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ABSTRACT. A set-valued mapping F from a topological space X to a topolog-
ical space Y is called a cusco map if F is upper semicontinuous and F (x) is a
nonempty, compact and connected subset of Y for each x ∈ X. We denote by
L(X), the space of all subsets F of X × R such that F is the graph of a cusco

map from the space X to the real line R. In this paper, we study topological
properties of L(X) endowed with the Vietoris topology.
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1. Introduction

There have recently been many papers devoted to the study of topologies and
convergences on spaces of set-valued maps. Without question graph convergence
(i.e. Painleve-Kuratowski convergence of graphs) is the most studied convergence
of set-valued maps. It has been used in a number of books and papers ([1], [2],
[6], [10], [30]). In particular, graph convergence has found many applications to
variational and optimization problems, differential equations and approximation
theory. However for many purposes graph convergence is too weak (see [6]).
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As for topologies on spaces of set-valued maps, there are mainly two ap-
proaches in the literature — hyperspace topologies and function space topolo-
gies. There has been interest in studying extensions of natural topologies on
the space of continuous functions to the space of densely continuous forms, and
to the spaces of usco and minimal usco maps ([15], [14], [17], [20], [25]). Hy-
perspace topologies on set-valued maps with closed graphs were studied in [12],
[18], [27], [29], [26], in which multifunctions are identified with their graphs and
are considered as elements of a hyperspace.

A classical problem of approximations of relations by continuous functions
leads to the study of special class of set-valued maps, called the cusco maps. For
this problem, let X be a Hausdorff space, let C(X) be the space of all continuous
real-valued functions defined on X and let CL(X × R) be the hyperspace of all
nonempty closed subsets of X × R, where R is the space of real numbers. It is
known (see [4], [18], [19]) that if X is a locally connected, locally compact metric
space without isolated points and F ∈ CL(X×R), then F can be approximated
by continuous functions in the Hausdorff metric if and only if F is the graph of
a cusco map. The fundamental result needed to prove the above theorem is due
to C e l l i n a [7].

In [21] the following analogy for the locally finite topology was proved. If X
is a locally connected, countably paracompact normal q-space without isolated
points and if F ∈ CL(X × R), then F can be approximated by continuous
functions in the locally finite topology if and only if F is the graph of a cusco
map. It was shown in [22] that if X is a countably paracompact normal space
without isolated points and F ∈ CL(X × R) is the graph of a cusco map, then
F can be approximated by continuous functions in the locally finite topology,
and also in the Vietoris topology. The cusco maps and minimal cusco maps are
also important tools in convex analysis (see [5]).

In our paper we will study topological properties of cusco maps equipped with
the Vietoris topology.

2. Preliminaries

We refer to B e e r [3] and E n g e l k i n g [13] for basic notions. If X and
Y are nonempty sets, a set-valued mapping or multifunction from X to Y is a
mapping that assigns to each element of X a (possibly empty) subset of Y . If
T is a set-valued mapping from X to Y , then its graph is

{〈x, y〉 : y ∈ T (x)
}
.

If F is a subset of X×Y and x ∈ X, define F (x) =
{
y ∈ Y : 〈x, y〉 ∈ F

}
. We

assign to each subset F of X × Y a set-valued mapping which takes the value
F (x) at each point x ∈ X. Then F is the graph of the set-valued mapping. In
this paper, we identify mappings with their graphs.
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Let X and Y be topological spaces, and let T be a set-valued mapping from
X to Y . Then T is called upper semicontinuous (usc) if for each x ∈ X and
any open set V containing T (x), there exists a neighbourhood Ux of x such that
T (z) ⊆ V for all z ∈ Ux. (In the literature there is also a weaker notion of
c-upper semicontinuity ([16]), which is closely related to the notion of closedness
of graph.) Following C h r i s t e n s e n [8] we say that T is a usco map if T is
a usc map such that T (x) is a nonempty compact set for all x ∈ X. Similarly,
we say that T is cusco if it is usco and T (x) is connected for all x ∈ X. In the
literature, the notation cusco ([5]) is also used for usco maps with convex values
in a topological vector space. Since we are working only with multifunctions
with values in R, both of these notations coincide in our case.

To describe the hypertopologies that we are using in this paper, we need to
introduce the following notation. Let (X, τ) be a topological space and CL(X)
be the hyperspace of all nonempty closed subsets of X. For U ⊆ X, define

U+ =
{
A ∈ CL(X) : A ⊆ U

}
and U− =

{
A ∈ CL(X) : A ∩ U �= ∅}.

If U is a family of sets in X, define U − =
⋂{U− : U ∈ U }.

A subbase for the Vietoris (resp., locally finite) topology on CL(X) (see [3])
are the sets of the form U+ with U ∈ τ and of the form U − with U ⊆ τ finite
(resp., locally finite). The lower Vietoris topology τV − on CL(X) is generated
by all subcollections of the form G−, where G ∈ τ ; similarly the upper Vietoris
topology τV + is generated by all G+, where G ∈ τ . The supremum τV + ∨ τV − is
the Vietoris topology τV . Also note that a set-valued mapping T from a space
X to a space Y , such that T (x) is a nonempty closed subset of Y for each x ∈ X,
is usc if and only if it is continuous considered as a map from X to the space
(CL(Y ), τV +).

