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ABSTRACT. It has been shown that the number of occurrences of any ¢-line
configuration in a Steiner triple system can be written as a linear combination
of the numbers of full m-line configurations for 1 < m < ¢; full means that ev-
ery point has degree at least two. More precisely, the coefficients of the linear
combination are ratios of polynomials in v, the order of the Steiner triple system.
Moreover, the counts of full configurations, together with v, form a linear basis for
all of the configuration counts when ¢ < 7. By relaxing the linear integer equal-
ities to fractional inequalities, a configuration polytope is defined that captures
all feasible assignments of counts to the full configurations. An effective proce-
dure for determining this polytope is developed and applied when £ = 6. Using
this, minimum and maximum counts of each configuration are examined, and
consequences for the simultaneous avoidance of sets of configurations explored.
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1. Introduction

A partial triple system PTS(v,\) is a set V of v elements and a collection %
of triples, so that each unordered pair of elements occurs in at most A triples of
. Tts leave is the multigraph on vertex set V' in which the edge {z,y} appears
A—s times when there are precisely s triples of Z containing {x,y}. When every
pair occurs in exactly A triples, the system is a triple system, TS(v,\). When
in addition A\ = 1, it is a Steiner triple system, STS(v). By a configuration we
mean a PTS(k,{), (K,.%), with |K| = k and |-Z| = ¢, typically with ¢ a “small”
fixed integer. The term “configuration” is applied in the literature much more
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generally to permit blocks of larger sizes, but we restrict to block size three. The
triples are sometimes called lines here to conform with geometric terminology
(in the same vein, elements are sometimes called points here). The degree of a
point is the number of lines containing the point. We refer to [4, Chapter 13]
for background.

Evidently, there are configurations that must occur in every nontrivial triple
system, while others may be avoided altogether. This leads naturally to ques-
tions about ubiquity, as well as questions about avoidance and decompositions.
A configuration whose number of occurrences in a TS(v, \) depends only upon
v and A is constant (for these parameters). Otherwise, it is variable.

We restrict to configurations in Steiner triple systems here. A (k, ¢)-configur-
ation (in an STS(v)) is a set of £ lines whose union contains precisely k points,
so that no two points lie on more than one line. An (¢4 2, ¢)-configuration that
contains no (m+ 2, m)-configuration for 1 < m < ¢ is an Erdds configuration. A
configuration in which every point has degree at least two is a full configuration;
it is minimal full if it contains no full configuration on fewer lines. An Erdés
configuration must be full, but need not be minimal full. A configuration in
which every point has even degree is an even configuration. In Table 1 the
numbers of configurations for £ < 8 lines is given (for related enumeration results,
see [8]). All ¢-line configurations with ¢ < 4 are shown in Figure 1. The Pasch
configuration, shown as #9, is the smallest full configuration, the smallest Erdés
configuration, and the smallest even configuration.

TABLE 1. Counts of configurations

Configurations | Full | Minimal Full | Even | Erdés

1

2

5

16

56
282
1865 1 1
17100 | 153 78
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Each configuration with at most three lines is constant. For each ¢ > 4, there
exist both variable and constant ¢-line configurations. Grannell, Griggs,
and Mendelsohn [13] show that of the 16 4-line configurations (Figure 1),
five are constant and 11 are variable. One open problem concerns the char-
acterization of constant configurations. Let Sy, Ty, Uy, Vo, Wy be five £-line
configurations obtained from the (¢ — 1)-star by adding a line. Figure 2 shows
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FIGURE 1. Small configurations
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FIGURE 2. Adding a line to a star

%k%

Mitre (#25) STS(7)-Line (#81) Crown (#82)
. ’ 3 °
é | | |
3 ® ®

Hexagon (#83) Double Triangle (#106) Grid (#107)

FIGURE 3. Full configurations

the star Sy in which ¢ lines meet at a single point, obtained by adding a line to
the (¢ — 1)-star which meets the remaining lines at their common point. Also
shown are Ty, Uy, Vp, Wy obtained by adding a line which meets 0, 1, 2, or 3
other points of the (¢ — 1)-star.

THEOREM 1.1. ([19]) For each { > 4, the configurations Se, Ty, U, Ve, and W,
are constant.

Let A = 5;v(v — 1)(v — 3) henceforth. The number of occurrences of these
constant conﬁguratlons can be computed explicitly for ¢ > 4:
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se = 3AW—=5)v—T)-(v—20+1)/(2730)

te = Alw-T)(v—=9)-(v—20-3)/(2%( - 1))
u = 3Aw—-T(v—-9) - (v—20-1)/(2*(¢ - 2)!)
ve = 3AMW—-T)(v—9)---(v—20+1)/(2%( - 3))
wy = Al—=T)(v—9)--(v—20+3)/(275( —4))

CONJECTURE 1.2. ([19]) The five £-line configurations Se, Ty, Uy, Vi, and Wy
are the only constant configurations in Steiner triple systems.

The Mitre configuration is shown in Figure 3; it is also an Erdds configuration,
and is the only full 5-line configuration. Among the five full 6-line configurations
also shown, Hexagon and Crown are Erdds, while Double Triangle and Grid
are even. Avoidance of configurations has been extensively studied. For every
v = 1,3 (mod 6), v ¢ {7,13}, there is an anti-Pasch Steiner triple system,
an STS( ) in which no four triples are isomorphic to the Pasch configuration
([15], [21]). There is an anti-mitre STS(v) (one that contains no configuration
isomorphic to the Mitre configuration) if and only if v = 1,3 (mod 6) and v # 9
([3], [10], [28]). An STS(v) is r-sparse if it contains no Erd6s configuration on
2 < ¢ < r lines. In 1976, Erd6s [6] conjectured that an ¢-sparse STS(v) exists
for every integer ¢ > 2. Every STS(v) is 3-sparse. An STS is 4-sparse exactly
when it is anti-Pasch. It is 5-sparse when it is both anti-Pasch and anti-mitre.
A 5-sparse STS(v) is known to exist when v = 3 (mod 6) and v > 21, and
for many other orders ([11], [28]). However a complete characterization is not
known. Forbes, Grannell, and Griggs [9] construct 29 6-sparse systems
in the residue class 7 modulo 12, with orders ranging from 139 to 4447. They
also present a recursive construction that establishes the existence of 6-sparse
systems for an infinite set of orders. No ¢-sparse STS(v) is known for any ¢ > 7.

For avoidance, simultaneous avoidance, and decomposition into configura-
tions, see [16], [17], [18], [20], [22], [25].

2. Generating sets and bases

In general, a set M of configurations, each with 1 < m < / lines, is a gener-
ating set for £-line configurations if, for each admissible order v, the number of
occurrences of any ¢-line configuration can be expressed as a linear combination
of the number of occurrences of the configurations in M. To treat all values of v
simultaneously, these numbers of occurrences are expressed as polynomials in v.
A minimal generating set is a basis. As defined, a generating set is linear, and so
therefore is a basis. One could define analogous notions of generating sets and
bases using polynomial equalities rather than just linear ones; as we see later,
such a polynomial basis can be smaller than a linear basis.
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For 4-line configurations, any constant configuration together with the Pasch
configuration forms a basis ([13]). One could simply take the constant configu-
ration to be the unique 1-line configuration, whose count is the number of lines
in the STS, thereby determining v. We state results to permit any constant
configuration, but the single line typically is chosen.

