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ABSTRACT. The notion of a relatively uniform convergence (ru-convergence)

has been used first in vector lattices and then in Archimedean lattice ordered

groups.

Let G be an Archimedean lattice ordered group. In the present paper, a

relative uniform completion (ru-completion) Gω1 of G is dealt with. It is known

that Gω1 exists and it is uniquely determined up to isomorphisms over G. The

ru-completion of a finite direct product and of a completely subdirect product

are established. We examine also whether certain properties of G remain valid in

Gω1 . Finally, we are interested in the existence of a greatest convex l-subgroup

of G, which is complete with respect to ru-convergence.
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The notion of a relatively uniform convergence (ru-convergence) has been
studied first in vector lattices (cf. monographs by B . Z . V u l i k h [25],
W . A . J . L u x e m b u r g and A . C . Z a a n e n [21]). A . I . V e k s l e r [24]
modified the definition of ru-convergence in vector lattices for applying in lattice
ordered groups. The notion of a relative uniform completion (ru-completion) of
vector lattices has been introduced by A . I . V e k s l e r [24]. A . W . H a g e r and
J . M a r t i n e z [15], R . N . B a l l and A . W . H a g e r [3], and J . M a r t i n e z
[22] considered ru-completion in Archimedean lattice ordered groups. A related
notion of a uniform convergence (with a fixed regulator) in various structures
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was studied, e.g., in [19], [5], [10], [8], [9]. Convergences in MV-algebras are
discussed in Section 5.

An ru-completion of an Archimedean lattice ordered group G can be con-
structed by a successive use of the Cantor’s method, which consists in adding
limits of relatively uniformly Cauchy sequences. To obtain an ru-completion,
there are needed ω1 steps, in general. This completion is denoted by Gω1 . A
lattice ordered group obtained in the first step of this process is called a Cantor
extension of G. It was investigated in [11].

This paper can be considered as a continuation of the paper [11]. Let G
be an Archimedean lattice ordered group. First we prove that if A is a direct
factor of G, then Aω1 is a direct factor of Gω1 and that if G is a completely
subdirect product of Archimedean lattice ordered groups Gi (i ∈ I), then Gω1

is a completely subdirect product of (Gi)ω1 (i ∈ I). Then we prove that if every
disjoint upper bounded subset of G is finite (Conrad’s condition), then the same
holds in Gω1 . We give also an example to show that the ru-completion of an
epiarchimedean lattice ordered group need not be epiarchimedean. Finally, we
are interested in the existence of the greatest convex l-subgroup of G which is
G- ru-complete (for the definition see Paragraph 4).

1. Preliminaries

The standard terminology and notation will be used for lattice ordered groups
(cf. [1], [12], [14]). The group operation will be written additively.

Suppose that G is a lattice ordered group. Let N be the set of all positive
integers, Q and R the additive groups of all rationals and reals with the natural
linear order, respectively. If for all 0 ≤ x, y ∈ G, nx ≤ y for each n ∈ N implies
x = 0, then G is called Archimedean. Archimedean lattice ordered groups are
Abelian ([14, Lemma 4.1.2]). An l-subgroup H of G will be called dense if for
each 0 < g ∈ G there exists h ∈ H with 0 < h ≤ g.
G is said to be complete if every non-void subset of G bounded from above

has a least upper bound in G. An equivalent condition is that every nonempty
subset of G bounded from below has a greatest lower bound in G. Complete
lattice ordered groups are Archimedean ([12, Proposition 54.2]).

���������� 1.1� (cf. [1, p. 71]) Let G∧ be a lattice ordered group satisfying
the following conditions:

(α) G is an l-subgroup of G∧.
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(β) G∧ is complete.

(γ) Each element of G∧ is the least upper bound of a subset of G (or equiva-
lently the dual statement).

Then G∧ is called the Dedekind completion of G.

�	��
�� 1.2� ([1, Theorem 8.2.2]) Every Archimedean lattice ordered group
admits a unique Dedekind completion.

W . A . J . L u x e m b u r g and A . C . Z a a n e n [21] studied the notions of
a uniform convergence and of a relatively uniform convergence of sequences in
vector lattices. We recall a modification of these concepts and related results for
lattice ordered groups.

In what follows G is assumed to be an Archimedean lattice ordered group.

���������� 1.3� ([19], [10]) Let (xn) be a sequence in G, x ∈ G and 0 < u ∈ G.
We say that the sequence (xn) u-uniformly converges to x, written xn

u→ x, if
for each p ∈ N there exists n0 ∈ N such that

p |xn − x| ≤ u for each n ∈ N, n ≥ n0 .

We will refer to u as a convergence regulator.

���������� 1.4� ([24]) A sequence (xn) in G is said to be relatively uniformly
convergent (ru-convergent) to an element x ∈ G (or x is a limit of (xn)), written
xn → x, if there exists 0 < u ∈ G such that xn

u→ x.

����
 1.5� ([11, Lemma 2.5]) Limits in G are uniquely determined.

����
 1.6� ([11, Lemma 2.8]) Let a, b ∈ G, xn ∈ [a, b] for all n ∈ N and let
xn → x. Then x ∈ [a, b].

���������� 1.7� Let 0 < u ∈ G. A sequence (xn) in G is called u-uniformly
Cauchy if for each p ∈ N there exists n0 ∈ N such that

p |xn − xm| ≤ u for each m,n ∈ N, m ≥ n ≥ n0 .

���������� 1.8� A sequence (xn) in G is called relatively uniformly Cauchy
(ru-Cauchy) if (xn) is u-uniformly Cauchy for some 0 < u ∈ G.

����
 1.9� ([11, Lemma 2.14]) Every sequence in G which is ru-Cauchy is
bounded in G.