3. Some basic results

In the sequel we will always denote by X a Hausdorff space. Let C(X) be the
space of all continuous real-valued functions defined on X and let CL(X × R)
be the hyperspace of all nonempty closed subsets of X × R. Denote by L(X)
the space of all graphs of cusco maps with values in R. Note that L(X) is a
subset of CL(X × R) and hence can be endowed with any hyperspace topology
inherited from CL(X × R). The spaces CL(X × R), L(X), CL(X) and C(X)
all are endowed with the Vietoris topology τV , unless otherwise mentioned.

We state some basic facts about cusco maps in the following lemma whose
proof is left to the reader.
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����� 3.1� For a Hausdorff space X, the following statements are equivalent.

(a) F ⊂ X × R is the graph of a cusco map.
(b) F is a closed, locally bounded subset of X × R with F (x) nonempty and

connected for each x ∈ X.
(c) There exist real-valued functions f and g on X with f ≤ g and f and g

lower and upper semicontinuous respectively such that F (x) = [f(x), g(x)]
for each x ∈ X.

�����	
�
�� 3.2� For a Hausdorff space X, the space CL(X) (with the upper
Vietoris, lower Vietoris, Vietoris topology) is embeddable in L(X) (with upper
Vietoris, lower Vietoris, Vietoris topology, respectively).

P r o o f. Let E ∈ CL(X). Define FE = E × [0, 1] ∪ (X \ E) × {0} ∈ L(X) and
let F =

{
FE : E ∈ CL(X)

} ⊆ L(X). Define a map φ : CL(X) → F by
φ(E) = FE for every E ∈ CL(X). Clearly φ is one-one.

We show that φ is a homeomorphism from (CL(X), τV +) to (L(X), τV +). Let
A ∈ CL(X) and let W+ be an open neighbourhood of FA. Let U be an open
subset of X such that A× [0, 1] ⊆ U × [0, 1] ⊆W . Now it is easy to verify that
for each B ∈ U+ ∩CL(X), φ(B) = FB ∈W+. This shows that φ is continuous.
Similarly, it can be shown that φ is an open map.

In order to show that φ is a homeomorphism from (CL(X), τV −) to
(L(X), τV −), let A ∈ CL(X) and let W− be an open neighbourhood of FA

in (L(X), τV −). Let 〈x, t〉 ∈ W ∩ FA. If t = 0, then φ(CL(X)) ⊆ W−. So let
t �= 0 and choose some open neighbourhood U of x and an open interval V of t
such that 〈x, t〉 ∈ U × V ⊆ W . Now it can be easily seen that if B ∈ U−, then
FB ∈W−. Similarly, if U− is an open neighbourhood of some A ∈ CL(X), then
(U × (1/2, 2))− ⊆ φ(U−). Therefore, φ is a homeomorphism from (CL(X), τV −)
to (L(X), τV −). Consequently, φ is a homeomorphism from CL(X) to L(X)
with the Vietoris topology. �

�����	
�
�� 3.3� Let X be a regular space. Then the space CL(X) is embed-
dable as a closed subspace of L(X).

P r o o f. We shall show that the subspace F =
{
FA = A× [0, 1]∪(X \A)×{0} :

A ∈ CL(X)
}

is closed in L(X). Let F ∈ L(X) \ F . If F is zero function, that
is, F (x) = {0} for all x ∈ X, then (X × (−1, 1))+ is an open neighbourhood of
F containing no member of F . So let us suppose that F is not a zero function.
Since F /∈ F , there exists some x ∈ X such that F (x) �= [0, 1] and F (x) �= {0}.
If a ∈ F (x) \ [0, 1], then we can find an open interval V containing a such that
V ∩ [0, 1] = ∅. Let U be an open neighbourhood of x. Then F ∈ (U × V )− but
no FE ∈ (U × V )− for each E ∈ CL(X).
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Now if for each z ∈ X, F (z) ⊆ [0, 1], then obviously F (x) ⊂ [0, 1]. We shall
show that there exists an open neighbourhood of F in L(X) that contains no
member of F . Let us consider the case when F (x) = [0, a] where 0 < a < 1.
Since F is closed, we can find an open subset U containing x such that 1 /∈ F (y)
for all y ∈ U . By regularity of X, we can find some open subset U0 of X such
that x ∈ U0 ⊆ U0 ⊆ U . Define G = U × (−1/2, 1) ∪ (X \ U0 ) × R. Then
F ∈ G+ ∩ (U0 × (0, 1))− but FE /∈ G+ ∩ (U0 × (0, 1))− for all E ∈ CL(X).

Now if F (x) = [a, b] where 0 < a ≤ b ≤ 1, then G+ where G = X × (R \ {0}),
is an open set containing F such that F ∩G+ = ∅.

Hence F is a closed subset of L(X). �

The previous proposition shows that for a regular space X, the space CL(X)
and consequently X can be considered as a closed subset of L(X). Also, as
was mentioned above, for a binormal (countably paracompact, normal) space X
without isolated points the space C(X) of all real-valued continuous functions is
dense in L(X). So in this paper, we shall study to what extent the topological
properties of C(X) and CL(X) can be extended to the space L(X).

����� 3.4� For any Hausdorff spaces X and Y ,

hd(X)hd(Y ) ≤ hd(X × Y ) ≤ hd(X)hd(Y ) min{w(X), w(Y )}.
Consequently, hd(X × R) = hd(X).

P r o o f. Since X and Y can be embedded in X × Y , hd(X) ≤ hd(X × Y ) and
hd(Y ) ≤ hd(X × Y ).