Grannell, Griggs, and Mendelsohn [13] conjecture that the set of
Erdos configurations on at most £ lines, together with a constant configuration,
forms a basis in general. This holds for £ = 5 ([19]). (Explicit formulas for the
numbers of each of the 56 5-line configurations appear in [5], and for the 6-line
configurations in [7].) Hordk, Phillips, Wallis, and Yucas prove a
general theorem:

THEOREM 2.1. ([19]) Any constant configuration, together with all full configu-
rations on at most £ lines, forms a generating set for the £-line configurations.

Indeed for £ = 6, this generating set is a basis [19]; the seven full configurations
are all needed, refuting the conjecture that the Erdds configurations suffice. The
generating set is again a basis for £ =7 ([27]).

CONJECTURE 2.2. ([19]) Any constant configuration, together with all full con-
figurations on at most £ lines, forms a basis for the £-line configurations.

We employ the mechanics of the proof in [19] that the full configurations
provide a generating set. Indeed we explicitly calculate the numbers of all 6-line
configurations here in terms of this generating set. (We have completed this
computation for 7-line and 8-line configurations as well, but do not attempt to
tabulate information for the 1865 7-line and 17100 8-line configurations here.)
We first outline the algorithm used to realize the constructive proof in [19].

Consider a configuration C' = (K,.%). A pointed configuration is a triple
(K, Z,M), often written as (C, M) where C' = (K, .Z), is a (k, {)-configuration
and M C K. Members of M are marked points. A pointed configuration with
|M| < 3 in which no two points in M are collinear is marked. Two pointed
configurations (C, M) and (C’,M’) (with C = (K,.Z) and C' = (K',.Z"))
are isomorphic if there is a bijection ¢: K — K’ for which ¢(M) = M’ and
#(L) = &', Partition the powerset 2% into equivalence classes defined by iso-
morphism, and let 7(C, M) be the cardinality of the equivalence class containing
(C, M). Intuitively, 7(C, M) is the number of ways to mark points in K to ob-
tain the pointed configuration (C, M). Each occurrence of C leads to 7(C, M)
different occurrences of the pointed configuration, and hence counts of C' and
counts of any pointed configuration based on C are related by a factor depending
only on C' and M.

Now let v(C) denote the number of occurrences of a configuration C' in a
Steiner triple system. The proof in [19] derives equalities among these counts for
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different configurations; we derive their result in a similar manner here. Consider
a (k',€ + 1)-configuration Cy = (K1,.%;) that is not full. Then C contains a
point x € K that has degree 1, and hence a unique line L € %) that contains
x. Let P consist of the points on L that have degree 1 in Cy and write |P| = p
and k =k —p. Set K = K1\ Pand ¥ = %4 \{L}. Then C = (K,.%) is a
(k, £)-configuration. Indeed it corresponds precisely to the marked configuration
(C,M), with M =L\ P.

An extension of a marked (k, £)-configuration to an (¢ + 1)-line configuration
is one obtained by adding any line that contains all of the marked points (and
perhaps others, to achieve a line with three points). An extension is proper if
the adjoined line uses at most one unmarked point of K. A proper extension is
the standard extension if the adjoined line contains only marked points of K.
(Up to isomorphism, the standard extension is unique.) For example, C is the
standard extension of (C, M), as it uses no such unmarked points. However,
(C, M) may have other proper extensions, in which the adjoined line contains
one of the unmarked points in K. Indeed all other proper extensions are obtained
as standard extensions of (C, M U {y}) for y € K\ M with y not collinear in .&
with any point of M.

We count the distinct proper extensions of (C, M) on a total of v points,
together with 2 — | M| points not in K (anchors), in two ways. First, the anchors
can be chosen in (21:]@') ways. In a Steiner triple system, exactly one line
employs all of the marked points and anchors (there are two points in total!), so
adjoining the corresponding line gives a proper extension of (C, M), and each so
constructed is distinct. This gives (QZTA]j”)T(C, M)~(C) ways to form the marked
configurations with anchors.

Secondly, we count by classifying the proper extensions. Among them are all
occurrences of C1, the standard extension. For each occurrence of C;, removing
a line containing a point of degree one, removing all degree one points on that
line, and marking the rest on the line, produces a marked configuration that may
be isomorphic to (C, M); let u(C, M) be the number of ways that an isomorph of
(C, M) arises from C; in this way. Because 3 —|M| points not in K are used, yet
only 2 — |M| are anchors, this yields in total u(C, M)(3 — |M|) different ways to
produce the marked configuration with anchors. Next consider the other (non-
isomorphic) proper extensions Ch, ..., C. that are not standard; by our earlier
remarks, for 2 < i < e, C; is the standard extension of (C, M U {y;}) for some
yi € K\ M. Let +(C, M, {y;}) be the number of times the marked configuration
(C, M) appears in (C, M U {y;}); each marked configuration (C, M U {y;}) ac-
counts for «(C, M, {y;}) marked configurations isomorphic to (C, M). Now the
standard extension of (C, M U{y;}) may contain the marked configuration more
than once; indeed the removal of any line from this standard extension, marking
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the points of the line removed, yields a marked configuration that may be iso-
morphic to (C, M U{y;}) or to another marked configuration. Let «(C, M, {y;})
be the number of times the standard extension of (C, M U {y;}) contains an iso-
morph of (C, MU{y;}) in this way. Then each occurrence of the proper extension
C; of (C, M) contains +(C, M, {y;})x(C, M, {y;}) occurrences of (C, M).

This accounts for all occurrences of the marked configuration (C, M). Putting
the pieces together, we have established that

(5" ) 7(C20(@)

e (1)
= pu(C, M)(3 = [M)y(C1) + Y (O, M, {y:})r(C, M, {y:i})¥(Ci).

=2

The left hand side arises from the number of marked configurations (C, M)
together with 2 — |M| anchors. The right hand side accounts for each such
choice exactly once, as above. In order to make the calculation explicit,

1 v—~k
W) = @G- K2 - |M|>T(C’ Mp(©)

= > UCM {y))R(C. M, {w})v(@-)].

