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ABSTRACT. The aim of this paper is to prove some random fixed point theo-

rems for asymptotically nonexpansive random operator defined on an unbounded

closed and starshaped subset of a Banach space.
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1. Introduction

Random operator theory lie at the heart of probabilistic functional analy-
sis and is needed for the study of various classes of random operator equations
(see [5], [11]). Fixed point theorems in connection with the existence of ran-
dom solution of nonlinear random operator equations are extensively studied
and for a survey of random fixed point theory and its applications, we re-
fer to [2], [8], [9], and [17]. K i r k and R a y [13] have shown that if X is
an unbounded closed convex subset of a uniformly convex Banach space and
T : X → X is a Lipschitzian pseudo contractive mapping for which the set
G(x, Tx; x) =

{
z ∈ X : ‖z − Tx‖ ≤ ‖z − x‖} is bounded for some x ∈ X,

then T has a fixed point in X. Afterward C a r b o n e and M a r i n o [6] exam-
ined the structure of some geometric sets in Banach spaces with this property.
P e n o t [16], imposing the condition of asymptotic contractivity on nonexpan-
sive mappings defined on unbounded closed and convex subset of a Banach
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space, established some fixed point theorems. I s a c and N e m e t h [10] ob-
tained some interesting results for eigenvalues of nonexpansive mappings defined
on unbounded sets. Recently, K a e w c h a r o e n and K i r k [12] obtained the
existence of fixed point of similar mappings defined on unbounded domains un-
der a weaker condition than given in [16]. On the other hand, B e g and A b b a s
[3] constructed a random iterative scheme which converges to a random fixed
point of an asymptotically nonexpansive random operator which takes values in
a closed convex and bounded subset of a Banach space. The aim of this paper
is to prove some random fixed point theorems for asymptotically nonexpansive
random operators defined on an unbounded closed and starshaped subset of a
Banach space. Moreover, from computational point of view, we employ the sim-
plest random iterative process to obtain the existence of random fixed points of
such operators. As a consequence, a stochastic generalization and improvements
of the comparable results valid for bounded convex sets in the literature ([10]
and [16]) are obtained.

2. Preliminaries

We begin with some definitions and state the notations which are used in
this paper. Let (Ω, Σ) be a measurable space (Σ — sigma algebra) and C be a
nonempty subset of a normed space X. A multivalued mapping T : Ω → 2X (or
single valued mapping T : Ω → X) is measurable if T−1(U ) ∈ Σ (or T−1(U ) ∈ Σ)
for each open subset U of X, where T−1(U ) =

{
ω ∈ Ω : T (ω)∩U �= ∅}, and 2X

denotes a family of all subsets of X. A multivalued mapping T : Ω×C → 2X (or a
single valued mapping T : Ω×C → X) is a random operator if and only if for each
fixed x ∈ C, the mapping T (· , x) : Ω → 2X (or T (· , x) : Ω → X) is measurable,
and it is continuous if for each ω ∈ Ω, the mapping T (ω, · ) : C → 2X (or
T (ω, · ) : C → X) is continuous. A measurable mapping ξ : Ω → X is a random
fixed point of a random operator T : Ω×X → X if and only if ξ(ω) = T (ω, ξ(ω))
for each ω ∈ Ω. We denote the nth iterate T (ω, T (ω, T (, . . . , T (ω, x)))) of T by
Tn(ω, x).

A random operator T : Ω×C → C is said to satisfy condition (A) if for fixed
x0 in C, we have

lim sup
‖x‖→∞

x∈C

‖Tn(ω, x) − T (ω, x0)‖
‖x − x0‖ < 1

for each ω ∈ Ω and n ∈ N. If we put n = 1 in above inequality, we obtain a
random version of definition of asymptotic contractive mapping given in [16].
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Let G : Ω × X × X → R (set of real numbers) be a mapping which satis-
fies G(ω, λx, y) = λG(ω, x, y), G(ω, x + y, z) = G(ω, x, z) + G(ω, y, z), ‖x‖2 ≤
G(ω, x, x), and there is M > 0 such that |G(ω, x, y)| ≤ M ‖x‖ ‖y‖ for any
x, y, z ∈ X and ω ∈ Ω. The mapping G defined in [10] in turn helps to ob-
tain a random fixed point of an asymptotically nonexpansive random operators
defined on unbounded domain. If B : Ω × X × X → R is a linear mapping
in second and third coordinates, and there is a positive constant k such that
B(ω, x, x) ≥ k ‖x‖2, then G : Ω×X×X → R defined by G(ω, x, y) = 1

kB(ω, x, y)
satisfies all the above conditions.