Now in order to prove the second inequality, first note that due to symmetry,
it suffices to show that hd(X × Y ) ≤ hd(X)w(Y ). Let F be a nonempty subset
of X × Y and let B be a base for Y with |B| = w(Y ). For each U ∈ B, define
the set

A(F,U ) = {x ∈ X : F (x) ∩ U �= ∅}.
Let D(F,U ) be a dense subset of A(F,U ) with |D(F,U )| ≤ hd(X) and let
D =

⋃{
D(F,U ) : U ∈ B

}
. Now for each x ∈ D, let Dx be a dense subset of

F (x) with cardinality less than or equal to w(Y ). Define the set

D0 =
⋃

x∈D

{x} ×Dx.

It is clear that |D0| ≤ hd(X)w(Y ). We claim that D0 is a dense subset of F .
Let G × H be a basic open subset of X × Y such that G × H ∩ F �= ∅. Let
〈x, t〉 ∈ G × H ∩ F . Choose some U ∈ B such that t ∈ U ⊆ H. Now, since
x ∈ A(F,U )∩G, we can find some z ∈ G ∩D(F,U ). Further, we can find some
s ∈ Dz ∩ U and consequently, 〈z, s〉 ∈ D0 ∩ G×H, showing that D0 is a dense
subset of F . �
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Note that for the inequalities given in the above lemma, we can find spaces
such that the equalities are attained. Consider the space X given in [13, Ex-
ample 1.6.19]. Then ℵ0 = hd(X) = hd(X × X) < hd(X)w(X); and for the
Sorgenfrey line S, we have ℵ0 = hd(S) < hd(S × S) = hd(S)w(S).

We give a similar result for π-weight in the next lemma which can be proved
in a similar way as Lemma 3.4.

����� 3.5� For Hausdorff spaces X and Y ,

hπw(X)hπw(Y ) ≤ hπw(X × Y ) ≤ hπw(X)hπw(Y ) min{w(X), w(Y )}.
Consequently, hπw(X × R) = hπw(X).

4. Cardinal functions on L(X)

Here we study cardinal functions on L(X) with the Vietoris, lower Vietoris
and upper Vietoris topologies. We suppose that all cardinal functions are greater
than or equal to ℵ0.

In order to study the character of L(X) with the lower Vietoris, upper Vietoris
and Vietoris topologies, we need the following basic lemma.

����� 4.1� Let F ∈ L(X) and W be an open set containing F . Then there
exists an open subset G of X × R such that F ⊆ G ⊆W and G(x) is connected
for each x ∈ X.

P r o o f. Since W is an open set containing F and for each x ∈ X, F (x) is a
compact interval in R, for each x ∈ X, we can find some open neighbourhood
Ux of x and an open interval Vx such that {x} × F (x) ⊆ Ux × Vx ⊆ W . Also
by upper semicontinuity of F , we can assume that F (Ux) ⊆ Vx for each x ∈ X.
Define G =

⋃{
Ux × Vx : x ∈ X

}
. Clearly G is an open set and F ⊆ G ⊆ W .

Also for each x ∈ X, G(x) =
⋃{

Vz : x ∈ Uz

}
is a connected set. �

�����	
�
�� 4.2� For a Hausdorff space X, the following hold.

(a) χ((L(X), τV +)) = sup
{
χ(A,X × R) : A ∈ L(X)

}
.

(b) χ((L(X), τV −)) = hd(X) · χ(X) = χ((CL(X), τV −)).
(c) χ(L(X)) = χ((L(X), τV +)) · χ((L(X), τV −)).

P r o o f. Part (a) is immediate. The second equality in part (b) follows from
[23, Theorem 2.2]. Now we shall prove the first equality in part (b).

Since CL(X) can be considered as a subspace of L(X) with the lower Vietoris
topology,

χ((L(X), τV −)) ≥ χ((CL(X), τV −)) = hd(X) · χ(X).
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Also, by Lemma 3.4,

χ((L(X), τV −)) ≤ χ((CL(X×R), τV −)) = hd(X×R) ·χ(X×R) = hd(X) ·χ(X).

Hence χ((L(X), τV −)) = hd(X).χ(X).
Now we prove part (c). By [9, Proposition 2.1], we have

χ(L(X)) ≤ χ((L(X), τV +))χ((L(X), τV −)).

Now by using part (b) and Proposition 3.2, we have

χ((L(X), τV −)) ≤ χ(CL(X)) ≤ χ(L(X)).

We need to show that χ((L(X), τV +)) ≤ χ(L(X)). Let F ∈ L(X) and B be a
base of open neighbourhoods at F with |B| ≤ χ(L(X)). By using Lemma 4.1,
we can assume that B is of the following form:

B =
{
W+

i ∩ F−
i : i ∈ I

}
,

where Wi is an open subset of X × R containing F with Wi(x) connected for
each x ∈ X and Fi is a finite family of open sets such that F ∈ F−

i . We shall
show that B′ =

{
W+

i : i ∈ I
}

forms a base for (L(X), τV +) at F . Let W
be an open subset of X × R such that F ∈ W+. Since B forms a base at F
in (L(X), τV ), we can find some i ∈ I with W+

i ∩ F−
i ⊆ W+. We claim that

Wi ⊆ W . Suppose by way of contradiction, there exists some 〈x, t〉 ∈ Wi \W .
Let t > maxF (x). The case when t < minF (x) is similar. Now since Wi(x) is
connected, the set F ′ = F ∪ ({x} × [maxF (x), t]

) ∈ W+
i ∩ F−

i \W+, which is
a contradiction. Hence Wi ⊆W . �

����� 4.3� Let X be a binormal space. Then for every lower (upper) semi-
continuous function f , there exists a family F of continuous functions such that
|F | ≤ sup

{
ψ(A,X) : A ∈ CL(X)

}
, g < f (g > f) for each g ∈ F and for each

x ∈ X, f(x) = sup
{
g(x) : g ∈ F

} (
f(x) = inf

{
g(x) : g ∈ F

} )
.

