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ABSTRACT. This paper is concerned with a class of neutral difference equations
of second order with positive and negative coefficients of the forms

Δ2(𝑥𝑛 ± 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 − 𝑞𝑛𝑥𝑛−𝜎 = 0

where 𝜏 , 𝛿 and 𝜎 are nonnegative integers and {𝑝𝑛}, {𝑞𝑛} and {𝑐𝑛} are non-
negative real sequences. Sufficient conditions for oscillation of the equations are
obtained.

c⃝2009
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

In this paper, we consider the oscillation and asymptotic property of nonoscil-
latory solutions of the second order linear neutral delay difference equations of
the forms

(𝐸1) Δ2(𝑥𝑛 + 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 − 𝑞𝑛𝑥𝑛−𝜎 = 0

and

(𝐸2) Δ2(𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 − 𝑞𝑛𝑥𝑛−𝜎 = 0

where 𝑛 ≥ 𝑛0 > 0, 𝜏 , 𝛿 and 𝜎 are nonnegative integers such that 𝛿 ≥ 𝜎 + 1,
{𝑝𝑛}, {𝑞𝑛} and {𝑐𝑛} are nonnegative real sequences for 𝑛 ≥ 𝑛0.

By a solution of (𝐸1) (or (𝐸2)), we mean a real sequence {𝑥𝑛} which is defined
for 𝑛 ≥ 𝑛0−𝜇 and satisfy (𝐸1) (or (𝐸2)) where 𝜇 = max{𝛿, 𝜏}. A solution {𝑥𝑛} of
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(𝐸1) (or (𝐸2)) is said to be nonoscillatory if it is eventually positive or eventually
negative; otherwise it is called oscillatory.

Sufficient conditions for oscillation of solutions of first order neutral difference
equations with positive and negative coefficients have been investigated by many
authors, see ([5], [11], [13], [10]) and the references cited therein. Although many
authors (see [3], [9], [12]) studied oscillation and nonoscillation of second and
higher order neutral difference equations of the forms

Δ𝑚(𝑥𝑛 ± 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 = 0, 𝑚 ≥ 2,

it seems that no work has been done on the oscillation and asymptotic behaviour
of nonoscillatory solutions of second order neutral difference equations of the
forms (𝐸1) (or (𝐸2)). In this paper, an attempt has been made to study the
behaviour of solutions of (𝐸1) (or (𝐸2)).

This work is organized as follows: Section 1 is introductory where as sufficient
conditions for oscillation of (𝐸1) (or (𝐸2)) is studied in Section 2. Section 3 deals
with the oscillation of (𝐸1) (or (𝐸2)) with forcing terms.

2. Oscillatory behaviour of solutions of (𝑬1) and (𝑬2)

In this section, we obtain the following oscillation criteria of (𝐸1) and (𝐸2).
Examples are given to illustrate the results.

������� 2.1� Assume that

(𝐻1) 𝑝𝑛 − 𝑞𝑛−𝛿+𝜎 ≥ 𝑘 > 0, 𝑛 ≥ 𝛿 − 𝜎

(𝐻2) 0 ≤ 𝑐𝑛 ≤ 𝑐, 𝑐 is a constant.

hold. If

(𝐻3)
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗 ≤ 1,

then every solution of (𝐸1) is oscillatory.

P r o o f. Suppose that {𝑥𝑛} is a nonoscillatory solution of (𝐸1). Without any
loss of generality, we may assume that 𝑥𝑛 is eventually positive. Let 𝑛1 ≥ 𝑛0+𝜇
be such that 𝑥𝑛 > 0 for 𝑛 ≥ 𝑛1. Hence 𝑥𝑛−𝜏 > 0, 𝑥𝑛−𝛿 > 0 and 𝑥𝑛−𝜎 > 0 for
some 𝑛 ≥ 𝑛2 ≥ 𝑛1. Define

𝑧𝑛 = 𝑥𝑛 + 𝑐𝑛𝑥𝑛−𝜏 −
𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎. (2.1)

Then (𝐸1) gives, using (𝐻1)

Δ2𝑧𝑛 ≤ −𝑘𝑥𝑛−𝛿, 𝑛 ≥ 𝑛2. (2.2)
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Hence Δ𝑧𝑛 is eventually nondecreasing. Then we have that Δ𝑧𝑛 > 0 or Δ𝑧𝑛 < 0
for 𝑛 ≥ 𝑛3 ≥ 𝑛2.

Let Δ𝑧𝑛 < 0 for 𝑛 ≥ 𝑛3. Then the inequality Δ𝑧𝑛 ≤ Δ𝑧𝑛3
implies that 𝑧𝑛 < 0

for large 𝑛 and lim
𝑛→∞

𝑧𝑛 = −∞. We claim that 𝑥𝑛 is bounded from above. If

not, then there exists a 𝑛4 > 𝑛3 such that 𝑧𝑛4
< 0 and max

𝑛3≤𝑛≤𝑛4

𝑥𝑛 = 𝑥𝑛4
. Then

from (2.1), we obtain for 𝑛 = 𝑛4

0 > 𝑧𝑛4
= 𝑥𝑛4

+ 𝑐𝑛4
𝑥𝑛4−𝜏 −

𝑛4−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎

≥
[

1−
𝑛4−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

]

𝑥𝑛4

≥
[

1−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

]

𝑥𝑛4
≥ 0,

a contradiction. Hence 𝑥𝑛 must be bounded from above. So there exists a
constant 𝐿 > 0 such that 𝑥𝑛 ≤ 𝐿 for 𝑛 ≥ 𝑛3. Accordingly, we have

𝑧𝑛 ≥ −𝐿
𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

≥ −𝐿
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

≥ −𝐿 > −∞, 𝑛 ≥ 𝑛3,

which contradicts the fact that 𝑧𝑛 → −∞ as 𝑛 → ∞. We therefore have Δ𝑧𝑛 ≥ 0
for 𝑛 ≥ 𝑛3. Now, the summation of (2.2) from 𝑛3 to 𝑛− 1 gives