Let F denote the set of all sequences in G which are ru-Cauchy.
It is easy to prove that if a sequence (xn) in G is ru-convergent then (xn) ∈ F

(see [11, Corollary 2.12]). If also the converse holds then G is called relatively
uniformly complete (ru-complete).
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ŠTEFAN ČERNÁK — JUDITA LIHOVÁ

Example 1.10. Let G be the set of all sequences in R with a finite support. If
the operation + and the partial order are defined componentwise, then G is an
Archimedean lattice ordered group. We intend to show that G is ru-complete.

Let (Xn) be an ru-Cauchy sequence in G, (Xn) = (xn
1 , x

n
2 , . . . , 0, 0, . . . ). We

have to prove that the sequence (Xn) is ru-convergent in G.
There exists 0 < U ∈ G, U = (u1, u2, . . . , 0, 0, . . . ) such that for each p ∈ N

there exists n0 ∈ N with the property

p |Xn −Xm| ≤ U for each m,n ∈ N, m ≥ n ≥ n0 ,

so
p |xn

i − xm
i | ≤ ui for each i ∈ N, m, n ∈ N, m ≥ n ≥ n0 .

Hence (xn
i )∞n=1 is a Cauchy sequence in R for each i ∈ N, thus (xn

i ) is convergent
for each i ∈ N. Let lim

n→∞
xn

i = xi.

There exists i0 ∈ N such that xn0
i = 0 and ui = 0 for each i ∈ N, i > i0.

Hence xn
i = 0 for each n ≥ n0, i ∈ N, i > i0.

Denoting u = max{u1, . . . , ui0} we get

p |xn
i − xm

i | ≤ u for each m,n ∈ N, m ≥ n ≥ n0, i ∈ N, i ≤ i0 .

Assuming that i ∈ N, i ≤ i0 and n ∈ N, n ≥ n0 are fixed, we get

xn
i − u

p
≤ xm

i ≤ xn
i +

u

p
for all m ≥ n .

Consequently
xn

i − u

p
≤ xi ≤ xn

i +
u

p
.

Then

p |xn
i − xi| ≤ u for each i ∈ N, i ≤ i0, n ∈ N, n ≥ n0 .

Under the notations X = (x1, . . . , xi0 , 0, 0, . . . ), V = (u, . . . , u, 0, 0, . . . ) with i0
copies of u, the elements X and V belong to G and

p |Xn −X| ≤ V for each n ∈ N, n ≥ n0 ,

i.e., Xn → X.
Let K ′ be an l-subgroup of a lattice ordered group K, (xn) a sequence in K

and x ∈ K. If xn
u→ x for some 0 < u ∈ K (K′) we will often write xn → x(K)

(xn → x(K′)).

���������� 1.11� Let H be an Archimedean lattice ordered group with the
following properties:

(i) G is an l-subgroup of H.
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(ii) For every sequence (xn) ∈ F there exists x ∈ H such that xn → x(H).

(iii) For every x ∈ H there exists a sequence (xn) ∈ F such that xn → x(H).

Then H will be called a Cantor extension of G.

����
 1.12� Let (xn) be a sequence in G and 0 < u, v ∈ G. If (xn) is u-uni-
formly Cauchy and xn

v→ x then xn
u→ x.

P r o o f. Assume that (xn) is a u-uniformly Cauchy sequence and xn
v→ x. Let

p ∈ N. There exists np ∈ N with

p |xn − xm| ≤ u for each m,n ∈ N, m ≥ n ≥ np .

Then

p xn − u ≤ p xm ≤ p xn + u for each m,n ∈ N, m ≥ n ≥ np .

Assume that n ≥ np is fixed. From xm
v→ x it follows p xm

v→ p x. By 1.6, for
each n ≥ np we get

p xn − u ≤ p x ≤ p xn + u ,

p |xn − x| ≤ u ,

i.e, xn
u→ x. �

Remark� By using 1.12, the conditions (ii) and (iii) are equivalent to the con-
ditions (ii1) and (iii1), respectively.

(ii1) For every sequence (xn) in G which is u-uniformly Cauchy for some
0 < u ∈ G, there exists x ∈ H such that xn

u→ x.

(iii1) For every x ∈ H there exist a sequence (xn) in G and 0 < u ∈ G such that
xn

u→ x.

In view of Remark, Definition 1.11 is equivalent with Definition 3.2 of a Cantor
extension given in [11].

�	��
�� 1.13� ([11, Theorems 4.8, 4.10]) Let G be an Archimedean lattice
ordered group. Then a Cantor extension H of G exists and it is uniquely deter-
mined up to isomorphisms over G.

Cantor extension ofG is not ru-complete, in general. A . I . V e k s l e r [24] has
proved that Cantor extension of a vector lattice with projections is ru-complete
and remarked that the same result is valid for a lattice ordered group with
projections (i.e., for a strongly projectable lattice ordered group [1]).

If xn → 0, then (xn) is called a zero sequence. Denote by E the set of all zero
sequences in G.
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We will apply the Cantor sequence completion method to obtain a Cantor
extension of G (cf. [11]).

Let (xn), (yn) ∈ F . If the operation + and the partial order are defined
componentwise then F turns to an Archimedean lattice ordered group and E

becomes an l-ideal of F . We can form the quotient group G∗ = F/E. Given
(xn) ∈ F we denote by (xn)∗ the corresponding element of G∗. We have (xn)∗ +
(yn)∗ = (xn+yn)∗. If we put (xn)∗ ≤ (yn)∗ if and only if there exist (x′n) ∈ (xn)∗

and (y′n) ∈ (yn)∗ with (x′n) ≤ (y′n), then G∗ is an Archimedean lattice ordered
group in which (xn)∗ ∨ (yn)∗ = (xn ∨ yn)∗ and dually, |(xn)∗| = (|xn|)∗.

If we define f : G → G∗ by f(x) = (x, x, . . . )∗ for each x ∈ G, then f is
an embedding of the lattice ordered group G and G can be considered as an
l-subgroup of G∗. Moreover, we have:

�	��
�� 1.14� ([11, Theorem 4.8]) G∗ is a Cantor extension of G.