P r o o f. Let sup
{
ψ(A,X) : A ∈ CL(X)

}
= γ. Let f be a lower semicontinuous

function which takes only a finite number of values r1, r2, . . . , rk (r1 < r2 <
· · · < rk). Then for each i = 1, . . . , k, the set Ai = f−1(ri) is the intersection of
a closed and an open subset of X and hence can be expressed as a union of a

family Ai of closed sets where |Ai| ≤ γ. Let A =
k⋃

i=1

Ai. Since X is normal, by

[13, Problem 2.7.4(b)], for each F ∈ A and for each n ∈ N, we can find some
continuous function fF,n such that fF,n < f and f(x) − fF,n(x) ≤ 1/n for all
x ∈ F .

Let f be a bounded lower semicontinuous function such that 0 < f < 1. For
each j, i ∈ N, 0 ≤ j < i, define Cj,i =

{
x ∈ X : j/i < f(x) ≤ (j + 1)/i

}
. Now

define gi : X → R by gi(x) = j/i for all x ∈ Cj,i. Then clearly gi is a lower
semicontinuous function, gi < f and f(x) = lim

n→∞ gn(x) for all x ∈ X. As shown
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above, for each n ∈ N, we can find a family Fn of continuous functions with
cardinality at most γ such that gn = sup

{
h : h ∈ Fn

}
. Let F =

⋃{
Fn :

n ∈ N
}
. Clearly |F | ≤ γ and f = sup

{
h : h ∈ F

}
.

Now let f be any lower semicontinuous function. Then the function g =
(arctan(f) + π/2)/π is a lower semicontinuous function such that 0 < g < 1.
Then as shown above, we can find a family F with cardinality at most γ such
that g(x) = sup

{
h(x) : h ∈ F

}
for all x ∈ X. Also, since X is binormal and

0 < g < 1, by [13, Problem 5.5.20(a)], we can assume that 0 < h < g < 1 for
each h ∈ F . Now, let F ′ =

{
tan(πh− π/2) : h ∈ F

}
. Then clearly k < f for

all k ∈ F ′ and f(x) = sup
{
k(x) : k ∈ F ′}. �

Before giving the next result, we introduce the following notation:

M (X) =
{〈f, g〉 ∈ C(X) × C(X) : f(x) < g(x) for all x ∈ X

}
,

and for every 〈f, g〉 ∈M (X),

Mf,g =
{〈x, t〉 ∈ X × R : f(x) < t < g(x)

}
.

Note that for each 〈f, g〉 ∈M (X), Mf,g is an open set in X × R such that

Mf,g =
{〈x, t〉 ∈ X × R : f(x) ≤ t ≤ g(x)

}
.

�����	
�
�� 4.4� Let X be a binormal space and D be a dense subset of C(X).
Then the set

B =
{
M+

f,g : 〈f, g〉 ∈ (D ×D) ∩M (X)
}

forms a base for (L(X), τV +).

P r o o f. The proof follows from Lemma 4.1 and [21, Lemma 4.1] and the result
that the Vietoris topology on C(X) coincides with the graph (upper Vietoris)
topology. �

������ 4.5� For a binormal space X,

ψ(L(X)) = sup
{
ψ(A,X) : A ∈ CL(X)

} · hπw(X).

P r o o f. By [23, Theorem 2.17] and Proposition 3.2,

sup
{
ψ(A,X) : A ∈ CL(X)

}
hπw(X) = ψ(CL(X)) ≤ ψ(L(X)).

So we only need to prove that ψ(L(X)) ≤ λ · µ, where we take λ =
sup

{
ψ(A,X) : A ∈ CL(X)

}
and µ = hπw(X). Let F ∈ L(X) with f and

g its respective lower and upper boundaries. Then, by Lemma 3.1, f is lower
semicontinuous and g is upper semicontinuous. Hence, by Lemma 4.3, we can
find families F for f and G for g which satisfy the conditions of the lemma.
Note that F × G ⊆M (X). Define the set

W =
{
M+

f,g : 〈f, g〉 ∈ F × G
}
.

Clearly |W | ≤ λ.
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Now let U be a family of open subsets of X × R which forms a π-base for F
(considered as a subspace of X × R), with |U | ≤ hπw(X × R) = hπw(X) = µ
(see Lemma 3.5). Now, define the family

B =
{
W+ ∩ U−

1 ∩ · · · ∩ U−
n : W ∈ W , U1, . . . , Un ∈ U , n ∈ N

}
.

We claim that {F} =
⋂

B =
⋂{

G : G ∈ B
}
. The inclusion {F} ⊆ ⋂

B
is obvious. We need to show the reverse inclusion. Let E ∈ L(X) such that
E �= F . Let 〈x, t〉 ∈ E \ F . Then, we can find some f1 ∈ F and g1 ∈ G such
that 〈x, t〉 /∈ Mf1,g1 . Hence E /∈ ⋂

B. So E ⊂ F . Let 〈x, t〉 ∈ F \ E. Since U
forms a π-base for F , there exists some U ∈ U such that U ∩F ⊆ Ec ∩F . Since
E ⊂ F , U ∩ E = ∅ and consequently, E /∈ U−. Hence E /∈ ⋂

B, which proves
the required equality.