∞ > Δ𝑧𝑛3
≥ −Δ𝑧𝑛 +Δ𝑧𝑛3

≥ 𝑘

𝑛−1∑

𝑗=𝑛3

𝑥𝑗−𝛿

and therefore
∞∑

𝑗=𝑛3

𝑥𝑗 < ∞. (2.3)

If we set

𝑦𝑛 = 𝑥𝑛 + 𝑐𝑛𝑥𝑛−𝜏 (2.4)

then from (2.3) and (𝐻2), it follows that

∞∑

𝑗=𝑛0

𝑦𝑗 < ∞. (2.5)
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On the other hand, from (2.1) we have

Δ𝑦𝑛 = Δ𝑧𝑛 +

𝑛−1∑

𝑗=𝑛−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎 ≥ 0, 𝑛 ≥ 𝑛3

so that 𝑦𝑛 is a nondecreasing sequence. Therefore 𝑦𝑛 > 0 for 𝑛 ≥ 𝑛3 and

𝑦𝑛 ≥ 𝑦𝑛3
for 𝑛 ≥ 𝑛3 implies that

∞∑

𝑗=𝑛0

𝑦𝑗 = ∞, a contradiction to (2.5). Hence

every solution of (𝐸1) oscillates. This completes the proof of the theorem. □
Example 2.2. Consider

Δ2[𝑥𝑛 + 2𝑥𝑛−1] + (𝑛+ 2)𝑥𝑛−3 − e−𝑛𝑥𝑛−1 = 0, 𝑛 ≥ 3. (2.6)

All the conditions of Theorem2.1 are satisfied. Hence every solution of (2.6)
oscillates.

������� 2.3� Let (𝐻1) and

(𝐻4) 0 ≤ 𝑐𝑛 ≤ 𝑐 < 1

hold. If

(𝐻5) 𝑐+
𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗 ≤ 1,

then every solution of (𝐸2) is oscillatory or tend to zero as 𝑛 → ∞.

P r o o f. Let 𝑥𝑛 be a nonoscillatory solution of (𝐸2) such that 𝑥𝑛 > 0 and
𝑥𝑛−𝜇 > 0 for 𝑛 ≥ 𝑛1 ≥ 𝑛0 + 𝜇. Setting

𝑤𝑛 = 𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 −
𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎, (2.7)

we obtain, from (𝐸2) using (𝐻1)

Δ2𝑤𝑛 ≤ −𝑘𝑥𝑛−𝛿 , 𝑛 ≥ 𝑛1. (2.8)

Hence Δ𝑤𝑛 ≥ 0 or Δ𝑤𝑛 < 0 for 𝑛 ≥ 𝑛2 ≥ 𝑛1. First suppose that Δ𝑤𝑛 < 0
for 𝑛 ≥ 𝑛2. Then 𝑤𝑛 < 0 for large 𝑛 and lim

𝑛→∞𝑤𝑛 = −∞. We claim that 𝑥𝑛 is

bounded from above. If it is not the case, there exists a number 𝑛3 ≥ 𝑛2 such
that 𝑤𝑛3

< 0 and max
𝑛2≤𝑛≤𝑛3

𝑥𝑛 = 𝑥𝑛3
and we have

0 > 𝑤𝑛3
= 𝑥𝑛3

− 𝑐𝑛3
𝑥𝑛3−𝜏 −

𝑛3−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎

≥
[

1− 𝑐−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

]

𝑥𝑛3

≥ 0.

458

Unauthenticated
Download Date | 2/3/17 10:44 AM



OSCILLATION OF NEUTRAL DELAY DIFFERENCE EQUATIONS OF SECOND ORDER

This contradiction shows that 𝑥𝑛 is bounded from above. Thus, there exists a
constant 𝐿 > 0 such that 𝑥𝑛 < 𝐿 for 𝑛 ≥ 𝑛2. Then it follows from (2.7) that

𝑤𝑛 ≥ −𝐿
{

𝑐+

∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

}

≥ −𝐿 > −∞,

which contradicts the fact that 𝑤𝑛 → −∞ as 𝑛 → ∞. Hence Δ𝑤𝑛 ≥ 0 for
𝑛 ≥ 𝑛2. Now summing (2.8) from 𝑛2 to 𝑛 and letting 𝑛 → ∞, we obtain (2.3).
Then 𝑥𝑛 → 0 as 𝑛 → ∞. The proof of the theorem is complete. □

We have the following corollary from Theorem 2.3:

������	�
 2.4� Let 𝑝𝑛 ≥ 𝑘 > 0 for 𝑛 ≥ 𝑛0. Then every solution of

Δ2[𝑥𝑛 − 𝑥𝑛−𝜏 ] + 𝑝𝑛𝑥𝑛−𝛿 = 0, 𝑛 ≥ 𝑛0 (2.9)

oscillates or tend to zero as 𝑛 → ∞.

Example 2.5. By Theorem 2.3, every solution of

Δ2
[
𝑥𝑛 − 1

e
𝑥𝑛−1

]
+ (𝑛+ 2)𝑥𝑛−3 − e−𝑛𝑥𝑛−1 = 0, 𝑛 ≥ 3 (2.10)

oscillates or tend to zero as 𝑛 → ∞.

Remark 2.6� P a r h i and T r i p a t h y [9] proved that if

(𝐻6)
∞∑

𝑛=𝑛0

𝑝𝑛 = ∞

holds, then every solution of (2.9) oscillates (see [9, Theorems 2.6, 2.7]). How-
ever, (𝐻6) cannot be regarded as a sufficient condition for the oscillation of (2.9).
This is evident from the following example.

Example 2.7. Consider

Δ2[𝑥𝑛 − 𝑥𝑛−2] +
3

16
𝑥𝑛−2 = 0, 𝑛 ≥ 2. (2.11)

Clearly, 𝑥𝑛 = 1
2𝑛 is a nonoscillatory solution of (2.11) which tends to zero as

𝑛 → ∞, although (𝐻6) is satisfied. By Corollary 2.4 we come to the right
conclusion.