�	��
�� 1.15� ([11, Theorem 4.6]) G∗ is an l-subgroup of G∧.

��
���

� 1.16� ([11, Corollary 4.9]) G is a dense l-subgroup of G∗.

���������� 1.17� (cf. [3], [22]) Let ru(G) be an Archimedean lattice ordered
group with the following properties:

(a) G is an l-subgroup of ru(G).

(b) ru(G) is ru-complete.

(c) If G is an l-subgroup of H, H is an l-subgroup of ru(G) and H is ru-com-
plete, then H = ru(G).

Then ru(G) is said to be a relative uniform completion (ru-completion) of G.

Example 1.18. Let G be the set of all eventually constant sequences and H the
set of all convergent sequences in R. If the operation + and the partial order
are performed componentwise, then H is an Archimedean lattice ordered group
and G is an l-subgroup of H. There is established in [11] that G fails to be
ru-complete, H is ru-complete and H = G∗. Therefore H is an ru-completion
of G. Hence H = Gω1 .

Having shown that G∗ is a Cantor extension of G (see 1.14), we can find an
ru-completion of G. It suffices only to define lattice ordered groups Gλ for each
ordinal λ ≤ ω1 (ω1 is the first uncountable ordinal) as follows (cf. [3]):

G0 = G,

Gλ = (Gλ−1)∗ if λ is an ordinal less than ω1 having a predecessor λ− 1,

Gλ =
( ⋃

τ<λ

Gτ

)∗
if λ is a limit ordinal λ < ω1,
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Gω1 =
⋃

τ<ω1

Gτ .

Apparently, if 0 ≤ λ1 < λ2 ≤ ω1 then Gλ1 is an l-subgroup of Gλ2 .
By using the transfinite induction, 1.14 and 1.15, the following results are

easy to derive.

�	��
�� 1.19� (cf. [3]) Gω1 is an ru-completion of G.

����
 1.20� Gω1 is an l-subgroup of G∧.

From 1.1 it follows that G is a dense l-subgroup of G∧. Then as a consequence
of 1.20 we get:

��
���

� 1.21� G is a dense l-subgroup of Gω1 .

����
 1.22� Let H be an ru-complete Archimedean lattice ordered group and
G be an l-subgroup of H. Then there exists an l-isomorphism ϕ of Gω1 into H
leaving all elements of G fixed.

P r o o f. By the transfinite induction we will prove the assertion

(δ) For any ordinal 0 ≤ λ < ω1 there exists an l-isomorphism ϕλ : Gλ → H

such that ϕλ is an extension of ϕα for any α < λ.

Let λ = 0. We haveG0 = G. The identity mapping is a desired l-isomorphism
ϕ0 : G→ H.

Let λ be a non-limit ordinal, λ > 0. Suppose that there exists an l-iso-
morphism ϕλ−1 : Gλ−1 → H such that ϕλ−1 is an extension of ϕβ for each
β < λ − 1. Let x ∈ Gλ. With respect to (iii1) there exist a sequence (xn) in
Gλ−1 and 0 < u ∈ Gλ−1 with xn

u→ x. Consequently (ϕλ−1(xn)) is ϕλ−1(u)-uni-
formly Cauchy in ϕλ−1(Gλ−1) ⊆ H. Hence there exist y ∈ H and 0 < v ∈ H

such that ϕλ−1(xn) v→ y. Let us put ϕλ(x) = y. It is easy to see that ϕλ is
correctly defined and that ϕλ fulfills (δ).

Let λ be a limit ordinal, λ > 0. Assume that for any α < λ there is an
l-isomorphism ϕα : Gα → H such that ϕα is an extension of ϕβ for each β < α.
Define the mapping ψ :

⋃
α<λ

Gα → H by putting ψ(x) = ϕα(x) if x ∈ Gα.

Clearly, ψ is an l-isomorphism of
⋃

α<λ

Gα into H such that it is an extension of

ϕα for any α < λ. Let x ∈ Gλ. Again by (iii1), there exist a sequence (xn) in⋃
α<λ

Gα and 0 < u ∈ ⋃
α<λ

Gα such that xn
u→ x. Further we define the mapping

ϕλ : Gλ → H and prove that ϕλ fulfills (δ) in an analogous way to the previous
case.
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Finally, define the mapping ϕ : Gω1 → H by the rule ϕ(x) = ϕλ(x), if x ∈ Gλ.
With respect to (δ), ϕ is a required l-isomorphism. �

����
 1.23� Let H be an ru-completion of G. Then there exists an l-iso-
morphism of Gω1 onto H leaving all elements of G fixed.

P r o o f. According to 1.22 there exists an l-isomorphism ϕ of Gω1 into H fixing
all elements of G. It remains to show that ϕ is surjective. Apparently, H1 =
ϕ(Gω1) is an ru-complete l-subgroup of H and G = ϕ(G) is an l-subgroup of H1.
Then by 1.17, H1 = H which completes the proof. �

From 1.19 and 1.23 we immediately obtain:

�	��
�� 1.24� Let G be an Archimedean lattice ordered group. Then there
exists an ru-completion ru(G) of G and it is uniquely determined up to isomor-
phisms over G.

The result presented in the last theorem is not new, but we have not been
able to find its proof in the papers.

2. Direct factors of Gω1

Let G be a lattice ordered group and X a subset of G. The set

Xδ =
{
g ∈ G : |g| ∧ |x| = 0 for all x ∈ X

}

is a convex l-subgroup of G.
Let A be a convex l-subgroup of G. If there exists a convex l-subgroup B of

G such that A ∩ B = {0}, G = A + B then A (and also B) is called a direct
factor of G and G is said to be the direct product of A and B. This is expressed
by writing G = A× B. If G = A×B then B = Aδ.