(2)

We work one example here. Let C' be the triangle (K,.Z) with K = {1,2,3,
4,5,6} and .¢ = {{1,2,4},{1,3,5},{4,5,6} }. Mark C using M = {2, 3}. There
are three ways to mark C' to obtain an isomorph of (C, M), namely marking
{2,3}, {2,6}, or {3,6}, so 7({2,3},C) = 3. The standard extension of this
marked configuration is C; = (K U {7},.2 U {{2,3,7}}). The configuration
(' contains an isomorph of (C, M) twice, once removing line {4, 5,6} and once
removing line {2,3,7}. So u(C, M) = 2. Now (C, M) has only one other proper
extension. Indeed to mark another point within K, the only choice is point 6
while maintaining noncollinearity. This corresponds to the marked configuration
(C,M U {6}), whose standard extension is Cy = (K,.Z U {{2,3,6}}). In this
example, C5 is isomorphic to the Pasch configuration. The Pasch configuration
contains four marked configurations isomorphic to (C, M U {6}), each obtained
by the removal of a line. Thus x(C, M,{6}) = 4. Furthermore, (C, M U {6})
contains three isomorphic copies of (C, M), each obtained by “unmarking” one
of the points in {2,3,6}. So +«(C, M,{6}) = 3. Simplifying all of this, we get the
equation

37(C) = 27(Ch) + 127(Cy). (3)

Of course this example is selected to be small enough for easy hand computation,
and so involves few extensions, and simple integer coefficients.
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In [19], the same development is done without marking the configurations; we
have marked them here in order to make the coefficients explicit and therefore
more easily calculated. The essential observation is that the right hand side in
(2) contains only configurations with one fewer line or one fewer point than C;
has. In [19] this is used to support a double induction, first on the number of
lines, and second on the number of points, to establish that the count of any
configuration that is not full can be written in terms of v and counts of full
configurations with fewer points (and perhaps fewer lines).

As we see it, the advantage to marking is that equations arise from marked
configurations; indeed there is a one-to-one correspondence between marked con-
figurations with two or fewer marked points and the equations. Our interest is
in explicit calculation of the equations produced.

We begin by constructive enumeration of all ¢-line configurations with ¢ < 8.
This is easily accomplished by adjoining one line at a time in all possible ways,
and using the canonical form routine of nauty ([23]) to preserve one representa-
tive of each isomorphism class. Then we mark each in all possible ways, marking
at most three points and ensuring that no two of the marked points are collinear.
Table 2 gives the number of isomorphism classes of marked configurations clas-
sified by the number of lines and the number of marked points.

TABLE 2. Counts of marked configurations

Number of Lines
Marked || 1]2] 3] 4] 5] 6] 7] 8
0 [li]2] 5[16] 56] 282] 1865 | 17100
1 | 1] 3] 1148258 1766 | 15708
2 2| 10 | 64 | 455 | 4088 | 45335
3 5| 38 | 364 | 4159 | 57218

When treating counts of configurations on ¢ 4 1 lines, typically there are
more equations arising from the marked configurations on /¢ lines than there
are (¢ + 1)-line configurations. For example, for the 282 6-line configurations,
769 = 56 + 258 + 455 equations are generated. This occurs because while each
such marked configuration on 5 lines has a unique standard extension, that
standard extension may be the same as one from another marked configuration.
Duplication among the equations can be used in part to verify the computation,
as each equation should determine the same relationship (using a different set
of extensions).

With a list of all marked configurations in hand, it is an easy matter to calcu-
late the quantities 7, ¢, and  used above for each of the marked configurations;
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each changes the marking, or removes or adds a line, to produce another marked
configuration, and nauty is again used to determine isomorphism.

The precomputation of marked configurations along with 7, ¢, and x permits
us to determine all of the equations representing counts of all configurations in
terms of counts of full configurations (and the variable v), for any maximum
number of lines. We have carried out this computation completely for counts
of the configurations on eight or fewer lines. As expected, the additional equa-
tions that arise from the multiplicity of marked configurations yield duplicate
equations and no inconsistency results.

3. Configuration polytopes

As we have seen, substantial effort has been invested in determining counts
of configurations; sometimes the maximum count for a specific configuration
is of interest, as with Pasch configurations ([14], [26]) or Mitre configurations
([4, Chapter 13]). Sometimes the minimum is of interest. Indeed the avoidance
problem asks whether the minimum count for a configuration can be zero. Simul-
taneous avoidance of multiple configurations asks whether all of their counts can
simultaneously be zero. For example, the 6-sparse problem considers when the
counts of Pasch, Mitre, Crown, and Hexagon, can each be zero. In [12], a prob-
lem in codes for computer-aided circuit design asks when the counts of Pasch,
Double Triangle, and Grid can each be zero (these are the even configurations).

In order to treat all such questions in a standard way, denote by 7, the
number of nonisomorphic configurations on ¢ or fewer lines, and denote by
the number of these that are full. We sometimes abbreviate these to n and ¢,
assuming ¢ from the context. We consider the set of equations expressing the
numbers of each of the 7, configurations in terms of the numbers of the ¢, full
configurations and the variable v. For concreteness, ng = 362, and so there
are 363 variables when v is not fixed. The form of the equations ensures that
each expresses a configuration count as a linear combination of ¢, configuration
counts, with coefficients that can be ratios of polynomials in v. For fixed v, then,
configuration counts are expressed as linear combinations of other configuration
counts.

We adopt a different viewpoint. Begin with real space of dimension n + 1
(R363 when ¢ = 6). All simultaneous selections of counts for the configurations
and for the order v of a Steiner triple system reside in the positive orthant RZ_H.
The polyhedron defined by the admissible counts and value of v does not have
dimension 7 + 1, however! Instead the equations established earlier limit the
dimension to at most @y + 1. So far this is a simple translation.
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Now rather than using the full configurations to determine counts of the
rest, we use counts of the rest to constrain the counts of the full configurations.
When (C, M) is a marked configuration with at most two marked points, we
combine two pieces of information. First, the number of times (C, M) occurs
in a specific system is a nonnegative integer. Second, it is equal to a known
linear combination of counts of full configurations. Combine these to observe
that linear combination must be nonnegative.

To illustrate this, return to the example leading to (3). In that case, C
is a constant configuration, a triangle, appearing precisely 4A times in every
STS(v). However C; and the Pasch configuration Cy are variable. Nevertheless
we can bound the number of Pasch configurations, as follows. By (3), v(Cs) =
5(37(C) = 29(C4)). Then as v(Cy) > 0, we find that y(Cs) < $7(C) = A. By
similar arguments, an upper bound in terms of v on each of the full configurations
can be established. We simply state them here:

Pasch Mitre STS(7) Crown Hexagon Double  Grid
-Line Triangle

A 2A A 6A 2A A(2v—3) AvE

In passing we remark that the maximum count of Pasch configurations A =
270(v — 1)(v — 3) is misstated in [4, Chapter 13]. More seriously, the maximum
count of Mitre configurations, 2A, is more seriously misstated there and the
mistake repeated in [1].

This crude argument does not take into account interactions among the counts
of the full configurations, so may not yield a tight bound. Indeed it does not
provide any information about simultaneous occurrence of two or more configu-
rations; nor does it bound the counts of configurations that are not full.

In order to address these questions (and more), let 71, ..., 7, be the counts for
the full configurations (for ¢ = 6, index them in the order shown as v1,...,77).
Now consider again equation (2). As the count v(C4) is nonnegative, so also is
the linear combination on the right hand side. Now this linear combination can
be written in terms of {v1,...,7,}, producing a linear inequality involving the
@ variables. To be precise, the coefficient of 7; for 1 < i < ¢ and the “constant”
term are ratios of polynomials in v; so the linear inequalities are in R¥ for fixed v.
Consider the set .#y (or simply .#) of all such inequalities arising from (2) from
every marked configuration on £ 4 1 lines.

