(θ(q)) + η(q)

)−1

K(θ(q))� r(θ(q))

in the Levenberg-Marquardt algorithm, where

η(q) = arg max
η∈RL×L

∥∥∥∥(K(θ(q))�K(θ(q)) + η
)−1

K(θ(q))� r(θ(q))

∥∥∥∥ .
As mentioned above, g̃(θ) is only a numeric approximation of the implicitly

given nonlinear system g(θ) calculated by an ODE-solver. Thus, the Jacobi
matrix K(θ), needed for the optimizer to find the direction of convergence, has
also to be approximated. That was done within the Matlab R© function lsqnonlin
using finite differences.

To avoid that some few outliers have strong influence on the estimator, the
trimmed least squares estimator (LTS) can be used as an alternative to the
weighted least squares estimator (see e.g. [12] and [4]).

���������� 2� The least trimmed squares estimator θ̂LTS for multivariate im-
plicitly defined nonlinear models is defined as

θ̂LTS = argmin
θ∈Θ

N ·I−k∑
m=1

ru(m)(θ)
2,

where |ru(1)(θ)| ≤ |ru(2)(θ)| ≤ · · · ≤ |ru(N ·I)(θ)| are the ordered unweighted residu-

als given by ru1 (θ) = (g̃11(θ)− y11), . . . , r
u
N ·I(θ) = (g̃NI(θ)− yNI).

Numerical problems occured when the trimming proportion k is too large.
However, the estimator could be calculated for k = 1 and k = 2 for the BAL
catalyzed reactions. In these cases, it could be calculated by computing the least
squares estimator for all subsamples with N · I − k data.

To study the variability of an estimator, the following two Monte Carlo esti-
mators were used:

• MC-Estimator θ̂MCData

The initial estimator is any estimator θ̂, for which the solution of the

differential equations g̃(θ̂) is calculated. Then N (0, 1) distributed errors

are added to the matrix g̃(θ̂) leading to a new observation matrix y1 and

a new estimator θ̂(y1). This is repeated several times, say K times, and

the mean of the estimators θ̂(y1), . . . , θ̂(yK) is taken as the Monte-Carlo-

Estimator θ̂MCData. Compare this proceeding to [7].

• MC-Estimator θ̂SIMUL

The initial estimator is like above any estimator θ̂. Then noise is added
in two steps. In the first step, normal distributed errors are added to the

starting vector θ̂ leading to a vector θ̂1E. Then N (0, 1) distributed errors
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are added to the matrix g̃(θ̂1E) leading to a new observation matrix y1E

and a new estimator θ̂(y1E). Both steps are repeated several times, say K

times, and the mean of the estimators θ̂(y1E), . . . , θ̂(yKE) is taken as the

MC-estimator θ̂SIMUL.

3. Parameter estimation for the example-reaction

The data of three batch experiments were used with the initial concentrations
of BA and BAL listed in Table 1. The concentrations of BA, BZ, and DHPP
were measured at time points 0, 16, 21, 30, 45, 60, 90, 120, 150, 180, 210,
240, 300 minutes. Hence, there were N = 13 time points, each with I = 3 · 3
measurements, resulting in N · I = 117 overall measurements.

Table 1. Initial concentrations of the Batch experiments

BA [mM] BAL [mg/ml]

Batch A 56.0 0.22

Batch B 31.5 0.29

Batch C 18.7 0.20

The time point t = 0 at the beginning of the experiment with fixed concen-
trations was included to get an easy estimate of the measurement error. For the
weighted least squares estimator the weights

wni = (a · yni + 0.1)−1 with a =
V̂ar(ymax)− 0.1

ymax

with
ymax = max{yni : n = 1, . . . , N, i = 1, . . . , I}

were used, where the estimated variance V̂ar(ymax) of the maximal measured
value was given by the experimenter. These weights ensure that small values yni
near 0 are weighted mainly by the basic noise given by 0.1 and the importance
of the variance increases with increasing measurement values.

The initial values for the Levenberg-Marquardt algorithm were chosen ran-
domly within the set [0, 1000]4. The algorithm was repeated several times in
order to ensure that the global maximum was found although there is of course
no proof that this is really the case.