It is well-known that a convex l-subgroup A of G is a direct factor of G if and
only if the following condition is fulfilled:

For each 0 ≤ g ∈ G the set S = {a ∈ A : 0 ≤ a ≤ g} has a greatest element.
If A is a direct factor of G and 0 ≤ g ∈ G then the greatest element of S is

denoted by g(A) and called the component of g in A.
In this section we continue with the assumption that G is an Archimedean

lattice ordered group. It will be shown how to construct an ru-completion of a
convex l-subgroup of G that is a direct factor of G. This result will be applied
to find an ru-completion of the direct product of lattice ordered groups with a
finite number of direct factors.
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Let A be a convex l-subgroup of G. Then c(A) stands for the convex l-sub-
group of Gω1 generated by A, i.e.,

c(A) =
{
x ∈ Gω1 : a1 ≤ x ≤ a2 for some a1, a2 ∈ A

}
.

����
 2.1� Let A be a direct factor of G. Then c(A) is a direct factor of Gω1 .

P r o o f. Evidently, G∩ c(A) = A. Assume that 0 ≤ y ∈ Gω1 . The proof will be
done if we show that the set S =

{
0 ≤ x ∈ c(A) : x ≤ y

}
possesses a greatest

element. By 1.20, Gω1 ⊆ G∧. Then 1.1 yields that y ≤ g for some g ∈ G. The
element h = y ∧ g(A) belongs to c(A) and 0 ≤ h ≤ y, so h ∈ S. We claim that
h is the greatest element of S. Suppose that there exists s ∈ S, h < s. From
s ≤ y and s ≤ a for some a ∈ A we obtain s ≤ y ∧ a. Convexity of A in G

yields that a∧ g ∈ A. Taking into account that A is a direct factor of G, we get
s > h = y ∧ g(A) ≥ y ∧ g ∧ a = y ∧ a, a contradiction. �

The proof of 2.1 is similar to that of [18, Proposition 2.6] where the relation
between the direct factors in G and G∧ has been stated.

�	��
�� 2.2� Let A be a direct factor of G. Then c(A) ∼= Aω1 .

P r o o f. We have to verify that the conditions (a), (b) and (c) are satisfied with
ru(G) and G replaced by c(A) and A, respectively.

(a) It is easy to check that A is an l-subgroup of c(A).
(b) To prove that c(A) is ru-complete, assume that (xn) is a sequence in c(A)

and that it is ru-Cauchy. Hence there exists 0 < u ∈ c(A) such that (xn) is
u-uniformly Cauchy. By 1.9, there are v, w ∈ c(A) with v ≤ xn ≤ w for any
n ∈ N. Further, there are a1, a2 ∈ A such that a1 ≤ v and w ≤ a2. Whence
a1 ≤ xn ≤ a2 for all n ∈ N. Gω1 being ru-complete, there is x ∈ Gω1 with
xn → x(Gω1). As c(A) ⊆ Gω1 , 1.12 entails xn

u→ x. In view of 1.6, a1 ≤ x ≤ a2,
so x ∈ c(A).

(c) Let H be an ru-complete lattice ordered group such that A is an l-sub-
group of H and H is an l-subgroup of c(A).

Observe that Bτ = Gτ ∩ c(A) ⊇ A for any τ < ω1. We want to prove
that c(A) ⊆ H. It suffices to show that Bτ ⊆ H for each τ < ω1, because⋃
τ<ω1

Bτ = c(A). Assume that x ∈ Bτ for some τ < ω1. We are going to prove

that x ∈ H.
Three cases (α), (β) and (γ) can occur.

(α) τ = 0.
Then x ∈ B0 = G0 ∩ c(A) = G ∩ c(A) = A ⊆ H.
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(β) τ is a limit ordinal.
Assume that for any λ < τ , Bλ ⊆ H is valid. We can assume that x ≥ 0.
From Gτ =

( ⋃
λ<τ

Gλ

)∗
and x ∈ Gτ we infer that there exists a sequence (xn)

in
⋃

λ<τ

Gλ with (xn) ≥ 0, xn → x
( ⋃

λ<τ

Gλ

)
. Then there exist λ1 < τ and 0 <

u ∈ Gλ1 such that xn
u→ x. As x ∈ c(A), there is a ∈ A, x ≤ a. Consequently,

x′n = xn ∧ a u→ x ∧ a = x. We have 0 ≤ x′n ≤ a for all n ∈ N. Since a ∈ Bλ

for any λ < τ , for each n ∈ N there exists λn < τ such that x′n ∈ Bλn
. The

assumption implies that Bλn
⊆ H for each n ∈ N, so (x′n) is a sequence in H.

We prove now that (x′n) is an ru-Cauchy sequence in H. We are looking for
a regulator lying in H. Remark that u need not have such a property.

Let p ∈ N. There exists n0 ∈ N with

p |x′n − x| ≤ u for all n ∈ N, n ≥ n0 ;

(x′n) is a sequence in H ⊆ c(A) and x ∈ c(A). By 2.1, c(A) is a direct factor of
Gω1 . Then

p |x′n − x| = p |x′n − x|(c(A)) ≤ u
(
c(A)

) ≤ a′

for each n ∈ N, n ≥ n0 and some a′ ∈ A, i.e., x′n
a′
→ x. This yields that (x′n) is

an ru-Cauchy sequence in H because of a′ ∈ A ⊆ H.
Taking into account the assumption that H is ru-complete and 1.5 we get

x ∈ H.
(γ) τ is a non-limit ordinal.
Assume that Bτ−1 ⊆ H. Again we suppose that x ≥ 0. From Gτ = (Gτ−1)∗ and
x ∈ Gτ we deduce that there exist a sequence (xn) in Gτ−1 and 0 < u ∈ Gτ−1

with xn
u→ x. In the same way as in the previous case we construct the sequence

(x′n) and prove that x′n ∈ Bτ−1 for each n ∈ N. Applying the assumption we
obtain that (x′n) is a sequence in H. Further, repeating the procedure from (β)
we conclude the proof. �

����
 2.3� Let G = A×B. Then Gω1 = c(A) × c(B).