Since ; is bounded below and above by fixed functions of v (and all such
inequalities appear in %), the inequalities define a finite polyhedron &, in R¥*.
We call this the configuration polytope for ¢-line configurations, although there
is actually one polytope & (v) for each choice of v. Refer to [24] for polyhedral
theory and terms not defined here.
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Why define a configuration polytope? The boundary and interior of this
polytope defines regions in which simultaneous assignments to the counts of
full configurations can be made that are valid under .#, and hence possible in
principle as counts of full configurations in Steiner triple systems of order v. The
exterior of the polytope certainly consists of assignments that are infeasible.

More importantly, according to (2) the configuration count of any ¢-line con-
figuration is a linear combination of {v1,...,7,}. Maximizing or minimizing
the count of any configuration subject to %, not enforcing integrality of the
counts, is an optimization problem whose feasible region consists of the config-
uration polytope — and hence the optimum occurs at an extreme point [24,
Theorem 1.4.5].

For the purposes of computation we restrict to £ = 6, so that n = 362 and
@ = 7. We form the family of configuration polytopes %s(v) parameterized by
v, and by enumerative techniques we list all extreme points in Figure 3. We
describe the method by which this is done in a moment, but remark on some
interesting results first.

Our crude upper bound for 75 was A(2v — 3) and that for v7 was A” . Yet
the extreme points never permit v5 > 2A(v — 7) or 47 > +A(v — 7), so in these
two cases the extreme points provide a more accurate bound. Simultaneous
occurrences can also be examined. For example, in an STS(v) that has no
STS(7)-Line, the maximum number of Pasch configurations is at most %A, only
one-third of the maximum permitted when STS(7)-Line can occur.

To determine the extreme points, we start with the 362 constraints produced
for 6-line configurations in (2). Some are vacuous because they do not involve
any of {71,...,7v7}. This occurs for all constant configurations, of which there
are 23 in total. Then eliminating constraints that are easily seen to be dominated
by another, only 110 remain. Treating cases when an inequality is dominated by
a linear combination of two others does not appear to be effective in reducing
this much further. Instead we use the crude upper bounds developed before as

follows. Inequalities in .# are written in the form Z Bivi < Bo. Let 7, be the
=1
crude upper bound determined earlier, and v = O Then replace v; by 7, if

B; < 0, or by %, if B; > 0 and evaluate the sum. If it is always at most (g,
then the 1nequahty is dominated by the constraints giving the lower and upper
bounds on {~1,...,77}, and can be eliminated without changing the polytope.

This is very effective: Only 36 inequalities remain. At an extreme point, seven
linearly independent inequalities hold as equalities (and others may also hold).
Hence we can enumerate the choices of seven putative equalities systematically,
avoiding linear dependences (which are revealed as further dominated inequali-
ties); once a suitable set of 7 is found, the values {~1,...,77} can be calculated
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TABLE 3. Extreme points

Pasch | Mitre | STS(7) | Crown | Hexagon Double Grid
-Line Triangle
0 0 0 0 0 0 0
0 0 0 0 0 0 $A(v —12)
0 0 0 0 0 2A (v — 14) 0
0 0 0 0 0 2A(v—14) | $A(v—12)
0 0 0 0 2A 0 0
0 0 0 0 2A 0 $A(v—12)
0 0 0 0 2A 2A(v — 13) 0
0 0 0 0 2A 2A(v —13) | $A(v—12)
0 0 0 6A 0 0 0
0 0 0 6A 0 0 $A(v —12)
0 0 0 6A 0 2A (v —12) 0
0 0 0 6A 0 2A(v —12) | 2+A(v—12)
0 2A 0 0 0 0 0
0 2A 0 0 0 0 LA(v—18)
0 2A 0 0 0 2A(v — 10) 0
0 2A 0 0 0 2A(v —10) | fA(v—38)
0 2A 0 0 2A 0 0
0 2A 0 0 2A 0 $A(v—8)
0 2A 0 0 2A 2A(v —9) 0
0 2A 0 0 2A 2A(v —9) $A(v —8)
iA 0 0 0 0 0 0
%A 0 0 0 0 0 $A(3v —31)
IA 0 0 0 0 2A(3v — 35) 0
%A 0 0 0 0 %A(30735) $A(3v —31)
1A 0 0 0 iA 0 0
%A 0 0 0 %A 0 $A(3v —31)
1A 0 0 0 A 2A(v — 11) 0
%A 0 0 0 %A 2A(v —11) | $A(3v —31)
1A 0 0 4A 0 0 0
%A 0 0 4A 0 0 $A(3v —31)
IA 0 0 4A 0 2A(3v — 31) 0
gA 0 0 4A 0 %A(3U—31) $A(3v —31)
A 0 A 0 0 0 0
A 0 A 0 0 0 FA(v=T)
A 0 A 0 0 2A(v —17) 0
A 0 A 0 0 2A(v —17) TA(v—1T)

Continued on next page
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Pasch | Mitre | STS(7) | Crown | Hexagon Double Grid
-Line Triangle
A %A 0 0 0 0 0
IA ZA 0 0 0 0 A(v—9)
IA A 0 0 0 2A(3v — 31) 0
%A %A 0 0 0 %A(Sv—?)l) A(v—9)
A A 0 0 1A 0 0
%A %A 0 0 %A 0 A(v—9)
3A gA 0 0 gA %A(30729) 0
A | 3A 0 0 A [ 3ABv—29) | $A(v—9)

from the seven independent equalities, and these values form the extreme point.
Some duplication arises in our enumeration, which we suppress in Table 3.

By choosing extreme points to maximize or minimize the linear combination
of v1,...,77 specified by any configuration count, we can determine lower and
upper bounds on the number of occurrences of that configuration. This is done
in Table 4 for all configurations on 2, 3, and 4 lines.

Each line gives a configuration number, then the number of lines and number
of points, and then one set of blocks isomorphic to this configuration. Seven
columns then indicate the dependence of the count on ~1,...,77; @ indicates
that the configuration is the full configuration, while ® indicates that the count
of this configuration depends on the count of that full configuration. Finally
lower and upper bounds, in terms of v, are given for the configuration count. A
nonzero lower bound ensures that the configuration cannot be avoided. When
the lower bound is 0, it might be avoidable.

There are some limitations to this analysis. Inclusion in the configuration
polytope may not ensure that an integer point can be realized in a Steiner
triple system. Also the extreme points may be fractional. For example, when
vy == =0 and y; = %A(v — 12), the value of 7 is not integral when
v =7,13 (mod 18) but is integral otherwise.

Nevertheless the bounds produced in this manner are valid and suggest what
the extreme values can be expected to be. Questions about simultaneous avoid-
ance are more difficult to tabulate, but are easily addressed as follows. At each
extreme point, one can tabulate all configurations that have lower bound 0. Then
each such set corresponds to a maximal set whose counts can be simultaneously
0.