Remark 2.8� One may observe from the proof of [9, Theorems 2.6, 2.7] that
the authors have proved lim

𝑛→∞
𝑦(𝑛) = 0 when 𝑧(𝑛) < 0 and 𝑚 is even. The same

has also been proved in the theorem when 𝑧(𝑛) > 0 and 𝑚 is even.

Thus the statement of [9, Theorems 2.6, 2.7] should be stated as:

������� 2.9� Let −∞ < 𝑐1 ≤ 𝑐𝑛 ≤ −1. If (𝐻6) holds, then every solution of

Δ2[𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 ] + 𝑝𝑛𝑥𝑛−𝛿 = 0

oscillates or tends to zero as 𝑛 → ∞.
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������� 2.10� Let −𝛼 < 𝑐1 ≤ 𝑐𝑛 ≤ 𝑐3 ≤ −1. If (𝐻6) holds, then the conclu-
sion of Theorem 2.9 holds.

������� 2.11� Let

(𝐻7) ℎ𝑛 = 𝑝𝑛 − 𝑞𝑛−𝛿+𝜎 ≥ 0, 𝑛 ≥ 𝑛0

and

(𝐻8) 𝑐+
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗 < 1

hold. Set

𝑃𝑛 = 𝑛ℎ𝑛. (2.12)

Assume that 𝑃𝑛 < 2 for 𝑛 ≥ 𝑛1 ≥ 𝑛0 and

(𝐻9)
∞∑

𝑛=𝑛0

{
2𝑛ℎ𝑛⋅𝑐𝑛−𝛿
𝑛∏

𝑗=1
(2−𝑃𝑗 )

}

= ∞,

holds, then every solution of (𝐸2) is either oscillatory or tend to zero as 𝑛 → ∞.

P r o o f. Let 𝑥𝑛 be a nonoscillatory solution of (𝐸2). Assume that 𝑥𝑛 > 0 for
𝑛 ≥ 𝑛1 ≥ 𝑛0. Then there exist a 𝑛2 ≥ 𝑛1 such that 𝑥𝑛−𝜇 > 0 for 𝑛 ≥ 𝑛2.
Setting 𝑤𝑛 as in (2.7), we obtain

Δ2𝑤𝑛 + ℎ𝑛𝑥𝑛−𝛿 = 0, 𝑛 ≥ 𝑛2. (2.13)

Thus 𝑤𝑛 > 0 or 𝑤𝑛 < 0 for some 𝑛 ≥ 𝑛3 ≥ 𝑛2. Let 𝑤𝑛 < 0 for 𝑛 ≥ 𝑛3. Then
since (𝐻8) holds, then 𝑥𝑛 is bounded. Indeed, if, 𝑥𝑛 is unbounded, then there
exists a sequence {𝑁𝛼}, 𝑁𝛼 > 𝑛3, for each 𝛼, such that 𝑁𝛼 → ∞ as 𝛼 → ∞ and
max

𝑛3≤𝑛≤𝑁𝛼

𝑥𝑛 = 𝑥𝑁𝛼
and lim

𝛼→∞ 𝑥𝑁𝛼
= ∞. Then from (2.7) we obtain

0 > 𝑤𝑁𝛼
= 𝑥𝑁𝛼

− 𝑐𝑁𝛼
𝑥𝑁𝛼−𝜏 −

𝑁𝛼−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎

≥
⎡

⎣1− 𝑐−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

⎤

⎦ 𝑥𝑁𝛼
→ ∞

as 𝛼 → ∞, a contradiction to the fact that 𝑤𝑛 < 0 for 𝑛 ≥ 𝑛3. Hence 𝑥𝑛 is
bounded. Suppose that lim sup

𝑛→∞
𝑥𝑛 = 𝐿 > 0. Then there exist a sequence {𝑁𝜉},

𝑁𝜉 > 𝑛3, for each 𝜉, such that𝑁𝜉 → ∞ as 𝜉 → ∞ and lim sup
𝑛→∞

𝑥𝑛 = lim
𝜉→∞

𝑥𝑁𝜉
= 𝐿.

Since lim sup
𝜉→∞

𝑥𝑁𝜉−𝜏
≤ 𝐿, then 𝑤𝑛 < 0 for 𝑛 ≥ 𝑛3 yields that

0 > 𝑤𝑛𝜇
≥ 𝐿

{

1− 𝑐𝑁𝜇
−

𝑁𝜇−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

}

> 0,
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a contradiction. Hence lim sup
𝑛→∞

𝑥𝑛 = 0. This in turn implies that lim
𝑛→∞ 𝑥𝑛 = 0.

Next, suppose that 𝑤𝑛 > 0 for 𝑛 ≥ 𝑛3. Thus there exists a 𝑛4 ≥ 𝑛3 such
that Δ𝑤𝑛 > 0 for 𝑛 ≥ 𝑛4. Then multiplying (2.13) by 𝑛 and summing obtained
equation from 𝑛4 to 𝑛 we conclude that there exists a 𝑛5 ≥ 𝑛4 such that

𝑤𝑛−𝛿 ≥ 𝑛

2
Δ𝑤𝑛−𝛿 , 4 ≥ 𝑛5. (2.14)

From (2.7), it follows that 𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 > 𝑤𝑛 which using the nondecreasing
nature of 𝑤𝑛 yields that there exists a real 𝜃 > 0 such that 𝑥𝑛 > 𝜃𝑐𝑛+𝑤𝑛. Thus
there exists a 𝑛6 ≥ 𝑛5 such that

𝑥𝑛−𝛿 > 𝜃𝑐𝑛−𝛿 + 𝑤𝑛−𝛿 . (2.15)

Hence from (2.13), (2.14) and (2.15), we obtain

Δ2𝑤𝑛 +
𝑛ℎ𝑛
2

Δ𝑤𝑛−𝛿 + 𝜃ℎ𝑛𝑐𝑛−𝛿 ≤ 0, 𝑛 ≥ 𝑛6. (2.16)

Let 𝑟𝑛 = 1
𝑛−1∏

𝑗=1
(1−𝑃𝑗

2 )

. Multiplying (2.16) by 𝑟𝑛+1, we obtain by using the decreas-

ing nature of Δ𝑤𝑛

Δ(𝑟𝑛Δ𝑤𝑛) + 𝜃

{
2𝑛ℎ𝑛 ⋅ 𝑐𝑛−𝛿
𝑛∏

𝑗=1

(2− 𝑃𝑗)

}

≤ 0, 𝑛 ≥ 𝑛6.