P r o o f. By 2.1, c(A) is a direct factor of Gω1 . We wish to prove that (c(A))δ =
c(B) holds.

The relation A ⊆ c(A) yields (c(A))δ ⊆ Aδ = B ⊆ c(B).
To prove the inclusion c(B) ⊆ (c(A))δ, assume that 0 ≤ x ∈ c(B) and y ∈

c(A). There are elements b ∈ B and a ∈ A with 0 ≤ x ≤ b and 0 ≤ |y| ≤ a.
Then a ∧ b = 0 implies x ∧ |y| = 0. Hence x ∈ (c(A))δ. �

As a consequence of 2.2 and 2.3 we get:
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�	��
�� 2.4� Let G = A×B. Then Gω1
∼= Aω1 ×Bω1 .

What has been shown now for two direct factors can be generalized to an
arbitrary finite number of direct factors. It is an open question, whether it is
possible to generalize this result to an infinite number of direct factors.

3. ru-completion of a completely subdirect product

of lattice ordered groups

Let G1 be an l-subgroup of G and F1(E1) the set of all sequences in G1 which
are ru-Cauchy (zero) (regulators are taken from G1). Given (xn) ∈ F1, symbol
(xn)1 denotes the element of the quotient lattice ordered group G∗

1 = F1/E1.
The mapping defined by f((xn)1) = (xn)∗ for each (xn)1 ∈ G∗

1 is an embedding
of the lattice ordered groupG∗

1 intoG∗. HenceG∗
1 can be viewed as an l-subgroup

of G∗.
Let I be a nonempty set and let Gi be an Archimedean lattice ordered group

for any i ∈ I. Assume that G is the direct product of Gi, G =
∏
i∈I

Gi. Then G

is an Archimedean lattice ordered group. The component of an element x ∈ G

in the direct factor Gi will be denoted also by x(i). Let Fi(Ei) be the set of all
ru-Cauchy (zero) sequences in Gi for each i ∈ I. The following lemmas are easy
to verify (cf. [11, Lemmas 6.5, 6.6]). In both lemmas we suppose that (xn) is a
sequence in G.

����
 3.1� If (xn) ∈ F then (xn(i)) ∈ Fi for any i ∈ I.

����
 3.2� If (xn) ∈ E then (xn(i)) ∈ Ei for any i ∈ I.

Assume that (xn)∗ ∈ G∗. By 3.1, from (xn) ∈ F it follows that (xn(i)) ∈ Fi

for each i ∈ I. Thus (xn(i))∗ ∈ G∗
i for each i ∈ I. Denote by X the element

of K =
∏
i∈I

G∗
i such that X(i) = (xn(i))∗ for any i ∈ I. Define the mapping

φ : G∗ → K by putting φ((xn)∗) = X for any (xn)∗ ∈ G∗.

����
 3.3� ([11, Theorem 6.8]) Let G =
∏
i∈I

Gi. Then φ is an l-isomorphism
of G∗ onto K.

Let us put G0
i =

{
g ∈ G : g(j) = 0 for each j ∈ I, j �= i

}
. Let H be

an l-subgroup of G such that G0
i ⊆ H for each i ∈ I. Then H is said to be a

completely subdirect product of Gi (i ∈ I). This notion is due to F ( Š i k [23]).
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�	��
�� 3.4� Let ϕ be an l-isomorphism of a lattice ordered group H onto a
completely subdirect product of Gi (i ∈ I). Then there exists an l-isomorphism
ϕ∗ of H∗ onto a completely subdirect product of G∗

i (i ∈ I) such that ϕ∗ is an
extension of ϕ.

P r o o f. H and H∗ can be considered as l-subgroups of G =
∏
i∈I

Gi and G∗,

respectively. Applying 3.3 and setting ϕ∗ = φ � H∗, ϕ∗ is an l-isomorphism of
H∗ into K =

∏
i∈I

G∗
i .

Let i ∈ I, X ∈ K with X(i) = (xi
n)∗ and X(j) = 0 for each j ∈ I, j �= i.

It remains to show that X has an origin in H∗ under the mapping ϕ∗. From
(xi

n) ∈ Fi we infer that (xi
n) is ui-uniformly Cauchy sequence for some 0 <

ui∈ Gi. Consider the sequence (xn) in G with xn(i) = xi
n, xn(j) = 0 for any

j ∈ I, j �= i, and the element u ∈ G with u(i) = ui, u(j) = 0 for any j ∈ I,
j �= i. We have 0 < u ∈ H, (xn) is a sequence in H and (xn) is u-uniformly
Cauchy. Therefore (xn)∗ ∈ H∗ is valid. We conclude ϕ∗((xn)∗) = X.

Apparently, ϕ∗ is an extension of ϕ. �

�	��
�� 3.5� Let ϕ be an l-isomorphism of a lattice ordered group H onto a
completely subdirect product of Gi (i ∈ I). Then there exists an l-isomorphism
ϕ̄ of Hω1 onto a completely subdirect product of (Gi)ω1 (i ∈ I).

P r o o f. We first prove the assertion:

(∗) For any ordinal τ < ω1 there exists an l-isomorphism ϕτ of Gτ onto a
completely subdirect product of (Gi)τ (i ∈ I) such that ϕτ is an extension
of ϕλ for any λ < τ .

Let τ = 0. Since ϕ0 = ϕ, the assertion (∗) follows from the assumption.
Let τ be a non-limit ordinal. Suppose that ϕτ−1 is an l-isomorphism of Hτ−1

onto a completely subdirect product of (Gi)τ−1 (i ∈ I) and that ϕτ−1 is an
extension of ϕλ for each λ < τ − 1. Then according to definition of Hτ and 3.4,
there is an l-isomorphism ϕτ ofHτ onto (Gi)τ (i ∈ I) extending ϕτ−1. Therefore
ϕτ fulfills (∗).