To illustrate this, all 5-line configurations are given in Tables 5 and 6 in the
same format as Table 4. Among the first 80 configurations, we can hope to avoid
numbers 9, 11, 25-32, 36, 37, 38, and 45 in general individually (for small values
of v, more may be avoidable). The maximal sets of configurations that can be
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TABLE 4. Configurations with four and fewer lines
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simultaneously avoided at an extreme point of P are A; = {9, 25, 26,27,32};
A ={9,25,27,29,31,32}; and Az = {11, 26, 28,29, 30, 31, 36,37, 38,45}.

By Minkowski’s Theorem ([24, Theorem 1.4.8]), every point of the configu-
ration polytope can be written as a convex combination of the extreme points.
It follows that whenever a configuration count is 0 for any point of the poly-
tope, it must be 0 at some extreme point. While this ensures that we have
captured all of the configurations that can in principle be avoided, it should not
be concluded that other (smaller) sets of configurations cannot be the actual set
avoided. Indeed at some of the extreme points of &%, every configuration has
nonzero count. Once v is large enough, this is expected at some point in the
polytope, but it is perhaps surprising that it holds at an extreme point.

In the Appendix, we tabulate all 282 6-line configurations. Again we can ask
about simultaneous avoidance. Let

B, = A; U{81,85,86,108,109,110,111,112,113,114, 115, 166, 167, 168,
169,170,236, 237, 293};
By, = Ay U {81,82,84,85,89,91,92,93,94, 95,96, 97, 98,102, 104, 105, 109,
110,111,112,121,122,123, 124,125,126, 138, 139, 140, 141,
166,167,168,169,170,172, 186, 236, 237, 293};

B; = A3 U {82,83,84,85,86,87,88,89,90,91, 92,93, 94, 95, 96, 97, 98,99, 100,
101,102,103,104,105,113,114,115,116,117,118,119, 120, 121,
122,123,124,125,126,133, 134,135,136, 137, 138, 139, 140, 141,
142,143,144,145,146,147,148,149,171,172, 185,186, 187, 188,
189,190, 191, 192,193,194, 195,196, 197, 198, 199, 200, 242, 243,

244,245,295};

By = {26} U {81,83,86,88,113,114, 115}; and

Bs = () U {81,82,88,89,92,94}.

Then the maximal sets of configurations that can all be set to 0 at an extreme
point of H4 are listed in Table 7.
Again, it seems difficult to determine which of these sets can be avoided in

an STS(v), but certainly no sets not contained in one of these can be avoided
for “large” values of v.

4. The seven and eight line cases

Much of this effort can be carried through for the seven line case, and some
through the eight line case as well. The number of relevant inequalities has

92

Unauthenticated
Download Date | 2/3/17 10:43 AM



THE CONFIGURATION POLYTOPE OF ¢-LINE CONFIGURATIONS

TABLE 5. Configurations with five lines I
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TABLE 6. Configurations with five lines 11
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TABLE 7. Simultaneous avoidance for 6-line configurations

By U {82,83,84,106, 107} B; U {82,83,84,106, 165}

By U {82,83,84,107, 164} By U {82,83,84,164, 165}

By U {82,84,101,103, 106, 107} By U {82,84,101,103, 106, 165}
B U {82,84,101,103,107,163,164} By U {82,84,101, 103, 163, 164, 165}
By U {83,84,98,103,106, 107} By U {83,84,98,103,106, 165}

By U {83,84,98,103,107,164,166}  B; U {83,84,98,103, 164, 165, 166}
B, U {83,106, 107, 108} B, U {83,106, 108, 165}

B» U {83,107,108, 164} B» U {83,108, 164, 165}

B, U {101,103, 106, 107, 108} B, U {101,103, 106, 108, 165}

B> U {101,103,107,108, 163,164} B, U {101,103,108, 163,164, 165}
B U {106,107} B; U {106,165}

B3 U {107,163, 164} B3 U {163,164, 165}

B, U {82,106, 107} B, U {82,106, 165}

By U {82,107, 164} By U {82,164,165}

B, U {82,101,103,106, 107} B, U {82,101,103,106, 165}

B, U {82,101,103,107, 163, 164} B, U {82,101,103, 163, 164, 165}
By U {82,92,98,103, 106, 107} By U {82,92,98,103, 106, 165}

By U {82,92,98,103,107, 164} B, U {82,92,98,103, 164, 165}

Bs U {83,106, 107} Bs U {83,106, 165}

Bs U {83,107, 164} Bs U {83,106, 165}

Bs U {101,103, 106, 107} Bs U {101,103, 106, 165}

Bs U {101,103, 107, 163, 164} Bs U {101,103, 163, 164, 165}

been dramatically reduced from 362 to 36 for 6-line configurations. Nonethe-
less this represents the primary obstacle to treating 7-line configurations in the
same manner; the initial set has 2227 inequalities, but worse — there are 26 full
configurations to treat, so the configuration polytope is in R2¢ (and, by [27], has
full dimension).

The elimination of constraints easily seen to be dominated by another reduces
the 2227 inequalities to 1373. Rather than using crude bounds, we use the 44
extreme points of &g and the linear inequalities to determine maxima for the 19
counts of full 7-line configurations. These are given in Table 8. Enforcing these
upper bounds to eliminate further inequalities leaves 545 inequalities to define
Z7. While in principle the extreme points of &?; could now be determined by
finding sets of 26 independent inequalities among the 545 that are met with
equality, we leave this for a (much) longer day.

It must be emphasized that the maxima presented in Table 8 may not be
achievable for a particular choice of v even if the maximum can be achieved on
occasion. For example, as the first five all contain a Pasch configuration, their
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TABLE 8. Maximum counts of full 7-line configurations

Maximum
Configuration Count Comment
abc ade bdf cef cdg beg afg %A STS(7), has Pasch
abc ade bdf cef cdg beh agh A has Pasch
abc ade bdf cef agh bgi chi ~ 2A(v—7)  has Pasch
abc ade bdf cef agh bgi dhi  4A has Pasch
abc ade bdf cef agh bgi ehi 12A has Pasch
abc ade bdf cdg efg beh cth  4A has Mitre, Crown
abc ade bdf cdg beh afi ghi  4A Erdés
abc ade bdf cdg beh cfi ghi 12A Erdos
abc ade bdf cdg beh bgi thi  3A Erdés
abc ade bdf cdg beh egi fhi 12A Erdés
abc ade bdf cdg efh egi ahi 6A Erdos, has Double Triangle
abc ade bdf cdg efh egi bhi 12A Erdos
abc ade bdf cdg ehi fhj gij 2A(v —17)
abc ade bdf ceg cfh bgi ahi 2A Erdos, has Grid
abc ade bdf ceg cfh bgi dhi 6A Erdés

abc ade bdf ceg ahi thj gij 6A (v
abc ade bdf ceg bhi fhj gij 3A(v —
abc ade bdf agh cgi ehj fij 4A (v
abc ade bdf agh cgi fhj eij 3A(v

maxima could be achieved only when the number of Pasch configurations is A,
and hence the system is a projective triple system. Indeed there is no guarantee
that the maxima given can ever be achieved, as the linear equalities capture
some but not all of the combinatorial restrictions.