Since |B| ≤ λ · µ, ψ(L(X)) ≤ λ · µ. �

The following theorem shows that for a compact space X, the character of
L(X) is equal to the character of CL(X).


������ 4.6� Let X be a compact space. Then

(a) χ((L(X), τV +)) = sup
{
ψ(A,X) : A ∈ CL(X)

}
= χ((CL(X), τV +))

(b) χ(L(X)) = hd(X) · sup
{
ψ(A,X) : A ∈ CL(X)

}
= χ(CL(X))

(c) ψ(L(X)) = χ(L(X)).

P r o o f. We shall prove part (a). Part (b) will then easily follow from Proposi-
tion 4.2, [23, Theorem 2.2] and the result that for a compact spaceX, ψ(A,X) =
χ(A,X), for any A ∈ CL(X).

Since (CL(X), τV +) can be considered as a subspace of (L(X), τV +),

χ((L(X), τV +)) ≥ χ((CL(X), τV +)) = sup
{
χ(A,X) : A ∈ CL(X)

}
.

We shall prove the reverse inequality. Let E ∈ L(X) and let f , g be its lower and
upper boundaries respectively. By Lemma 4.3, we can find families F and G of
continuous functions with cardinality at most sup

{
χ(A,X) : A ∈ CL(X)

}
such

that for each h ∈ F and k ∈ G , h < f and k > g and f(x) = sup
{
h(x) : h ∈ F

}

and g(x) = inf
{
k(x) : k ∈ G

}
for all x ∈ X. Let F ′ and G ′ be the set of all

finite nonempty subsets of F and G respectively and for each F ∈ F ′ and
G ∈ G ′, let fF = max

{
h : h ∈ F

}
and gG = min

{
k : k ∈ G

}
. Note that

if F1, F2 ∈ F ′ such that F1 ⊆ F2, then fF1 ≤ fF2 and for G1, G2 ∈ G ′ with
G1 ⊆ G2, gG1 ≥ gG2 . Then (fF )F∈F ′ and (gG)G∈G ′ are nets in C(X) such that
fF < f for all F ∈ F ′ and gG > g for all G ∈ G ′. Also f(x) = sup

{
fF (x) :

F ∈ F ′} and g(x) = inf
{
gG(x) : G ∈ G ′} for each x ∈ X. Now consider

the family B =
{
M+

fF ,gG
: F ∈ F ′, G ∈ G ′}. Clearly |B| ≤ sup

{
χ(A,X) :

A ∈ CL(X)
}
. We shall show that B forms a base for E in (L(X), τV +). Let

771

Unauthenticated
Download Date | 2/3/17 10:43 AM
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E ∈ W+, for some open set W . Since X is binormal, we can assume that W+

is of the form M+
a,b, where 〈a, b〉 ∈M (X).

The assumption that for each F ∈ F ′, there exists some xF such that
fF (xF ) ≤ a(xF ) leads to a contradiction. Since X is compact, the net (xF )F∈F ′

has a cluster point x in X. Since a < f and due to our choice of fF , we
can choose some F0 ∈ F ′ such that a(x) < fF0(x) < f(x). Now the set
U =

{
y ∈ X : a(y) < fF0(y)

}
is an open neighbourhood of x. Since x is

a cluster point of (xF ), there exists some F1 > F0 such that xF1 ∈ U , that is,
fF1(xF1) ≤ a(xF1) < fF0(xF1). This is a contradiction to the fact that fF0 ≤ fF1 .
Hence there exists some F ∈ F ′ such that a(x) < fF (x) for all x ∈ X. Similarly,
there exists some G ∈ G ′ such that b(x) > gG(x) for all x ∈ X. Therefore, for
〈fF , gG〉, E ∈M+

fF ,gG
⊆W+.

Part (c) follows from part (b) and the inequality that for any topological
space Z, hd(Z) ≤ hπw(Z). �

The next theorem can be proved by using the same technique as in the proof
of Theorem 4.6.


������ 4.7� Let X be a countably compact perfectly normal space. Then the
following hold.

(a) (L(X), τV +) is first countable.
(b) χ(L(X)) = hd(X) = ψ(L(X)).


������ 4.8� Let X be a binormal space. Then t(L(X)) = χ(L(X)).

P r o o f. By Lemma 3.4, [23, Theorem 2.2, Proposition 2.6], we have hd(X × R)·
χ(X × R) = hd(X) · χ(X) ≤ χ(CL(X)) = t(CL(X)). Since CL(X) can be
considered as a subspace of L(X), t(CL(X)) ≤ t(L(X)). So let t(L(X)) = γ.
Let F ∈ L(X). Let D be a dense subset of F such that |D| ≤ γ and for each
x ∈ D, let Bx be a base at x with |Bx| ≤ γ. Let B =

⋃{
Bx : x ∈ D

}
.

Obviously, |B| ≤ γ. Define a set G =
{
Mf,g : 〈f, g〉 ∈M (X) and F ⊆Mf,g

}
.

We claim that F ∈ G. Let W+ ∩W−
1 ∩ · · · ∩W−

n be an open neighbourhood
of F . Then by binormality of X and by Proposition 4.4, there exists some
〈f, g〉 ∈ M (X) such that F ⊆ Mf,g ⊆ Mf,g ⊆ W . Also, since F ⊆ Mf,g,
Mf,g ∈W−

1 ∩ · · · ∩W−
n , thus showing that F ∈ G.