The trimming number for the least trimmed squares estimator was set to
k = 2. The starting estimator for both Monte Carlo estimators was the weighted

least squares estimator θ̂LS, and K = 1000 was used as number of repetitions.
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All four parameter estimates are shown for both reaction models in Figure 3
and Figure 4.

Figure 3. Parameter estimates for Reaction Model A

Figure 4. Parameter estimates for Reaction Model B

The four different parameter estimators show very similar behavior for both
reaction models. The similarity of the weighted least squares estimator and the
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trimmed least squares estimator indicates that there are no heavy outliers. Only
the estimates for Km,BZDHPP differ a little bit, a hint, that this parameter can
not be determined as exactly as the others. An example for the fitting of the
model to the data is shown in Figure 5 where Model B is fitted to the data from
Batch A. All other fits look similar to this example.
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Figure 5. Model fit for Reaction Model B and the data from Batch A

4. Model discrimination

Model discrimination can be done with the Akaike information criterion which
is defined as (see e.g. [8])

AIC = M ln

⎛⎜⎜⎝
M∑

m=1
rm(θ̂)2

M

⎞⎟⎟⎠+ 2 L,

where M = N · I and r1(θ), . . . , rM (θ) are the residuals defined in (10). For
small samples the Small Sample AIC of [3] should be used

AICC = AIC +
2L(L+ 1)

M − L− 1
.
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For discrimination of the two reaction models, we have for both models L = 4
and a comparison with the sum of squared residuals could be done. However,
for further model discrimination, Table 2 shows also the Small Sample AIC for
the the weighted least squares estimator.

Table 2. Comparison of the sum of squared residuals and the AICC values

of θ̂LS for the both reaction models

Reaction Model A Reaction Model B∑
m

rm(θ̂)2 779.32 532.72

AICC 229.86 185.35

Table 2 shows that Model B provides the smaller AIC and therefore the
better model fit. To study whether this is not caused by measurement error, the

simulated estimators θ̂(y1), . . . , θ̂(y1000) for getting the Monte Carlo estimator

θ̂MCData were used to get a distribution of the differences between the Akaike
values for the both models. The results are shown in Figure 6.
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Figure 6. Distribution of the AICC differences (Model A –Model B)

Although the differences are always positive, i.e. Model B is for every MC-da-
taset ‘better’ than Model A, the question is whether a better discrimination
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between the two models is possible with another experimental design. This is
the topic of the next section.

The Akaike criterion is needed to discriminate models with a different number
of parameters, shown by the following example. A modification of Model B can
be obtained by regarding Model C given by

dcBA

dt
= −2r1 + r3 − r5,

dcBZ

dt
= r1 − r3,

dcDHPP

dt
= r3 + r5,

where

r1 = Vmax,BABZ ·
(

cBA

KM,BABZ + cBA

)2

,

r3 = Vmax,BZDHPP · cBZ

KM,BZDHPP + cBZ
,

r5 = Vmax,BADHPP · cBA

KM,BADHPP + cBA
.

Model C has L = 6 parameters. Here, the sum of squared residuals for the
weighted least squares estimate is 527.27, so that we obtain AICC = 188.15.
Hence Model C provides a larger AIC than Model B.

5. Experimental designs

Optimal designs for parameter estimation minimize a functional of the covari-
ance matrix of the parameter estimator. In nonlinear models, only an asymptotic
or approximate covariance matrix of the least squares estimator can be derived.
This approximation depends on the unknown parameter vector θ and is given
by (see [6], [11], [13])

(J(θ)�J(θ))−1,

where J(θ) in the linearized system is defined as derivative of the true unknown
nonlinear function g with respect to θ (compare to (11)). As soon as there is no
explicit expression for g, g must be replaced by the calculated solution of the

differential equations g̃ and J(θ) must be approximated by J̃(θ) given by

J̃(θ)ml =
g̃m(θ + hl el)− g̃m(θ − hl el)

2 hl
(12)

for sufficient small hl ∈ (0, 1), m = 1, . . . , N · I and l = 1, . . . , L, where el is
the lth unit vector of RL. Hence, the differential equations solver has to be
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applied 2 · L times per considered parameter vector θ to provide g̃(θ + hl el)
and g̃(θ − hl el). This is similar to the approximation used by Matlab R© in the
Levenberg-Marquardt algorithm. Here a self-implemented routine was applied

and the calculation of the approximated Jacobi matrix J̃(θ) took four to ten
seconds for the models of the BAL catalyzed reactions.