5. Conclusions

We have adopted a polyhedral view of configurations in Steiner triple systems.
Equations from the generating set, relaxed to nonnegative fractional inequali-
ties, define a family of polytopes. Every feasible assignment of counts to ¢-line
configurations is within the polytope ;. We have outlined an effective compu-
tation of &, and applied it with ¢ = 6. This procedure employs the strategy of
the original proof, but using marked configurations. Determining &, enables us
to determine the maximum and minimum possible counts of each ¢-line config-
uration easily, addressing not only avoidance but also simultaneous avoidance.
In closing, we remark that every Steiner triple system with at least seven points
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contains a full configuration on seven or fewer blocks ([2], [12]); this is estab-
lished using polynomial equalities among configuration counts that generalize
the linear equalities explored here. These polynomial equalities establish that
for £ > 7, the origin of the polytope explored herein is infeasible. Hence it is of
interest to explore polynomial bases for the configuration counts.
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THE CONFIGURATION POLYTOPE OF ¢-LINE CONFIGURATIONS

Appendix: The 6-line configurations

TABLE 9. The six-line configurations I

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

S OO DD DYoo OoY D
NeliNeiNeiNeiNe iNe N iNe N BN« N« BNe BN« N« BN« N« B\« N« e BN N« e e N« e Ne N N o s JNo oo oo oo ol N |

—
o

abc ade bdf cef cdg beg
abc ade bdf cdg beh fgh
abc ade bdf ceg cfth dgh
abc ade bdf cef cdg beh
abc ade bdf cef cdg agh
abc ade bdf cdg efg beh
abc ade bdf cdg beh cei
abc ade bdf cdg beh afi
abc ade bdf cdg beh cfi
abc ade bdf cdg beh bgi
abc ade bdf cdg beh egi
abc ade bdf cdg beh fgi
abc ade bdf cdg beh ghi
abc ade bdf cdg efh egi
abc ade bdf cdg efh ahi
abc ade bdf cdg efh chi
abc ade bdf cdg efh dhi
abc ade bdf cdg efh ghi
abc ade bdf ceg cfh efi
abc ade bdf ceg cfh bgi
abc ade bdf ceg cfh dgi
abc ade bdf ceg cfh fgi
abc ade bdf ceg cfh ghi
abc ade bdf ceg fgh ahi
abc ade bdf ceg fgh bhi
abc ade bdf cgh egi fhi
abc ade bfg dfh egi chi
abc ade bdf cef cdg ahi
abc ade bdf cef cdg chi
abc ade bdf cef cdg ghi
abc ade bdf cef agh bgi
abc ade bdf cef agh fgi
abc ade bdf cdg efg ahi
abc ade bdf cdg efg dhi
abc ade bdf cdg efg hij

[CNO)
[ONONO)

©

OOOOOOOOOLOHOOLOHOLOLLOOOO
(ONONOROCNONOXONO,

O©O000O
=NoNoleNoNoeNoReNoNo RN o N No o e No N NN NN NN oo R NN NN N o N

(O OXO]

6A
2A

4A

12A
3A

4A

24A
12A
24A
24A
12A
12A
24A
12A
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CHARLES J. COLBOURN

TABLE 10. The six-line configurations II

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

SO DD D

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

abc ade bdf cdg beh aij
abc ade bdf cdg beh bij
abc ade bdf cdg beh cij
abc ade bdf cdg beh fij
abc ade bdf cdg beh gij
abc ade bdf cdg efh aij
abc ade bdf cdg efh cij

abc ade bdf cdg efh dij
abc ade bdf cdg efh eij

abc ade bdf cdg efh gij
abc ade bdf cdg efh hij
abc ade bdf cdg ahi bhj
abc ade bdf cdg ahi dhj
abc ade bdf cdg ahi ehj
abc ade bdf cdg ahi fhj
abc ade bdf cdg dhi ehj
abc ade bdf cdg ehi fhj
abc ade bdf ceg cth aij

abc ade bdf ceg cfh cij

abc ade bdf ceg cfh dij

abc ade bdf ceg cfh eij

abc ade bdf ceg cth gij

abc ade bdf ceg fgh aij

abc ade bdf ceg fgh bij
abc ade bdf ceg fgh fij

abc ade bdf ceg fgh hij
abc ade bdf ceg ahi bhj
abc ade bdf ceg ahi fhj
abc ade bdf ceg bhi chj
abc ade bdf ceg bhi dhj
abc ade bdf ceg bhi ehj
abc ade bdf ceg bhi fhj
abc ade bdf ceg bhi ghj
abc ade bdf ceg fhi ghj

ONONONCHORORCHONONCNONONCRONCRCRONCNORONCNORONCHONORCHORONCRONONONO,

ONONO)

O)
O)

ONORONCHONNCHEONCNORONCROROXONO

[ONONONCHONOROCNONONO)

[ONONOXO)
[ONOXNO)

[ONO;

©

[CNONOCNO,

ONONO)

DO OO OO OO oo

S OO OO DODDODDODDODODO O OO OO

6A(v-9)
12A(v-9)
12A(v-9)
6A(v-9)
12A(v-9)
12A(v-10)
6A(v-11)
6A(v-9)
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THE CONFIGURATION

TABLE 11.

POLYTOPE OF ¢-LINE CONFIGURATIONS

The six-line configurations III

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

DD DD DO

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11

abc ade bdf agh bgi dgj
abc ade bdf agh bgi egj
abc ade bdf agh bgi ehj
abc ade bdf agh bgi fhj
abc ade bdf agh cgi fgj
abc ade bdf agh cgi ehj
abc ade bdf agh cgi fhj
abc ade bdf agh cgi fij
abc ade bdf agh fgi fhj
abc ade bdf agh fgi aij
abc ade bdf agh fgi cij
abc ade bdf agh fgi hij
abc ade bdf cgh egi fgj
abc ade bdf cgh egi fhj
abc ade bdf cgh egi hij
abc ade bfg dfh egi chj
abc ade bdf cef cdg hij
abc ade bdf cef agh aij
abc ade bdf cef agh bij
abc ade bdf cef agh fij
abc ade bdf cef agh gij
abc ade bdf cdg beh ijk
abc ade bdf cdg efh ijk
abc ade bdf cdg ahi ajk
abc ade bdf cdg ahi bjk
abc ade bdf cdg ahi djk
abc ade bdf cdg ahi ejk
abc ade bdf cdg ahi fjk
abc ade bdf cdg ahi hjk
abc ade bdf cdg dhi djk
abc ade bdf cdg dhi ejk
abc ade bdf cdg dhi hjk
abc ade bdf cdg ehi ejk
abc ade bdf cdg ehi fjk

[ONONONONOCNOCNOCNORONONONONONONOCROCRONONOROCNONORORONORONONONO)

[CNOXO)

(CRONOXO]
(CXONOXO]
© 06

©

©

[CNONONOCNOXO) [CNOXONONOROXO]