Hence we can find some subset G′ of G such that |G′| ≤ γ and F ∈ G′.
Now take G =

{
W+ ∩ U−

1 ∩ · · · ∩ U−
n : W ∈ G′, U1, . . . , Un ∈ B

}
. Clearly

|G | ≤ γ and G forms a base for F in L(X). Therefore χ(L(X)) ≤ t(L(X)) and
consequently t(L(X)) = χ(L(X)). �
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�����	
�
�� 4.9� For a Hausdorff space X, the following statements hold.

(a) w((L(X), τV −)) = w(X).
(b) w(L(X)) = w((L(X), τV +)) · w((L(X), τV −)).

P r o o f. The proof of part (a) easily follows from the fact that if B is a base for
X, then B′ =

{
(B × (p, q))− : B ∈ B, p, q rationals (p < q)

}
forms a subbase

for (L(X), τV −).
For part (b), it is easy to verify that w(L(X)) ≤ w((L(X), τV +)) ·

w((L(X), τV −)). Also, by part (a) and Proposition 3.2, w((L(x), τV −)) =
w(X) ≤ w(L(X)). The proof of the inequality w((L(X), τV +)) ≤ w(L(X))
is similar to the proof of (c) in Proposition 4.2. �

The next theorem gives the weight of L(X) with the upper Vietoris and
Vietoris topologies, for a binormal space X. But before stating the theorem, we
would like to give the following lemma.

����� 4.10� Let X be a Tychonoff space. Then w(X) ≤ w(C(X)).

P r o o f. Let B be a base for C(X) with |B| ≤ w(C(X)). Without loss of
generality, we can assume that B is of the following form:

B =
{
W+

α : Wα is an open set such that

for each x ∈ X, Wα(x) is connected
}
.

Now for each W+
α ∈ B, define

Uα =
{
x ∈ X : 〈x, 0〉 ∈ Wα

}
.

Clearly Uα is an open set. We claim that the family U = {Uα} forms a base
for X. Let x ∈ X and U be an open neighbourhood of x. Let f ∈ C(X)
such that 0 ≤ f ≤ 1, f(x) = 0 and f(X \ U ) = {1}. Now define an open set
W = U × (−1,∞) ∪X × (1/2,∞). Clearly f ∈ W+. Since B forms a base for
C(X), we can find some W+

α such that f ∈W+
α ⊆W+.

We claim that Uα ⊆ U . Suppose by way of contradiction, there exists some
x0 ∈ Uα \ U . Now since f ∈ W+

α and f(x0) = 1, 1 ∈ Wα(x0). Due to our
choice of Wα, [0, 1] ⊆ Wα(x0). Hence we can find some open neighbourhood V
of x0 such that V × [0, 1] ⊆ Wα. Choose a continuous function g on X such
that 0 ≤ g ≤ 1, g(x0) = 0 and g(X \ V ) = {1}. Then the continuous function
h defined by h(x) = f(x)g(x) for all x ∈ X belongs to W+

α \W+, which is a
contradiction to our choice of Wα. �

We end this section with the result that shows, for a binormal space X, the
cellularity, the density and the weight of L(X) with the Vietoris and upper
Vietoris topologies are equal.
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������ 4.11� Let X be a binormal space. Then the following hold.

(a) c(L(X)) = d(L(X)) = w(L(X)) = w(C(X))
(b) c((L(X), τV +)) = d((L(X), τV +)) = w((L(X), τV +)) = w(C(X)).

P r o o f. We only prove part (a). The proof of part (b) is similar. It is well-
known that c(Z) ≤ d(Z) ≤ w(Z) for any topological space Z. So we need to
prove w(L(X)) ≤ c(L(X)).

By Proposition 4.4, w((L(X), τV +)) ≤ d(C(X)) ≤ w(C(X)). Also since
the Vietoris topology on C(X) coincides with the graph topology, C(X) can be
considered as a subspace of (L(X), τV +), and hence w((L(X), τV +)) = w(C(X)).
So, by Proposition 4.9, we get that w(L(X)) = w(C(X)) · w(X). Hence by
Lemma 4.10, we have w(L(X)) = w(C(X)).

Now since X is a binormal space, by [21, Lemma 4.1], C(X) is a dense
subspace of (L(X), τV +). Therefore, c(C(X)) = c((L(X), τV +)) ≤ c(L(X)).
Also by [11, Theorem 2.9, Theorem 2.11] and the fact that the Vietoris topology
on C(X) coincides with the graph topology, we have c(C(X)) = d(C(X)) =
w(C(X)). Now since c(C(X)) ≤ c(L(X)) and w(L(X)) = w(C(X)), we have
c(L(X)) = d(L(X)) = w(L(X)) = w(C(X)). �

5. Metrizability and countability properties of L(X)

In this section, we study some basic topological properties of L(X) such as
metrizability, complete metrizability and various countability properties in terms
of topological properties of X.

����� 5.1� If for a Hausdorff space X, L(X) is first countable, then X is
countably compact, perfectly normal and hereditarily separable.

P r o o f. Suppose X is not countably compact. So there is an infinite set
{
xn :

n ∈ N
}

without an accumulation point. Let
{
Gn : n ∈ N

}
be a base of open

neighbourhoods of the function F0 identically equal to zero in L(X). Without
loss of generality we can assume that every Gn is of the following form:

Gn = W+
n ∩ F−

n ,

where Wn is an open set in X ×R such that F0 ⊆Wn and Fn is a finite family
of open sets in X × R with F0 ∈ F−

n .
For every n ∈ N, there is an open set O(xn) in X with xn ∈ O(xn) and an

open interval (an, bn) containing zero with

O(xn) × (an, bn) ⊆Wn.
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For every n ∈ N, let cn ∈ (an, bn) be such that 0 < cn. Consider the set

W = X × R \ {〈xn, cn〉 : n ∈ N
}
.