To express the dependence of the design δ, we use here the notation J̃(θ, δ)

instead of J̃(θ). D- and E-optimal designs can be now defined analogously to
the definitions in [10] and [11].

���������� 3�

a) A design δ∗ is called locally D-optimal in ∆, if it satisfies

δ∗ = argmin
{
det(J̃(θ, δ)�J̃(θ, δ))−1 : δ ∈ ∆

}
.

b) A design δ∗ is called locally E-optimal in ∆, if it satisfies

δ∗ = argmin
{
λmax(J̃(θ, δ)

�J̃(θ, δ))−1 : δ ∈ ∆
}
,

where λmax denotes the maximum eigen value.

The locally optimal designs depend on the unknown parameter vector θ and
can only be used if an estimate of θ is available. Here, we used the weighted
least squares estimators of Section 3 so that the proposed covariance matrix is

given by (J̃(θ̂LS, δ)
�J̃(θ̂LS, δ))

−1.

The experimental designs consist of the initial concentrations of BA and BAL
and the time points t1, . . . , tN . For parameter estimation, we consider only
designs that differ in the initial concentrations of BA and BAL. The results for
the D-criterion are given in Figure 7 and Figure 8. The plus signs are marking
the standard deviation of the proposed values when the D-criterion is calculated

for the simulated estimators θ̂(y1), . . . , θ̂(y1000) from Definition 2.

Similar dependencies on the initial concentrations are obtained for the maxi-
mum eigen values of the covariance matrices. Hence a D- and E-optimal design
will be a design with minimum possible initial concentration of the enzyme BAL
and with maximum possible concentration of the substrate BA.

The same result holds for model discrimination between the Models A and B.
For defining a criterion for model discrimination let

g̃A(θ, δ) = (g̃Ani(θ, δ))n=1,...,N, i=1,...,I = (g̃i(tn, θ))n=1,...,N, i=1,...,I

be the calculated solution for Model A for design δ, and g̃B(θ, δ) is defined
analogously. An optimal design for model discrimination should maximize the
distance between g̃A(θ, δ) and g̃B(θ, δ) ([5]).
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Initial concentration BA [mM]
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Figure 7. Dependency of the determinant of the covariance matrix on the

initial concentration of the substrate BA
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Figure 8. Dependency of the determinant of the covariance matrix on the
initial concentration of the enzyme BAL
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Initial concentration BA [mM]
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Figure 9. Dependencies of the distances between Model A and Model B
on the initial concentration of substrate (BA)
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Figure 10. Dependencies of the distances between Model A and Model B
on the initial concentration of the enzyme (BAL)
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���������� 4� A design δ∗ is locally optimal in ∆ for discrimination between
the Models A and B if

δ∗ = argmax

{
N∑

n=1

I∑
i=1

|g̃Ani(θ, δ)− g̃Bni(θ, δ)| : δ ∈ ∆

}
.

Again we use the weighted least squares estimator for θ. The dependencies
of the distance between the models on the initial concentrations are given in
Figure 9 and Figure 10.

Hence an optimal design for parameter estimation for Model A and Model B
is also an optimal design for discrimination between the two models.

Figure 11. Comparison of different designs for the time points

To study also the influence of the time points t1, . . . , tN on the distance be-
tween the two models, the following designs were regarded

• Ä 300: Equidistant time points up to the 300th minute

• 2:1 300: Time points up to the 300th minute, whereof two third of the
measurements are done at equidistant time points in the first half of the
interval

• Ä 150: Equidistant time points up to the 150th minute
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• 2:1 150: Time points up to the 150th minute, whereof two third of the
measurements are done at equidistant time points in the first half of the
interval

• Expo: Time points with distances which increase exponentially (2x) up to
300th minute.

Figure 11 shows that a good design is a design with equidistant points in
the longest interval. However, the standard deviations given by the simulated

estimators θ̂(y1), . . . , θ̂(y1000) of the first MC-estimator are rather large and
the other designs could consequently have a similar quality for discriminating
between the two models.
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