Summing the above difference inequality from 𝑛6 to 𝑛 and letting 𝑛 → ∞ we
obtain

∞∑

𝑛=𝑛0

{
2𝑛ℎ𝑛 ⋅ 𝑐𝑛−𝛿
𝑛∏

𝑗=1

(2− 𝑃𝑗)

}

< ∞,

a contradiction to (𝐻9). Thus the theorem is proved. □

We note that (𝐻7) is weaker than (𝐻1). When 𝑃𝑛 ≥ 2, where 𝑃𝑛 is defined
in (2.12), we have the following result:

������� 2.12� Assume that 𝑃𝑛 ≥ 2. Let (𝐻7) and (𝐻8) hold. If

(𝐻10)
∞∑

𝑛=𝑛0

2𝑛ℎ𝑛𝑐𝑛−𝛿 = ∞,

then the conclusion of Theorem 2.11 holds.

P r o o f. Let 𝑥𝑛 be a positive nonoscillatory solution of (𝐸2). Then proceeding
as in the proof of Theorem 2.11, one may show that lim

𝑛→∞
𝑥𝑛 = 0 when 𝑤𝑛 < 0

for large 𝑛. Next, suppose that 𝑤𝑛 > 0 for large 𝑛, say for 𝑛 ≥ 𝑛3. Then
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Δ𝑤𝑛 > 0 for some 𝑛 ≥ 𝑛4 ≥ 𝑛3. Then from (2.16), 𝑃𝑛 ≥ 2 and the decreasing
nature of Δ𝑤𝑛, we get

Δ2𝑤𝑛 +
1

2
Δ𝑤𝑛 + 𝜃ℎ𝑛𝑐𝑛−𝛿 ≤ 0, 𝑛 ≥ 𝑛6 ≥ 𝑛3.

The above inequality can be written in the form

Δ(2𝑛−1Δ𝑤𝑛) + 𝜃2𝑛ℎ𝑛𝑐𝑛−𝛿 ≤ 0, 𝑛 ≥ 𝑛6.

Summing the above inequality from 𝑛6 to 𝑛 − 1 and letting 𝑛 → ∞, we obtain
a contradiction. Thus the theorem is proved. □

The following lemma due to G y o r i and L a d a s [4, pp. 183] is needed for
our use in the sequel.

����	 2.13� If

lim inf
𝑛→∞

𝑛−1∑

𝑖=𝑛−𝑘

𝑅𝑖 > (𝑘/𝑘 + 1)𝑘+1,

then Δ𝑢𝑛 +𝑅𝑛𝑢𝑛−𝑘 ≤ 0 has no eventually positive solution and Δ𝑢𝑛 +𝑅𝑛𝑢𝑛−𝑘

≥ 0 has no eventually negative solution.

Using Lemma 2.13 we have the following theorem.

������� 2.14� Let (𝐻7) and (𝐻8) hold.If

lim inf
𝑛→∞

𝑛−1∑

𝑖=𝑛−𝛿

𝑃𝑖 > 2(𝛿/𝛿 + 1)𝛿+1, (2.17)

holds, then the conclusion of Theorem 2.11 hold, where 𝑃𝑛 is defined as in (2.12).

P r o o f. Let 𝑥𝑛 be an eventually nonoscillatory solution of (𝐸2). One may
proceed as in the proof of Theorem 2.11 to show that 𝑥𝑛 → 0 as 𝑛 → ∞ when
Δ𝑤𝑛 < 0 for large 𝑛. Next suppose that Δ𝑤𝑛 > 0 for large 𝑛. As in the proof
of Theorem 2.11 it is easy to obtain (2.16) from which we see that Δ𝑤𝑛 is a
positive solution of

Δ2𝑤𝑛 +
𝑃𝑛

2
Δ𝑤𝑛−𝛿 ≤ 0

for large 𝑛 which is again a contradiction due to Lemma 2.13. Hence the theorem
is proved. □

From the proof of the above theorems, it seems that the assumption 𝛿 ≥ 𝜎+1
leads to the conclusion that: every solution of (𝐸2) oscillates or tend to zero as
𝑛 → ∞. Thus in our next theorem, we make the assumption that 𝜎 ≥ 𝛿 + 1
which will lead us to the conclusion that every solution of (𝐸2) oscillates.

������� 2.15� Let 𝜎 ≥ 𝛿 + 1, 𝛿 ≥ 𝜏 + 1 and

(𝐻11) 0 ≤ 𝑐𝑛 ≤ 1.
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Further suppose that (𝐻6) and 𝑝𝑛 ≥ 2𝑞𝑛−𝛿+𝜎 hold for 𝑛 ≥ 𝑛0. If

lim sup
𝑛→∞

𝑛−1∑

𝑖=𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑖

𝑝𝑗 − 𝑞𝑗−𝛿+𝜎

𝑐𝑗−𝛿+𝜎
> 1, (2.18)

then every solution of (𝐸2) is oscillatory.