Let τ be a limit ordinal. Assume that for each λ < τ there exists an l-iso-
morphism ϕλ of Hλ onto a completely subdirect product of (Gi)λ (i ∈ I) and
that ϕλ is an extension of ϕβ for each β < λ. Define the mapping ψ :

⋃
λ<τ

Hλ →
∏
i∈I

⋃
λ<τ

(Gi)λ by the rule ψ(x) = ϕλ(x), if x ∈ Hλ. Then ψ is correctly defined

and it is an l-isomorphism of
⋃

λ<τ

Hλ into
∏
i∈I

⋃
λ<τ

(Gi)λ.
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Let i ∈ I and y ∈ ∏
i∈I

⋃
λ<τ

(Gi)λ such that y(j) = 0 for each j ∈ I, j �= i.

Suppose that y(i) ∈ (Gi)β , β < τ . By the assumption, ϕβ is an l-isomorphism
of Hβ onto a completely subdirect product of (Gi)β (i ∈ I). Hence there exists
x ∈ Hβ with ϕβ(x) = y and so ψ(x) = y.

Therefore ψ is an l-isomorphism of
⋃

λ<τ

Hλ onto a completely subdirect prod-

uct of
⋃

λ<τ

(Gi)λ (i ∈ I). Definition of ψ implies that ψ is an extension of ϕλ for

each λ < τ . Again, by definition of Hτ and 3.4, there exists an l-isomorphism
ϕτ of Hτ onto a completely subdirect product of (Gi)τ (i ∈ I) such that ϕτ is
an extension of ψ. Consequently, ϕτ satisfies (∗).

Applying (∗) we show that the mapping ϕ̄ : Hω1 → ∏
i∈I

(Gi)ω1 defined by

ϕ̄(x) = ϕτ (x) whenever x ∈ Gτ , is a desired l-isomorphism. �

4. Further results on G and Gω1

In the present section we investigate which properties of G remain valid in
Gω1. Further, we are interested in the question whether there exists a greatest
G- ru-complete convex l-subgroup of a lattice ordered group G. As in earlier
sections, the lattice ordered group G is supposed to be Archimedean.

LetD be a subset of G consisting of strictly positive elements ofG. If x∧y = 0
whenever x and y are distinct elements of D, then D will be called a disjoint
subset of G.

An element 0 < x ∈ G is referred to as basic if the set {g ∈ G : 0 ≤ g ≤ x}
is a chain. We will say that a subset B of G is a basis of G if

(i) B is a maximal disjoint subset of G,

(ii) each element of B is basic.

����
 4.1� Let B be a basis of G. Then B is a basis of Gω1 .

P r o o f. Let B be a basis of G. Then B is a disjoint subset of Gω1 , because G is
an l-subgroup of Gω1 . Assume that B is not a maximal disjoint subset of Gω1 .
Then there exists 0 < x ∈ Gω1 , x �∈ G with x ∧ b = 0 for each b ∈ B. By 1.21,
there exists g ∈ G, 0 < g ≤ x. Hence g ∧ b = 0 for each b ∈ B. This contradicts
the maximality of B in G.

Let b ∈ B. It remains to show that the set {x ∈ Gω1 : 0 ≤ x ≤ b} is a chain.
Suppose that there are x1, x2 ∈ Gω1 , 0 ≤ x1 ≤ b, 0 ≤ x2 ≤ b, x1 ‖ x2. By 1.21,
there are g1, g2 ∈ G, 0 < g1 ≤ x1, 0 < g2 ≤ x2. If x1 ∧ x2 = 0, then g1 ∧ g2 = 0,
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a contradiction. If x1 ∧ x2 = x > 0, then y1 = x1 − x > 0, y2 = x2 − x > 0
are elements of Gω1 and y1 ∧ y2 = 0. Repeating the previous procedure with
elements y1 and y2 we finish the proof. �

P . C o n r a d [6] studied the following condition for a lattice ordered group G:

(F ) Every disjoint upper bounded subset of G is finite.

�	��
�� 4.2� ([11, Theorem 5.3]) Let G be an Archimedean lattice ordered
group fulfilling the condition (F ). Then G is isomorphic to a completely subdirect
product of its l-subgroups Gi (i ∈ I) which are o-isomorphic to subgroups of R.

�	��
�� 4.3� Let G satisfy the condition (F ). Then so does Gω1 .

P r o o f. Assume, by way of contradiction, that there exists a disjoint upper
bounded subset D of Gω1 that is infinite. Then there exists x ∈ Gω1 , d ≤ x for
any d ∈ D. By 1.20, Gω1 ⊆ G∧ which together with 1.1 entails that there exists
h ∈ G such that x ≤ h.

According to 4.2 and 3.5, Gω1 is l-isomorphic to a completely subdirect prod-
uct of (Gi)ω1 (i ∈ I). We can suppose that Gω1 is an l-subgroup of

∏
i∈I

G∗
i . In

view of 4.2, (Gi)ω1 = G∗
i and G∗

i is linearly ordered for any i ∈ I.
Let I1 =

{
i ∈ I : there exists d ∈ D with d(i) > 0

}
. Let us notice that I1 is

infinite. Otherwise there would exist d1, d2 ∈ D, d1 �= d2 and i ∈ I1 with d1(i),
d2(i) ∈ G∗

i , d1(i) > 0, d2(i) > 0. We have d1(i) ∧ d2(i) = 0 which is impossible.
For any i ∈ I1 take di ∈ D with di(i) > 0. By 1.16, for any i ∈ I1, there exists
gi ∈ Gi satisfying 0 < gi ≤ di(i). Let g0

i be the element of G with the property
g0

i (i) = gi and gi(j) = 0 for each j ∈ I, j �= i. Then 0 < g0
i ≤ di. We conclude

that {g0
i ∈ G : i ∈ I1} is a disjoint upper bounded subset of G that is infinite,

a contradiction. �

It is well-known that an l-homomorphic image of an Archimedean lattice
ordered group need not be Archimedean. If each l-homomorphic image of G
is Archimedean then we call G epiarchimedean. The convex l-subgroup of G
generated by x ∈ G will be denoted by c(x).