O]
[OJCNO)

[CXCNONINC;
[CXOXO)

[CXOXO)

OO0 006

(CXO)

A(v-9)
12A(v-10)
12A(v-12)
12A(v-11)
24A(v-11)
4A(v-14)
24A(v-13)
12A(v-13)
3A(v-11)
3A(v-9)
24A(v-12)
12A(v-13)
4A(v-12)

ecNeNoNeoNoNoNoloBoNe)

3 A(v-11)(v-9)
3A(v-13)(v-9)
3A(v-11)(v-9)
3A(v2-24v+147)
6A (v2-24v+145)
6A(v-15)(v-9)
%A(v—?) (v-9)
3A(v-11)2
2A(v-15) (v-7)
%A(v—ll)(v—l?))
3A(v-13)2

A(v-T)
12A(v-7)
12A(v-T7)
12A(v-7)
24A(v-7)
4A(v-T)
24A(v-7)
12A(v-7)
3A(v-7)
3A(v-7)
24A(v-7)
12A(v-7)
4A(v-T)
12A(v-7)
6A(v-7)
3A(v-7)
éA(vJ) (v-15)
TA(v-7)(v-9)
3A(v-7)(v-11)

3 A(v-7)(v-11)
3A(v-7)(v-13)
2A (v2-250+162)
2A (v2-25v+162)
%A(v—?)(v—Q)
3A(v-7)(v-11)
3A(v-7)(v-11)
3A(v-T7)(v-11)
6A (v-7)(v-11)
6A(v-15)(v-7)
%A(v—?)(v—Q)
3A(v-7)(v-11)
2A(v2-22v0+123)
%A(v—?)(v—Q)
3A(v-7)(v-11)
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CHARLES J. COLBOURN

TABLE 12. The six-line configurations IV

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

DD DD

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

abc ade bdf cdg ehi hjk
abc ade bdf ceg cth ijk
abc ade bdf ceg fgh ijk
abc ade bdf ceg ahi ajk
abc ade bdf ceg ahi bjk
abc ade bdf ceg ahi fjk
abc ade bdf ceg ahi hjk
abc ade bdf ceg bhi bjk
abc ade bdf ceg bhi cjk
abc ade bdf ceg bhi djk
abc ade bdf ceg bhi ejk
abc ade bdf ceg bhi fjk
abc ade bdf ceg bhi gjk
abc ade bdf ceg bhi hjk
abc ade bdf ceg fhi fjk
abc ade bdf ceg fhi gjk
abc ade bdf ceg fhi hjk
abc ade bdf agh bgi ajk
abc ade bdf agh bgi cjk
abc ade bdf agh bgi djk
abc ade bdf agh bgi ejk
abc ade bdf agh cgi ajk
abc ade bdf agh cgi bjk
abc ade bdf agh cgi djk
abc ade bdf agh cgi ejk
abc ade bdf agh cgi fjk
abc ade bdf agh fgi ajk
abc ade bdf agh fgi bjk
abc ade bdf agh fgi cjk
abc ade bdf agh fgi fjk
abc ade bdf agh fgi gjk
abc ade bdf agh fgi hjk
abc ade bdf agh fgi ijk
abc ade bdf agh aij gik

[CNONONONORORONONONOCNONONOROCNORONORONOCRONONORONOCROCRORONORONORONONONO)

[CNONOXO;

(CJONONONONOXO)

O]

OO0 6006

[ONORONONORONOXO

[CXO)

©

O]

QOO 006
0006

OO0 006 6
OO0 060 60 60 6o 00

© 0O

©
©
©

[OJCNO]

OXO)

(CXO)

6A(v-13)2

[=NeololeNoNoNoNoNeNoloBoNoB ol o Nel

6A(v-10)(v-9)
3A(v-9)(v-14)
6A(v-12)(v-9)
12A(v-9)(v-14)
6A(v2-21v+112)
12A(v2-23v+134)
12A(v2-23v+134)
12A(v2-250+158)
12A(v2-25v+157)
6A(v-11)(v-9)
12A(v-13)(v-9)
12A(v-15) (v-9)
6A(v-13)(v-9)
v-13)(v-9)
v-15)(v-9)
v-15)(v-9)

6A(
6A(
6A(
3A(v-7)(v-14)

6A(v-15)(v-7)

2A (v2-250+162)
A(v2-25v+162)
%A(v—?)(v—Q)
6A(v-11)(v-9)
3A(v-11)(v-9)
3A(v-13)(v-9)
3A(v-11)(v-9)
3A(v2-2204+125)
3A(v2-220+125)
3A(v-11)2
6A(v-11)2
6A(v-13)(v-9)
12A (v2-240+149)
3 A(v-11)(v-9)
%A(v2—220+125)
6A (v2-24v+139)
6A (v-7)(v-11)
3A(v-7)(v-11)
6A(v-7)(v-13)
12A(v-7)(v-13)
6A (v-7)(v-11)
12A(v-7)(v-11)
12A(v-7)(v-13)
12A(v-7)(v-13)
12A(v-7)(v-13)
6A (v-7)(v-11)
12A(v-7)(v-13)
12A(v-7)(v-13)
6A (v-7)(v-11)
6A(v-7)(v-13)
6A (v-15)(v-7)
6A (v-15)(v-7)
3A(v2-21v+112)
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THE CONFIGURATION POLYTOPE OF ¢-LINE CONFIGURATIONS

TABLE 13. The six-line configurations V

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244
245

246
247

248

249
250
251
252

DO DD OO OO

SO O D

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12

12
12

12
12

12

12
12
12
12

abc ade bdf agh bij gik
abc ade bdf agh cij eik
abc ade bdf agh cij fik

abc ade bdf agh cij gik
abc ade bdf agh fij gik

abc ade bdf agh gij hik
abc ade bdf cgh egi cjk
abc ade bdf cgh egi fjk
abc ade bdf cgh egi gjk
abc ade bdf cgh egi hjk
abc ade bdf cgh eij gik
abc ade bdf cgh gij hik
abc ade afg bhi dhj fhk
abc ade afg bhi dhj eik
abc ade afg bhi dhj fik

abc ade bfg dfh egi cjk
abc ade bfg dfh cij eik

abc ade bfg dfh cij hik

abc ade bdf cef agh ijk
abc ade bdf cef ghi gjk
abc ade bdf cdg ahi jkl
abc ade bdf cdg dhi jkl
abc ade bdf cdg ehi jkl
abc ade bdf cdg hij hkl
abc ade bdf ceg ahi jkl
abc ade bdf ceg bhi jkl

abc ade bdf ceg fhi jkl
abc ade bdf ceg hij hkl

abc ade bdf agh bgi jkl
abc ade bdf agh cgi jkl

abc ade bdf agh fgi jkl

abc ade bdf agh aij akl
abc ade bdf agh aij bkl
abc ade bdf agh aij ckl
abc ade bdf agh aij fkl

O ORI CHCINOCRONONONONORONONONONONONORONONORONONONONONOCNONOCRONO)