P r o o f. Let 𝑥𝑛 be a nonoscillatory solution of (𝐸2) such that 𝑥𝑛 > 0 and
𝑥𝑛−𝜇 > 0 for some 𝑛 ≥ 𝑛1 ≥ 𝑛0. Setting

𝑦𝑛 = 𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 +

𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

𝑞𝑗𝑥𝑗−𝜎, (2.19)

we see from (𝐸2) that

Δ2𝑦𝑛 + (𝑝𝑛 − 𝑞𝑛−𝛿+𝜎)𝑥𝑛−𝛿 = 0. (2.20)

Then Δ2𝑦𝑛 < 0 for 𝑛 ≥ 𝑛1. This in turn implies that 𝑦𝑛 > 0 or 𝑦𝑛 < 0 for some
𝑛 ≥ 𝑛2 ≥ 𝑛1. First suppose that 𝑦𝑛 < 0 for 𝑛 ≥ 𝑛2. If Δ𝑦𝑛 < 0 for large 𝑛, then
𝑦𝑛 < −𝜆 for some 𝑛 ≥ 𝑁 ≥ 𝑛2 and 𝜆 > 0. Since 𝑥𝑁 < 𝑦𝑁 + 𝑐𝑁𝑥𝑁−𝜏 , then

𝑥𝑁+𝜏 < 𝑦𝑁+𝜏 + 𝑥𝑁 < −𝜆+ 𝑥𝑁 (2.21)

and therefore,

𝑥𝑁 < −𝜆+ 𝑥𝑁−𝜏 . (2.22)

By combining (2.21) and (2.22) we get

𝑥𝑁+𝜏 < −2𝜆+ 𝑥𝑁−𝜏 , (2.23)

and if we continue with this procedure we can prove that

𝑥𝑁+𝑚𝜏 < −(𝑚+ 1)𝜆+ 𝑥𝑁−𝜏 (2.24)

for any integer 𝑚 > 1. If we let 𝑚 → ∞ in (2.24) we come to a contradiction.
Hence Δ𝑦𝑛 > 0 for large 𝑛, say for 𝑛 ≥ 𝑛3 ≥ 𝑛2. Then we have from 𝑥𝑛−𝛿 >
−𝑦𝑛−𝛿+𝜎

𝑐𝑛−𝛿+𝜎
and (2.20) implies

Δ2𝑦𝑛 − 𝑝𝑛 − 𝑞𝑛−𝛿+𝜎

𝑐𝑛−𝛿+𝜏
𝑦𝑛−𝛿+𝜏 ≤ 0

for 𝑛 ≥ 𝑛3. Summing the above inequality from 𝑠 to 𝑛− 1, we have

−Δ𝑦𝑠 ≤
𝑛−1∑

𝑖=𝑠

𝑝𝑖 − 𝑞𝑖−𝛿+𝜎

𝑐𝑖−𝛿+𝜏
𝑦𝑖−𝛿+𝜏
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Again summing the above inequality from 𝑛− 𝛿 + 𝜏 − 1 to 𝑛− 1, we have

𝑦𝑛−𝛿+𝜏−1 ≤
𝑛−1∑

𝑖=𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑖

𝑝𝑗 − 𝑞𝑗−𝛿+𝜎

𝑐𝑗−𝛿+𝜏
𝑦𝑖−𝛿+𝜏

≤ 𝑦𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑖

𝑝𝑗 − 𝑞𝑗−𝛿+𝜎

𝑐𝑗−𝛿+𝜏
.

Consequently, we have that
𝑛−1∑

𝑖=𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑖

𝑝𝑗−𝑞𝑗−𝛿+𝜎

𝑐𝑗−𝛿+𝜎
< 1, a contradiction to the

assumption of the theorem.

Hence 𝑦𝑛 > 0 for 𝑛 ≥ 𝑛2. In this case Δ𝑦𝑛 > 0 for large 𝑛, say for 𝑛 ≥ 𝑛4≥ 𝑛2.
First, notice from (2.19) we have

𝑥𝑛 ≥ 𝑦𝑛 −
𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

𝑞𝑗𝑥𝑗−𝜎. (2.25)

Moreover, using 𝑝𝑗+𝛿−𝜎 − 𝑞𝑗 ≥ 𝑞𝑗 , 𝑗 ≥ 𝑛0, we get

𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

𝑞𝑗𝑥𝑗−𝜎 ≤ −
𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

𝑞𝑗
𝑝𝑗+𝛿−𝜎 − 𝑞𝑗

Δ2𝑦𝑗+𝛿−𝜎

≤ −
𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

Δ2𝑦𝑗+𝛿−𝜎

≤ 𝑦𝑛 − 𝑘,

that is,
𝑛−1∑

𝑖=𝑛0

𝑖−𝛿+𝜎−1∑

𝑗=𝑖

𝑞𝑗𝑥𝑗−𝜎 ≤ 𝑦𝑛 − 𝑘, (2.26)

where 𝑘 = 𝑦𝑛0+𝛿−𝜎. By combining (2.25) and (2.26) it follows that 𝑥𝑛 > 𝑘 for
𝑛 ≥ 𝑛4. Hence 𝑥𝑛−𝛿 > 𝑘 for 𝑛 ≥ 𝑛5 ≥ 𝑛4. Then summing (2.20) from 𝑛5 to
𝑛− 1, we get

∞∑

𝑘=𝑛5

𝑞𝑘−𝛿+𝜎 < ∞,

contradicting (𝐻6). Hence every solution of (𝐸2) oscillates. This completes the
proof of the theorem. □

For 𝑞𝑛 ≡ 0 and 𝑐𝑛 ≡ 1, we have the following corollary from Theorem 2.15:

������	�
 2.16� Let 𝛿 > 𝜏, (𝐻6) and

lim sup
𝑛→∞

𝑛−1∑

𝑖=𝑛−𝛿+𝜏−1

𝑛−1∑

𝑗=𝑖

𝑝𝑗 > 1
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then every solution of (2.9) is oscillatory.