Then W is an open set in X × R and F0 ∈ W+, but there is no n ∈ N with
Gn ⊆W+.

Indeed for each n ∈ N, define Fn ∈ L(X) as Fn(xn) = [0, cn] and Fn(x) = 0
for x �= xn. Then Fn ∈ W+

n ∩ F−
n = Gn, but of course Fn /∈W+.

The perfect normality ofX follows from Proposition 3.2 and [23, Theorem 2.3]
and the hereditary separability of X follows from Theorem 4.7. �


������ 5.2� For a Hausdorff space X, the following statements are equiva-
lent.

(a) L(X) is first countable.
(b) X is countably compact, perfectly normal and hereditarily separable.
(c) X is countably compact, normal, hereditarily separable and every F ∈

L(X) is a Gδ-set in X × R.
(d) X is hereditarily separable and every F ∈ L(X) has a countable base of

neighbourhoods in X × R.

P r o o f. The implication (a) =⇒ (b) follows from Lemma 5.1 and (b) =⇒ (c)
follows from Theorem 4.7. The implication (d) =⇒ (a) follows from Proposi-
tion 4.2.

(c) =⇒ (d): Let F ∈ L(X) and
{
Gn : n ∈ N

}
be a decreasing sequence of

open sets in X×R such that F =
⋂{

Gn : n ∈ N
}
. As X is binormal (and hence

X ×R is normal), we may assume that in fact F =
⋂{

Gn : n ∈ N
}
. Since X is

countably compact, there exists some m ∈ N such that F ⊆ X × (−m,m). We
may assume that for each n ∈ N, Gn ⊆ X × (−m,m). Now since X × [−m,m]
is countably compact and normal, the family

{
Gn : n ∈ N

}
forms a base at F

in X × R. �

�����	
�
�� 5.3� If X is compact and metrizable, then the space L(X) is
completely metrizable.

P r o o f. SinceX is compact and metrizable,K(X×R), the space of all nonempty
compact subsets of X × R, is completely metrizable and consequently, the
space L(X) being subspace of it, is metrizable. Also, L(X) is a Gδ-set of

K(X × R), that is, L(X) =
∞⋂

n=1
Gn, where Gn are open in K(X × R). Also

note that L(X) ⊆ {
F ∈ K(X × R) : F (x) �= ∅ for all x ∈ X

}
. If L(X)

is closed in K(X × R), then clearly L(X) is a Gδ-set of K(X × R). So let
L(X) �= L(X). Let {Bn} be a countable base for X. Let for each n ∈ N,
Bn =

{〈A,B〉 : A,B are open in X such that A∩B = ∅, A∪B = Bn

}
and let
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S =
{〈n,m〉 ∈ N×N : Bm ⊆ Bn

}
. Clearly 〈∅, Bn〉, 〈Bn, ∅〉 ∈ Bn and S is count-

able. For each s = 〈n,m〉 ∈ S and p, q rationals such that p < q, define an open
set in K(X×R) by U (s, p, q) =

⋃{(
A× (−∞, q)∪B× (p,∞)∪(X\Bm )×R

)+ :
〈A,B〉 ∈ Bn

} ∪ (
Bn × (p, q)

)−.

Now let F ∈ L(X). If F ∈ (
Bn × (p, q)

)−, then obviously F ∈ U (s, p, q).
So let us assume that F ∩ Bn × (p, q) = ∅. Then for each x ∈ Bn, either
F (x) ⊆ (−∞, p] ⊆ (−∞, q) or F (x) ⊆ [q,∞) ⊆ (p,∞). Let A =

{
x ∈ Bn :

F (x) ⊆ (−∞, q)
}

and B =
{
x ∈ Bn : F (x) ⊆ (p,∞)

}
. It can be easily

verified that 〈A,B〉 ∈ Bn. Then we have F ∈ (
A × (−∞, q) ∪ B × (p,∞) ∪(

X \ Bm

) × R
)+ ⊆ U (s, p, q). Then the set M =

⋂{
U (s, p, q) : s ∈ S,

p, q rationals, p < q
} ∩

∞⋂
n=1

Gn is a Gδ-subset of K(X × R) contained in L(X)

and containing L(X). Now let E ∈ L(X) \ L(X). Obviously E(x) �= ∅ for
all x ∈ X. Since E /∈ L(X), we can find some x ∈ X such that E(x) is
not connected, that is, there exist rational numbers p′, q′ (p′ < q′) such that
E(x) ∩ (−∞, p′) �= ∅, E(x) ∩ (q′,∞) �= ∅ and E(x) ∩ (p′, q′) = ∅. Since E is
closed in X × R, we can find some open neighbourhood V of x and rational
numbers p, q with p′ < p < q < q′ such that E(V ) ∩ (p, q) = ∅. Choose some
n,m ∈ N such that x ∈ Bm ⊆ Bm ⊆ Bn ⊆ V . Let 〈A,B〉 ∈ Bn. Since
x ∈ Bm and E(x) is neither contained in (−∞, q) nor contained in (p,∞),
E /∈ (

A × (−∞, q) ∪ B × (p,∞) ∪ (
X \ Bm

) × R
)+ ∩ (

Bn × (p, q)
)−. Hence

E /∈ M . Therefore L(X) = M . Consequently L(X) is a Gδ-subset of K(X×R)
and hence completely metrizable. �

Note that L(X) with the lower Vietoris topology is always separable. How-
ever, this is not the case for L(X) with the Vietoris and upper Vietoris topologies,
as shown by the following lemma.