O 00 0060 0060600606

©

[CXCNCRONONNONCNONOCRONORONONONONONO;

OO0OOOOO 600

©0O
OO0 0O 00000

[ORCXO)
O]

OO0 00 00006
© 00 060 00006

[CRONOXO)

[CXO]

OO06 ©

12A(v-13)(v-9)
6A (v2-24v+145)
12A(v2-24v+145)
24A(v-15)(v-9)
12A(v-15)(v-9)
6A(v-16)(v-9)
12A (v2-24v4-145)
6A(v-13)2

6A (v2-24v+145)
12A(v-13)2
12A(v-17)(v-9)
3A(v-18)(v-9)
2A(v-12)(v-9)

6A (v2-23v+134)
12A(v-9)(v-14)
3A(v2-25v+160)
6A (v2-250+143)
6A(v-16)(v-9)

0
0
A(v-9) (v2-28v+207)

£ A(v-13)(v-15) (v-T7)
A(v3-39v24-521v-2403)

2 A(v-15)(v-17) (v-7)

o o

[e= R en}

A(v-14)(v2-220+129)

2A (v3-38v2+493v
~2208)

2A (v3-37v2+465v
-2007)

LA (-7)(v-11)(v-9)
%A(v 7)(v-11)(v-13)
gA(v 11)(v-13)(v-9)
gA(v 11)(v-13)(v-9)

12A(v-7)(v-14)
6A(v-7)(v-13)
12A(v-7)(v-13)
24A (v-7) (v-14)
12A(v-15) (v-7)
6A(v-7)(v-14)
12A(v-7)(v-11)
6A(v-7)(v-11)
6A(v-7)(v-13)
12A(v-7)(v-13)
12A(v-7)(v-14)
3A(v-7)(v-14)
2A(v-7)(v-11)
6A(v-7)(v-13)
12A(v-7)(v-14)
3A(v-7)(v-13)
6A(v-7)(v-14)
6A(v-15)(v-7)
%A(v-?)(v2-25v+162)
5 A(v-7) (v?-27v+186)
A(v-13)(v-15)(v-T7)
3 A(v-13) (v2-220+123)
A(v-13)(v-15)(v-7)
%A(v—13)(v2—26’v+177)
5A(v-9)(v-13)2
2A (v3-37v2+465v
-1983)
A(v-9)(v2-28v+207)
3 A(v3-39v% 45150
-2293)
A(v-7)(v2-28v+201)
2A (v-7) (v2-28v+201)

A(v-7)(v2-28v + 207)

LA (v-7) (v-11) (v-9)
éA(v 9)(v-11)2
gA(v 7)(v-11)(v-13)
gA(v 7)(v-11)(v-13)
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CHARLES J. COLBOURN

TABLE 14. The six-line configurations VI

(1-a)(c1-0)(e1-0)V &
(66T+282-52)(L-2)V9
(2-2)(gT-2)(1T-2)V &
(G0g+agz-;2)(L-2)v9
(66T+282-52)(L-2)V9
(LL1+29z-50)(L2) Ve
@-i:-&s-sqm
(P9z+a18-50)(6-2)V 7
(egT+a0g-50)(L-2)V9
Ammmiom-%v@éqm
(L-2)(g1-0)(€1-2)V ¢
(€0z+a8z-52)(L-2)V9
(€L14+09z-50)(L-0)v e
(eL1+09z-z0)(L-2)VE
@-@E-@Cédm
(6-2)(1T-2)(L-2)V T
(L0g+a8z-;0)(L-2)VE
(L96T-2£9F+70LE-c0) V9
(690G-0TLV+2LE¢0)V W
(go1+0agz-50)(61-0) Ve
(£0z+08z-;0)(L-2)VE
(€0z+a8z-52)(L-2)VE
(£1-0)(T1-0)(L-2)V g
(661+282-;0)(L-2) V9
(66T+28%-52)(L-2)V9
(gL1+29z-;0)(L-2)VE
(£LT+092-50)(L-0) ¥ W
(er-a)(11-2) (L) Vg
(Le1+agT-52)(£1-2) V9
(eLT+09z-,0)(L-2)VE
(TST+a%2-50) (6-2)V W
(L-2)(g1-2)(11-2)V§
(LGET-AG9¢+,0€8-00)VE

(F81+aLz-,0)(6-0)V
smiﬁm-%x@éqm
(11-0)(gT-2) v §
(ZE8T-26ET+;09E-2) V9
(PGLI-ALETH709€-c0) V9
(9T1+a18-50)(€1-2) Ve
Aﬁ-@x:éaéqm
(81-0)(g1-2)(L-2)V §
(£912-0606+768-¢2) V9
Gomm-pmmimwﬁmm-%wqm
6-0)(eT-2)(e1-2) Vg
aomm-awmeer%m-ﬂZm
6-0)(LT-2)(eT-2)V §
EES@JSW%ZM
a-axﬁ-@xﬁ-avqw
(6-2)(e1-2)(11-2)V 1
(61€C-2GTG+;06€-) VT
amm+§m-%5-3<m
N@-sﬁéqm
(L-2)(g1-0)(€1-2)V ¢
(£0z+08z2-;0)(6-2) Ve
Coaﬁ-amwimﬁm-maqm
(11-0)(e1-2) Vg
(1€8T-AGGT+,LE-¢2) VI
(LOBT-2£9F+70LEc0) V9
(GEST-AGGT+,0LE- ) VE
Amwwimmimﬁm-méqm
(8L1+29z-,0)(6-2) V¢
(661+282-;70)(L-2)V9
Eiawm-%xm-&qw
@S+ém-%5-avdm
(LL1+095-;0)(6-2)V g
(eL1+09z-z0)(L-2)VE

ONOCNO)
(ONONO)
ONOCNO)

000
000
[OXOCNO
(ONONO)

(ONONO)
(ONONO)
ONOCNONONONO]
OOOOOO

OOOOOO

ONOCNONONOCNONO)

[ONONONO;

ONO)

©

(ONONONONONONONO]

ONCNONONONONONOXO)
(ONONONONONONONONONO)

(ONONONONOCNONONO)

ONONONONONONONONONONONONONORONONONONONONONONONONORONONORONONONONO)

10 31> 1yq 3ye ope
Bt (Up 1yq Sye ape
Y (up q Sye ope
B fyp q 3ye ope
PP (yp q 3ye ope
P19 (up mq Sye ope
1fp 3lq rye 3ye ope
10 (3 1S3 jpq ope
Pt (18 y3d jpq ope
By (18 480 Jpq ape
B8 (13 y3d jpq ope
8 (10 4o Jpq ape
By 10 4ySo jpq ape
(3 (10 430 jpq ope
e (10 43> jpq ope
P [10 430 jpq ope
il 199 430 jpq ope
Pt (18 y3e jpq ape
Y [18 ySe jpq ope
B8 (18 y3e jpq ape
BT (g y3e jpq ope
P18 (g yse jpq ape
P (g ySe jpq spe
[t 10 ySe jpq ope
B3 (10 ySe jpq ape
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