3. Oscillatory behaviour of solutions
of equations (𝑬1) and (𝑬2) with forcing terms

This section deals with the oscillation and asymptotic behavior of nonoscilla-
tory solutions of

(𝐸3) Δ2(𝑥𝑛 + 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 − 𝑞𝑛𝑥𝑛−𝜎 = 𝑓𝑛

and

(𝐸4) Δ2(𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 ) + 𝑝𝑛𝑥𝑛−𝛿 − 𝑞𝑛𝑥𝑛−𝜎 = 𝑓𝑛

where 𝑛 ≥ 𝑛0 > 0, 𝜏 , 𝛿 and 𝜎 are defined as before and {𝑓𝑛} is a real sequence
defined for 𝑛 ≥ 𝑛0.

������� 3.1� Let (𝐻1), (𝐻2) and (𝐻3) hold. Further, assume that

(𝐻11) There exists a sequence {𝐹𝑛}∞𝑛=𝑛0
such that Δ2𝐹𝑛 = 𝑓𝑛 and lim

𝑛→∞𝐹𝑛 = 0.

Then every solution of (𝐸3) is oscillatory or tend to zero as 𝑛 → ∞.

P r o o f. Let {𝑥𝑛} be a nonoscillatory solution of (𝐸3) such that 𝑥𝑛 > 0 and
𝑥𝑛−𝜇 > 0 for 𝑛 ≥ 𝑛1 ≥ 𝑛0. Define

𝑢𝑛 = 𝑧𝑛 − 𝐹𝑛 (3.1)

where 𝑧𝑛 is defined by (2.1). Then from (𝐸3) and (𝐻1) we obtain

Δ2𝑢𝑛 ≤ −𝑘𝑥𝑛−𝛿 , 𝑛 ≥ 𝑛1. (3.2)

Thus Δ𝑢𝑛 is eventually a nonincreasing function and Δ𝑢𝑛 ≥ 0 or Δ𝑢𝑛 < 0 for
some 𝑛 ≥ 𝑛2 ≥ 𝑛1. First suppose that Δ𝑢𝑛 < 0 for 𝑛 ≥ 𝑛2. Then 𝑢𝑛 < 0
for some 𝑛 ≥ 𝑛3 ≥ 𝑛2 and lim

𝑛→∞
𝑢𝑛 = −∞. We claim that 𝑥𝑛 is bounded from

above. If not, then there exists a sequence {𝑁𝛼}∞𝛼=1, 𝑁𝛼 ≥ 𝑛3, such that

lim
𝛼→∞𝑁𝛼 = ∞, lim

𝛼→∞ 𝑢𝑁𝛼
= −∞, lim

𝛼→∞𝐹𝑁𝛼
= 0, lim

𝛼→∞ 𝑥𝑁𝛼
= −∞

and max
𝑛3≤𝑛≤𝑁𝛼

𝑥𝑛 = 𝑥𝑁𝛼
. Then, we have from (3.1)

0 > 𝑢𝑁𝛼
= 𝑥𝑁𝛼

+ 𝑐𝑁𝛼
𝑥𝑁𝛼−𝜏 −

𝑁𝛼−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎 − 𝐹𝑁𝛼

≥
⎧
⎨

⎩
1−

∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

⎫
⎬

⎭
𝑥𝑁𝛼

− 𝐹𝑁𝛼
.
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Taking limit as 𝛼 → ∞, we see that

lim
𝛼→∞

𝑢𝑁𝛼
≥

{

1−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

}

lim
𝛼→∞

𝑥𝑁𝛼
= ∞,

a contradiction. Hence 𝑥𝑛 is bounded from above. Thus there exists a constant
𝐿 > 0 such that 𝑥𝑛 ≤ 𝐿 for 𝑛 ≥ 𝑛3. Hence from (3.1)

𝑢𝑛 ≥ −𝐿
𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗 ≥ −𝐿
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗 ≥ −𝑙 > −∞,

a contradiction.

Therefore, Δ𝑢𝑛 ≥ 0 for 𝑛 ≥ 𝑛2. Then summing (3.2) from 𝑛2 to ∞, we obtain
(2.3). This proves that 𝑥𝑛 → 0 as 𝑛 → ∞.Thus the theorem is proved. □
Example 3.2. By Theorem 3.1, every solution of

Δ2
[
𝑥𝑛 +

1

2
𝑥𝑛−1

]
+ 2𝑥𝑛−3 − e−𝑛𝑥𝑛−1 = (−1)𝑛e−𝑛, 𝑛 ≥ 3, (3.3)

is oscillatory or tends to zero as 𝑛 → ∞. In particular, 𝑥𝑛 = (−1)𝑛 is an

oscillatory solution of the equation (3.3). In this case, 𝐹𝑛 = (−1)𝑛e−𝑛

(1+ 1
𝑒 )

2 → 0 as

𝑛 → ∞ and Δ2𝐹𝑛 = 𝑓𝑛 = (−1)𝑛e−𝑛.

One may proceed as in the proof of Theorem 3.1 to prove the following result.

������� 3.3� Let (𝐻1), (𝐻4), (𝐻5) and (𝐻11) hold. Then every solution of
(𝐸4) is oscillatory or tends to zero as 𝑛 → ∞.

Example 3.4. Consider

Δ2[𝑥𝑛−e−𝑛𝑥𝑛−1]+4𝑥𝑛−3− 1

e

(
1+

1

e

)2

e−𝑛𝑥𝑛−1 =
(
1+

1

e

)3

e−𝑛(−1)𝑛, 𝑛 ≥ 3.

(3.4)
All the conditions of Theorem 3.3 are satisfied. 𝑥𝑛 = (−1)𝑛, 𝑛 ≥ 3, is an
oscillatory solution of (3.4). In this case, 𝐹𝑛 = (1+1/e)e−𝑛(−1)𝑛 and Δ2𝐹𝑛 = 𝑓𝑛
and lim

𝑛→∞𝐹𝑛 = 0.

Remark 3.5� From Theorem 3.1 and Theorem 3.3, it seems that the behaviour
of 𝐹𝑛 forces all nonoscillatory solutions of (𝐸3) and (𝐸4) tend to zero as 𝑛 → ∞.
In the following, we do not insist that 𝐹𝑛 → 0 as 𝑛 → ∞. Instead, we assume
that 𝐹𝑛 changes sign with Δ2𝐹𝑛 = 𝑓𝑛. This enables us to show that every
solution of (𝐸3) and (𝐸4) oscillates. However, these results do not hold good for
the corresponding unforced equations (𝐸1) and (𝐸2) respectively.