The following result has been obtained by P . C o n r a d [7].

�	��
�� 4.4� A lattice ordered group G is epiarchimedean if and only if c(x)
is a direct factor of G for any x ∈ G.

If G is epiarchimedean then Gω1 need not be epiarchimedean.

Example 4.5. Let G be the set of all eventually constant sequences in R. If
the operation + and the partial order are defined componentwise then G is an
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Archimedean lattice ordered group. Consider the convex l-subgroup c((xn)) ofG
generated by the element (xn) ∈ G. If xn �= 0 for each n ∈ N, then c((xn)) = G.
Assume that xn0 = 0 for some n0 ∈ N and 0 ≤ (yn) ∈ G. There exists a greatest
element of the set S =

{
(zn) ∈ c((xn)) : 0 ≤ (zn) ≤ (yn)

}
, namely (y′n) with

y′n = xn if xn = 0 and y′n = yn if xn �= 0. Therefore c((xn)) is a direct factor of
G and by 4.4, G is epiarchimedean.

As observed in Example 1.18, G∗ is the lattice ordered group of all convergent
sequences in R and G∗ = Gω1 .

Consider the convex l-subgroup c1((Xn)) of G∗ generated by the element
(Xn) ∈ G∗, (Xn) =

(
1, 1

2 ,
1
3 , . . .

)
. It is easy to see that c1((Xn)) consists

only of sequences of G∗ converging to 0. If we choose the element (Yn) ∈ G∗,
(Yn) = (1, 1, . . . ), then the set S1 =

{
(Zn) ∈ c1((Xn)) : 0 ≤ (Zn) ≤ (Yn)

}
has

no greatest element. Consequently, c1((Xn)) fails to be a direct factor of G∗.
Whence by 4.4, G∗ is not epiarchimedean.

A nonempty subset M of G is said to be a G- ru-complete subset of G if for
each sequence (xn) in M such that (xn) ∈ F there exists x ∈M with xn → x(G).

Studying o-convergence in lattice ordered groups, J . J a k u b ı́ k [17] intro-
duced the concept of a complete subset related to the above. By using the same
method as applied in [17], it can be proved:

����
 4.6� Let a, b ∈ G, 0 ≤ a, b. If [0, a] and [0, b] are G- ru-complete subsets
of G, then [0, a+ b] is also a G- ru-complete subset of G.

����
 4.7� The following conditions are equivalent:

(i) G is ru-complete.

(ii) Every interval [a, b] of G is G- ru-complete subset of G.

P r o o f.
(i) =⇒ (ii): Let G be ru-complete, (xn) a sequence in [a, b], (xn) ∈ F . Then

there exists x ∈ G with xn → x. By 1.6, x ∈ [a, b].
(ii) =⇒ (i): Assume that every interval of G is G- ru-complete and (xn) is a

sequence in G, (xn) ∈ F . According to 1.9 there exist a, b ∈ G with a ≤ xn ≤ b

for all n ∈ N. Hence xn → x, x ∈ [a, b]. �

����
 4.8� Let G be ru-complete and H a convex l-subgroup of G. Then H is
ru-complete.

P r o o f. Assume that (xn) is a sequence in H and that (xn) is u-uniformly
Cauchy for some u ∈ H. By 1.9 there are a, b ∈ H, a < b, such that a ≤ xn ≤ b

for each n ∈ N. Applying 4.7 we get that [a, b] is G- ru-complete. Hence there
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exists x ∈ [a, b] such that xn → x(G). With respect to 1.12, xn
u→ x. Convexity

of H in G completes the proof. �

If a convex l-subgroup H of G is G- ru-complete, then H is ru-complete, but
not conversely, in general (see Example 4.9 below).

Consider the following condition for a convex l-subgroup H of G.

(I) If (xn) is a sequence in H, u-uniformly Cauchy for some 0 < u ∈ G, then
there exists 0 < u′ ∈ H such that (xn) is u′-uniformly Cauchy.

There are Archimedean lattice ordered groups with all convex l-subgroups sat-
isfying (I) (e.g., R). Example 4.9 shows that this is not valid in all Archimedean
lattice ordered groups.

Example 4.9. Let G be the set of all convergent sequences in R and H the set of
all sequences in R with a finite support. If the operation + and the partial order
are performed componentwise, G is an Archimedean lattice ordered group andH
is a convex l-subgroup of G. By [11, Theorem 4.11], G is ru-complete. In view
of 4.8, H is ru-complete. The sequence (xn) with xn = (1, 1

2 , . . . ,
1
n , 0, 0, . . . )

for each n ∈ N is in H and (xn) ∈ F because (xn) is u-uniformly Cauchy,
u = (1, 1, . . . ) ∈ G. There is no x ∈ H with xn → x(G). Therefore H is not
G- ru-complete. Observe that H does not satisfy (I).

From 4.8 we derive at once:

����
 4.10� Let G be an ru-complete lattice ordered group and H a convex
l-subgroup of G. If H fulfils (I) then H is G- ru-complete.

Let C (G) denote the system of all convex l-subgroups of G. If the system
C (G) is partially ordered by the set inclusion, then it is a complete lattice. It is
well-known that if {Gi : i ∈ I} is a subset of C (G), then

∨
i∈I

Gi is the subgroup
of G generated by the set

⋃
i∈I

Gi.

Now we are interested in the existence of a greatest G- ru-complete convex
l-subgroup of G. As shown by the example, such a convex l-subgroup need not
exist.