A mapping T : C → X is called demiclosed with respect to y ∈ X if for each
sequence {xn} in C such that {xn} converges weakly to x ∈ X and {Txn}
converges strongly to y imply that x ∈ C and Tx = y.

���������� 2.1� The random operator T : Ω × C → C is said to be:

(a) Nonexpansive random operator if for any x, y ∈ C we have

‖T (ω, x) − T (ω, y)‖ ≤ ‖x − y‖ ,

for each ω ∈ Ω.

(b) Asymptotically nonexpansive random operator if there exists a sequence of
mappings rn : Ω → [0,∞) with lim

n→∞ rn(ω) = 1, and for any x, y ∈ C,

‖Tn(ω, x) − Tn(ω, y)‖ ≤ rn(ω) ‖x − y‖ ,

for each ω ∈ Ω.

Remark 2.2� Let C be a closed subset of a complete separable metric space
X and the sequence of measurable mappings {ξn} from Ω to C be pointwise
convergent, that is, ξn(ω) → ξ(ω) for each ω ∈ Ω. Then ξ being the limit of the
sequence of measurable mappings is measurable and closedness of C implies ξ

is a mapping from Ω to C. If T is a continuous random operator from Ω × C

to C then by [1, Lemma 8.2.3], the map ω 
→ T (ω, f(ω)) is measurable for any
measurable mapping f from Ω to C.

���������� 2.3� A random operator T : Ω × C → C is said to satisfy property
(P) if for any bounded sequence {xn} in C with lim

n→∞ ‖Tn(ω, xn) − xn‖ = 0 for
each ω ∈ Ω implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Throughout this paper we assume that T satisfies the property (P). It is noted
that for an asymptotically nonexpansive mapping (defined even on unbounded
sets), this property implies the bounded approximate fixed point property (that
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is, for a bounded sequence {xn} in C, lim
n→∞ ‖T (ω, xn) − xn‖ = 0 for each ω ∈ Ω)

which in turn is equivalent to the existence of deterministic fixed point of T

under some mild compactness conditions.

3. Random fixed points

Theorems established in this section for a nonempty unbounded closed and
starshaped subsets generalize comparable results in the existing literature valid
for bounded closed convex sets.

In the following theorem we employ the properties of the mapping G ([10]) to
obtain the existence of a random fixed point of an asymptotically nonexpansive
random operator.

�	��
�� 3.1� Let C be a nonempty unbounded closed and starshaped sub-
set with respect to some point u in a separable reflexive Banach space X and
T : Ω × C → X be an asymptotically nonexpansive random operator with
T (ω, C) ⊆ C and I − T (ω, · ) be demiclosed for each ω ∈ Ω.

If lim sup
‖x‖→∞

x∈C

G(ω,T n(ω,x)−u,x)

‖x‖2 < 1, then T has a random fixed point.

P r o o f. For each n, define the mapping Tn : Ω × C → X as, Tn(ω, x) =
αn(ω)Tn(ω, x) + (1 − αn(ω))u, where αn(ω) = λn(ω)

rn(ω) , and λn : Ω → (0, 1) is a
sequence of mappings with lim

n→∞ λn(ω) = 1, for each ω ∈ Ω. Since T (ω, C) ⊆ C

for each ω in Ω, starshapedness of C with respect to u implies that Tn(ω, C) ⊆ C

for each n. Now

‖Tn(ω, x) − Tn(ω, y)‖ = αn(ω) ‖Tn(ω, x) − Tn(ω, y)‖
≤ λn(ω) ‖x − y‖ .

Thus Tn(ω, · ) is a contractive random operator, for each ω ∈ Ω. Hence we obtain
a sequence of measurable mappings ξn : Ω → X with ξn(ω) = Tn(ω, ξn(ω)) for
each ω ∈ Ω ([5]). Now we show that {ξn(ω)} is a bounded sequence for each
ω ∈ Ω. If this is not the case, we may assume ‖ξn(ω)‖ → ∞, for some ω ∈ Ω.
Let α ∈ (0, 1) and β > 0 be such that G(ω, Tn(ω, x) − u, x) ≤ α ‖x‖2, for each
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ω ∈ Ω and x ∈ C with ‖x‖ ≥ β. For n large enough, consider

‖ξn(ω)‖2 ≤ G(ω, ξn(ω), ξn(ω))

= G
(
ω, αn(ω)[Tn(ω, ξn(ω)) − u] + u, ξn(ω)

)

= αn(ω)G
(
ω, Tn(ω, ξn(ω)) − u, ξn(ω)

)
+ G(ω, u, ξn(ω))

≤ αn(ω)α ‖ξn(ω)‖2 + M ‖ξn(ω)‖ ‖u‖ .