The following conditions are needed for our use in the sequel.

(𝐻12) There exists a real valued function 𝐹𝑛, 𝑛 ≥ 𝑛0, which changes sign and
Δ2𝐹𝑛 = 𝑓𝑛.
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(𝐻13)
∞∑

𝑛=𝑛0+𝜇
ℎ∗𝑛𝐹

±
𝑛−𝛿 = ∞ where 𝐹+

𝑛 = max{𝐹𝑛, 0} and 𝐹−
𝑛 = max{−𝐹𝑛, 0},

and ℎ∗𝑛 = min{ℎ𝑛, ℎ𝑛−𝜏}.
(𝐻14) −∞ < lim inf

𝑛→∞ 𝐹𝑛 < 0 < lim sup
𝑛→∞

𝐹𝑛 < ∞.

(𝐻15) lim inf
𝑛→∞

𝐹𝑛

𝑛 = −∞ and lim sup
𝑛→∞

𝐹𝑛

𝑛 = ∞.

������� 3.6� Let (𝐻3), (𝐻7), (𝐻12) and (𝐻15) hold and 𝑐𝑛 ≥ 0. Then every
solution of (𝐸3) oscillates.

P r o o f. Let 𝑥𝑛 be a nonoscillatory solution of (𝐸3) such that 𝑥𝑛 > 0 and
𝑥𝑛−𝜇 > 0 for 𝑛 ≥ 𝑛1 ≥ 𝑛0 + 𝜇. Setting 𝑧𝑛 as in (2.1) and 𝑢𝑛 as in (3.1), we
obtain

Δ2𝑢𝑛 + ℎ𝑛𝑥𝑛−𝛿 = 0, 𝑛 ≥ 𝑛1. (3.5)

Then for 𝑛 ≥ 𝑛2 ≥ 𝑛1,
Δ𝑢𝑛 ≤ Δ𝑢𝑛2

.

This in turn implies that

𝑧𝑛 ≤ 𝐹𝑛 + 𝑢𝑛2
+ (𝑛− 𝑛2)Δ𝑢𝑛2

.

Hence
𝑧𝑛
𝑛

≤ 𝐹𝑛

𝑛
+
𝑢𝑛2

𝑛
+
{
1− 𝑛2

𝑛

}
Δ𝑢𝑛2

.

Taking limit as 𝑛 → ∞ both sides in the above inequality, we obtain lim inf
𝑛→∞

𝑧𝑛
𝑛

= −∞. This in turn implies that lim inf
𝑛→∞ 𝑧𝑛 = −∞ and

lim sup
𝑛→∞

1

𝑛

𝑛−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎 = ∞

and hence lim
𝑛→∞ 𝑥𝑛 = ∞. Thus there exists an increasing sequence {𝑁𝛼}∞𝛼=1,

𝑁𝛼 ≥ 𝑛2 and 𝑁𝛼 → ∞ as 𝛼 → ∞ such that lim
𝛼→∞ 𝑧𝑁𝛼

= −∞, max
𝑛2≤𝑛≤𝑁𝛼

𝑥𝑛 = 𝑥𝑁𝛼

and lim
𝛼→∞ 𝑥𝑁𝛼

= ∞. Then from (2.1)

𝑧𝑁𝛼
> 𝑥𝑁𝛼

−
𝑁𝛼−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎

>

{

1−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

}

𝑥𝑁𝛼
.

Now, taking lim inf
𝛼→∞ both sides in the above inequality, we see that

−∞ = lim inf
𝑛→∞ 𝑧𝑛 ≥

{

1−
∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

}

lim inf
𝛼→∞ 𝑥𝑁𝛼

≥ 0,
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a contradiction. Hence every solution of (𝐸3) is oscillatory. This completes the
proof of the theorem. □

Proceeding as in the lines of proof of Theorem 3.6, one may obtain the fol-
lowing theorem.

������� 3.7� Let (𝐻5), (𝐻8), (𝐻12) and (𝐻15) hold. Then every solution of
(𝐸4) oscillates.

������� 3.8� Let (𝐻7), (𝐻12), (𝐻13) and (𝐻14) hold. Then every solution of
(𝐸3) oscillates provided that (𝐻10) and lim inf

𝑛→∞ 𝐹−
𝑛 = 0 hold.

P r o o f. Let 𝑥𝑛 be a nonoscillatory solution of (𝐸3) such that 𝑥𝑛 > 0 and
𝑥𝑛−𝜇 > 0 for 𝑛 ≥ 𝑛1 ≥ 𝑛0 + 𝜇. Setting 𝑧𝑛 as in (2.1) and 𝑢𝑛 as in (3.1), we
obtain (3.5). Hence Δ2𝑢𝑛 ≤ 0 for 𝑛 ≥ 𝑛2 ≥ 𝑛1. Thus there exists a 𝑛3 ≥ 𝑛2

such that 𝑢𝑛 > 0 or 𝑢𝑛 < 0 for 𝑛 ≥ 𝑛3. Let 𝑢𝑛 > 0 for 𝑛 ≥ 𝑛3. Then Δ𝑢𝑛 ≥ 0
for 𝑛 ≥ 𝑛4 ≥ 𝑛3. Further, 𝑢𝑛 > 0 for 𝑛 ≥ 𝑛3 and 0 ≤ 𝑐𝑛 ≤ 1 implies that
𝑥𝑛 + 𝑥𝑛−𝜏 ≥ 𝐹+

𝑛 for 𝑛 ≥ 𝑛3. From (3.5) we obtain

0 = Δ2𝑢𝑛 + ℎ𝑛𝑥𝑛−𝛿 +Δ2𝑢𝑛−𝜏 + ℎ𝑛−𝜏𝑥𝑛−𝛿−𝜏

≥ Δ2𝑢𝑛 +Δ2𝑢𝑛−𝜏 + ℎ∗𝑛[𝑥𝑛−𝛿 + 𝑥𝑛−𝛿−𝜏 ]