�����	
�
�� 5.4� If L(X) with Vietoris (upper Vietoris) topology is separable,
then X is countably compact.

P r o o f. Note that if (L(X), τV ) is separable, then (L(X), τV +) is also separable.
So assume that (L(X), τV +) is separable. Let

{
Fn : n ∈ N

}
be a dense subset

of (L(X), τV +). Suppose X is not countably compact. Then there is an infinite
set

{
xn : n ∈ N

}
with no accumulation point. Since R is uncountable, there

is a t ∈ R such that for every n ∈ N, Fn(xn) �= {t}. Then for every n ∈ N, let
tn ∈ Fn(xn) \ {t}. Define

W = (X × R) \ {〈xn, tn〉 : n ∈ N
}
,

which is an open subset of X × R. Now W+ is nonempty because it contains
F defined by F (x) = {t} for all x ∈ X. However, no Fn is in W+, which
contradicts

{
Fn : n ∈ N

}
being dense in L(X). �
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�����	
�
�� 5.5� Let X be a normal space and let the space L(X) with the
Vietoris (upper Vietoris) topology satisfy the countable chain condition. Then
X is compact and metrizable.

P r o o f. Note that if (L(X), τV ) satisfies the countable chain condition, then
(L(X), τV +) also satisfies the countable chain condition. So assume that
(L(X), τV +) satisfies the countable chain condition.

Consider the family W of open subsets of L(X) of the form W+, where
W ⊆ X × (0,∞). Then by Zorn’s Lemma, we can find a maximal subfamily W ′

of W consisting of pairwise disjoint open subsets. Since (L(X), τV +) satisfies the
countable chain condition, W ′ is countable, say W ′ =

{
W+

n : n ∈ N
}
. We shall

show that X is countably compact. Suppose by way of contradiction, X is not
countably compact, that is, there exists a countably infinite set

{
xn : n ∈ N

}
of

X without an accumulation point. Since for each W+
n ∈ W ′, Wn ⊆ X × (0,∞),

for each n ∈ N, we can find some tn > 0 such that 〈xn, t〉 /∈ Wn for each
t ∈ (0, tn]. Since

{
xn : n ∈ N

}
is a closed discrete set and X is normal, we can

find positive continuous functions f and g on X such that f(xn) = tn and g < f .
Now 〈g, f〉 ∈ M (X). Obviously, since 1

2 (f + g) ∈ M+
g,f , M+

g,f is a nonempty
open set in (L(X), τV +). It can be easily verified that Mg,f ⊆ X × (0,∞) and
M+

g,f ∩W+
n = ∅ for all W+

n ∈ W ′ which is a contradiction to the maximality
of W ′. Hence X is countably compact.

Now since X is binormal, by Theorem 4.11, we have C(X) is second countable
and hence, by Lemma 4.10, X is compact and metrizable. �


������ 5.6� For a Hausdorff space X, the following statements are equiva-
lent.

(a) L(X) is second countable.
(b) L(X) has a countable network.
(c) L(X) is first countable and separable.
(d) L(X) is first countable and satisfies the countable chain condition.
(e) L(X) is developable.
(f) L(X) is metrizable.
(g) L(X) is completely metrizable.
(h) X is compact and metrizable.

P r o o f. The implications (a) =⇒ (b), (a) =⇒ (c), (c) =⇒ (d), (g) =⇒
(f) =⇒ (e) are immediate. The implication (h) =⇒ (g) follows from Proposi-
tion 5.3 and (d) =⇒ (h) follows from Lemma 5.1 and Proposition 5.5.
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(h) =⇒ (a): Since X is compact, L(X) ⊆ K(X × R), the space of all
nonempty compact subsets of X × R. Thus by [28, Proposition 4.5], L(X) is
second countable.

(b) =⇒ (h): Since L(X) has countable network, L(X) is separable. Hence
by Proposition 5.4, X is countably compact. Also since L(X) has a countable
network and X can be considered as a subspace of L(X) (by Proposition 3.2),
X has a countable network. Therefore, X is also Lindelöf. Consequently X is
compact with a countable base and hence compact and metrizable.

(e) =⇒ (h): Since L(X) is developable, by Proposition 3.2, CL(X) is also
developable. Hence by [24, Theorem 3.3], X is compact and metrizable. �

������ 5.7� Let X be a normal space. Then the following statements are
equivalent.

(a) L(X) is separable.
(b) L(X) has countable chain condition.
(c) X is compact and metrizable.

P r o o f.
(a) =⇒ (b): This is immediate.
The implication (c) =⇒ (a) follows from Theorem 5.6 and (b) =⇒ (c)

follows from Proposition 5.5. �
Remark 5.8� All the results of this section are also true for L(X) with the lo-
cally finite topology. Also note that the locally finite topology on L(X) coincides
with the Vietoris topology when X is countably compact.
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L’. HOLÁ — TANVI JAIN — R. A. MCCOY

[29] NAIMPALLY, S.: Multivalued function spaces and Atsuji spaces, Appl. Gen. Topol. 2
(2003), 201–209.

[30] ROCKAFELLAR, R. T.—WETS, R. J. B.: Variational Analysis, Springer, Berlin, 1998.

Received 11. 5. 2007
Revised 23. 1. 2008

*Academy of Sciences
Institute of Mathematics
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