Example 4.11. LetK =
∏
i∈N

Gi, Gi = R for any i ∈ N. ThenK is an Archimedean

lattice ordered group. Let G be the set of all elements x of K such that the set{
i ∈ N : x(i) is irrational

}
is finite. Then G is an l-subgroup of K. For

each i ∈ N, the set G0
i =

{
g ∈ G : g(j) = 0 for any j ∈ I, j �= i

}
is a

convex l-subgroup of G isomorphic to Gi. It is easy to verify that all G0
i are

G- ru-complete subsets of G.
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Assume that there exists a greatest G- ru-complete convex l-subgroup H of G.
Hence G0

i ⊆ H for any i ∈ I. The convex l-subgroup G1 of G generated by
all G0

i consists of all elements of G with a finite support. Whence (xn) with
xn =

(
1, 1√

2
, . . . , 1√

n
, 0, 0, . . .

)
for any n ∈ N is a sequence in G1 and also in H

because of G1 ⊆ H. We get xn
u→ x where x =

(
1, 1√

2
, 1√

3
, . . .

)
∈ K − G and

u = (1, 1, . . . ) ∈ G. Hence xn → x(G), so (xn) ∈ F . However there is no y ∈ G

with xn → y(G). We conclude that H is not a G- ru-complete subset of G, a
contradiction.

Nevertheless the following result is valid.

�	��
�� 4.12� Let S = {Gi : i ∈ I} be the system of all convex l-subgroups
of G which are G- ru-complete and H =

∨
i∈I

Gi. If H satisfies (I), then H is a

greatest G- ru-complete convex l-subgroup of G.

P r o o f. It suffices to show that H =
∨
i∈I

Gi is a G- ru-complete subset of G.

Let (xn) be a sequence in H, (xn) ∈ F . According to (I), (xn) is u-uniformly
Cauchy for some 0 < u ∈ H. This yields that (xn) is bounded in H. Thus there
are a, b ∈ H, a < b with a ≤ xn ≤ b for any n ∈ N. We get 0 < b − a ∈ H,
b − a ≤ g1 + · · · + gn, 0 < g1 ∈ Gi1 , . . . , 0 < gn ∈ Gin

for some i1, . . . , in ∈ I.
As every interval of a G- ru-complete subset of G is also G- ru-complete, ap-
plying G- ru-completeness of Gik

, we deduce that [0, gk] is G- ru-complete for
k = 1, . . . , n. Using 4.6 and induction we obtain that [0, g1+· · ·+gn] isG- ru-com-
plete. Since [0, b−a] ⊆ [0, g1 + · · ·+gn], we infer that [0, b−a] is G- ru-complete.
From continuity of the operation + with respect to ru-convergence it follows that
[a, b] is a G- ru-complete subset of G. The set inclusion [a, b] ⊆ H completes the
proof. �

The idea of the proof of 4.12 is the same as that of [8, 4.12]. J . J a k u b ı́ k
[19] studied convergence with a fixed regulator in lattice ordered groups and has
obtained an analogous result to 4.12 by using a different procedure from that
presented here.

Let H be a convex l-subgroup of G. If H satisfies (I) then H is ru-complete
if and only if H is G- ru-complete. Hence we get:

�	��
�� 4.13� Let S = {Gi : i ∈ I} be the system of all convex l-subgroups
of G which are ru-complete and H =

∨
i∈I

Gi. If all Gi and H satisfy (I), then H

is a greatest ru-complete convex l-subgroup of G.
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5. Conclusing remarks and open problems

We focus our attention to a convergence in MV-algebras.
Let A be an MV-algebra and G an abelian lattice ordered group with a strong

unit u such that A = Γ(G, u) (please, see [4]).
The categorical equivalence of MV-algebras and abelian lattice ordered groups

with a strong unit enables to apply the theory of lattice ordered groups to MV-al-
gebras. In particular, R . N . B a l l , G . G e o r g e s c u , I . L e u s t e a n [2] trans-
fered the theory of l-convergence and the Cauchy completion into MV-algebras.
By the restriction of an l-convergence in G to A we obtain a convergence on A

making the MV-operations continuous. Such a convergence on A is called an
MV-convergence. Ja k u b ı́ k [20] translated sequential convergence from lattice
ordered groups to MV-algebras.

G . G e o r g e s c u , F . L i g u o r i , G . M a r t i n i [13] starting from definitions
in abelian lattice ordered groups, studied order convergence and the Cauchy
completion arising from this convergence in MV-algebras.

Given 0 < v ∈ A, the notion of a v-uniform convergence in the MV-algebra A
has been defined in [9]. In this definition, the operations of the lattice ordered
group G are applied. The notion of a v-Cauchy completion A∗ of A is introduced
and there is proved that A∗ is uniquely determined up to isomorphisms over A.
The relation between the Dedekind completion of A and A∗ is established.

J . J a k u b ı́ k has shown (unpublished result) that the definition of v-uniform
convergence can be given also merely in terms of the MV-operations. This
definition is equivalent to that in [9]. Moreover, v-uniform convergence on A is
an MV-convergence.

Open problems

– To describe lattice ordered groups having the property (I).

– To formulate, by means of ru-convergence, conditions under which
(a) l-homomorphic image of an Archimedean lattice ordered group is an

Archimedean lattice ordered group.
(b) ru-completion of an epiarchimedean lattice ordered group is an epi-

archimedean lattice ordered group.

– Is the class of all ru-complete lattice ordered groups a radical class of lattice
ordered groups? (The notion of a radical class of lattice ordered groups is
due to J . J a k u b ı́ k [16]).
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[20] JAKUBÍK, J.: Sequential convergences on MV-algebras, Czechoslovak Math. J. 45 (1995),

709–726.

[21] LUXEMBURG, W. A. J.—ZAANEN, A. C.: Riesz Spaces, Vol. I, North Holland,

Amsterdam-London, 1971.

[22] MARTINEZ, J.: Polar functions, III: On irreducible maps vs. esential extensions of

Archimedean l-groups with unit, Tatra Mt. Math. Publ. 27 (2003), 189–211.

249

Unauthenticated
Download Date | 2/3/17 10:44 AM
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