≥ Δ2𝑢𝑛 +Δ2𝑢𝑛−𝜏 + ℎ∗𝑛𝐹
+
𝑛−𝛿 ,

that is,

0 ≥ Δ2𝑢𝑛 +Δ2𝑢𝑛−𝜏 + ℎ∗𝑛𝐹
+
𝑛−𝛿 . (3.6)

Summing the above inequality from 𝑛4 to 𝑛− 1 and letting 𝑛 → ∞, we obtain

∞∑

𝑛=𝑛4

ℎ∗𝑛𝐹
+
𝑛−𝛿 < ∞,

a contradiction to (𝐻13). Hence 𝑢𝑛 < 0 for 𝑛 ≥ 𝑛3. There are two cases in
hand, Δ𝑢𝑛 ≥ 0 and Δ𝑢𝑛 < 0 for some 𝑛 ≥ 𝑛5 ≥ 𝑛3. First suppose that
Δ𝑢𝑛 < 0 for 𝑛 ≥ 𝑛5 ≥ 𝑛3. Then 𝑢𝑛 → −∞ as 𝑛 → ∞. If 𝑥𝑛 is bounded
from above, then from (𝐻14) and (3.1) it follows that 𝑢𝑛 is bounded, a con-
tradiction. Hence 𝑥𝑛 must be unbounded. Thus there exists an increasing
sequence {𝑁𝛼}∞𝛼=1, 𝑁𝛼 ≥ 𝑛5, and 𝑁𝛼 → ∞ as 𝛼 → ∞ such that 𝑢𝑁𝛼

→ −∞ as
𝛼 → ∞, max

𝑛5≤𝑛≤𝑁𝛼

𝑥𝑛 = 𝑥𝑁𝛼
and lim

𝛼→∞ 𝑥𝑁𝛼
= ∞. Hence

𝑢𝑁𝛼
= 𝑥𝑁𝛼

+ 𝑐𝑁𝛼
𝑥𝑁𝛼−𝜏

−
𝑁𝛼−1∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎 − 𝐹𝑁𝛼,

≥
⎧
⎨

⎩
1−

∞∑

𝑖=𝑛0

𝑖−1∑

𝑗=𝑖−𝛿+𝜎

𝑞𝑗

⎫
⎬

⎭
𝑥𝑁𝛼

− 𝐹𝑁𝛼
.
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Letting 𝛼 → ∞, we obtain a contradiction. Next, suppose that Δ𝑢𝑛 ≥ 0 for
𝑛 ≥ 𝑛5. Then from (3.6) we have

∞∑

𝑖=𝑛3

ℎ∗𝑛(𝑥𝑛 + 𝑥𝑛−𝜏 ) < ∞.

Using (𝐻13) we obtain

lim inf
𝑛→∞

𝑥𝑛 + 𝑥𝑛−𝜏

𝐹−
𝑛−𝛿

= 0. (3.7)

Set

𝑣𝑛 = 𝑥𝑛 + 𝑐𝑛𝑥𝑛−𝜏 − 𝐹𝑛. (3.8)

Then Δ𝑣𝑛 = Δ𝑢𝑛 +
𝑛−1∑

𝑗=𝑛−𝛿+𝜎

𝑞𝑗𝑥𝑗−𝜎 > 0 and 𝑣𝑛 > 0 for 𝑛 ≥ 𝑛6 ≥ 𝑛4. Hence

lim
𝑛→∞ 𝑣𝑛 = 𝛽, 0 < 𝛽 ≤ ∞. From (3.7), there exists an increasing sequence

{𝑁𝛼}∞𝛼=1, 𝑁𝛼 ≥ 𝑛6, and a real 𝜆 ∈ (0, 1) such that

𝑥𝑁𝛼
+ 𝑥𝑁𝛼−𝜏 < 𝜆𝐹−

𝑁𝛼−𝛿.

Thus using (3.8) we see that

𝑣𝑁𝛼
= 𝑥𝑁𝛼

+ 𝑐𝑁𝛼
𝑥𝑁𝛼−𝜏 − 𝐹𝑁𝛼

< 𝑥𝑁𝛼
+ 𝑥𝑁𝛼−𝜏 − 𝐹𝑁𝛼

< 𝜆𝐹−
𝑁𝛼−𝛿 − 𝐹𝑁𝛼

< ∞.

Hence 0 < 𝛽 < ∞, that is 𝑣𝑛 is bounded. Clearly 𝑥𝑛 is bounded, because 𝑢𝑛 < 0.
Then from (3.7), lim inf

𝑛→∞
𝑥𝑛 = 0. Thus

0 < 𝛽 = lim inf
𝑛→∞ 𝑣𝑛 ≤ lim inf

𝑛→∞ [𝑥𝑛 + 𝑥𝑛−𝜏 + 𝐹−
𝑛 ]

≤ lim inf
𝑛→∞ 𝐹−

𝑛 = 0,

a contradiction. Hence every solution of (𝐸3) oscillates. The proof is complete.
□

Let 𝑞𝑛 ≡ 0, 𝑛 ≥ 𝑛0. Then it is easy to prove the following result:

������� 3.9� Let (𝐻7), (𝐻10), (𝐻12) and (𝐻13) hold. Then every solution of

Δ2[𝑥𝑛 − 𝑐𝑛𝑥𝑛−𝜏 ] + 𝑝𝑛𝑥𝑛−𝛿 = 𝑓𝑛 (3.9)

oscillates.

From Theorems 3.8 and 3.9, it seems that the presence of 𝑞𝑛 in (𝐸3) forces
us to assume some additional conditions in Theorem 3.8, these are (𝐻14) and
lim inf
𝑛→∞ 𝐹−

𝑛 = 0. Hence an improvement of Theorem 3.8 is necessary.
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