Dividing by ‖ξn(ω)‖2 and taking limit n → ∞, we arrive at the conclusion 1 ≤ α,
a contradiction. Hence {ξn(ω)} is a bounded sequence for each ω ∈ Ω. Now,
when n → ∞

‖ξn(ω) − Tn(ω, ξn(ω))‖ = (1 − αn(ω)) ‖Tn(ω, ξn(ω)) − u‖ → 0.

Moreover,

‖ξn(ω) − T (ω, ξn(ω))‖
≤ ‖ξn(ω) − Tn(ω, ξn(ω))‖ + ‖Tn(ω, ξn(ω)) − T (ω, ξn(ω))‖
≤ (1 − αn(ω)) ‖Tn(ω, ξn(ω)) − u‖ + r1(ω)

∥
∥Tn−1(ω, ξn(ω)) − ξn(ω)

∥
∥

≤ (1 − αn(ω)) ‖Tn(ω, ξn(ω)) − u‖
+r1(ω)

[‖Tn−1(ω, ξn(ω)) − Tn−1(ω, ξn−1(ω))‖
+

∥∥Tn−1(ω, ξn−1(ω)) − ξn−1(ω)
∥∥ + ‖ξn−1(ω) − ξn(ω)‖]

≤ (1 − αn(ω)) ‖Tn(ω, ξn(ω)) − u‖ + r1(ω)
[
rn−1(ω) ‖ξn(ω) − ξn−1(ω)‖

+(1 − αn−1(ω))
∥∥Tn−1(ω, ξn−1(ω)) − u

∥∥ + ‖ξn−1(ω) − ξn(ω)‖],

which approaches to zero as n → ∞. {ξn(ω)} is a bounded sequence in a
reflexive Banach space for each ω ∈ Ω. Therefore, for each n, we can define
Gn : Ω → WK(X) by Gn(ω) = w- cl

(
co{ξi(ω) : i ≥ n}), where w- cl(coC)

is the weak closure of convex hull of C. Define G : Ω → WK(X) by G(ω) =
∞⋂

n=1
Gn(ω). Since the weak topology on X is a metric topology (see, D u n f o r d

and S c h w a r t z [7]) and the mapping G is w-measurable so G has a w-measur-
able selector ξ ([14], [15]). Since X is separable, ξ is measurable. The map ξ is
the required random fixed point. Indeed, for any fixed ω in Ω, we may assume
that there exists a subsequence

{
ξnj

(ω)
}

of
{
ξn(ω)

}
weakly convergent to ξ(ω).

Since I−T (ω, · ) is demiclosed, therefore T (ω, ξ(ω)) = ξ(ω), for every ω ∈ Ω. �
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��
�

�
� 3.2� Let C be a nonempty boundedly compact closed and star-
shaped subset with respect to some point u in a separable Banach space X

and T : Ω × C → X be an asymptotically nonexpansive random operator with
T (ω, C) ⊆ C and I − T (ω, · ) be demiclosed for each ω ∈ Ω.

If lim sup
‖x‖→∞

x∈C

G(ω,T n(ω,x)−u,x)

‖x‖2 < 1, then T has a random fixed point.

Now, we prove the following existence theorem under a condition different
from that given in Theorem 3.1.

�	��
�� 3.3� Let C be a nonempty unbounded closed starshaped subset with
respect to u in a separable reflexive Banach space X and T : Ω × C → X be
an asymptotically nonexpansive random operator satisfying condition (A) with
T (ω, C) ⊆ C for each ω ∈ Ω. If I − T (ω, · ) is demiclosed for each ω in Ω, then
T has a random fixed point.

P r o o f. For each n, define the mapping Tn : Ω × C → X as Tn(ω, x) =
αn(ω)Tn(ω, x) + (1 − αn(ω))u, where αn(ω) = λn(ω)

rn(ω)
, and λn : Ω → (0, 1) is a

sequence of mappings with lim
n→∞ λn(ω) = 1, for each ω ∈ Ω. Since T (ω, C) ⊆ C

for each ω in Ω, starshapedness of C with respect to u implies that Tn(ω, C) ⊆ C

for each n. Now

‖Tn(ω, x) − Tn(ω, y)‖ = αn(ω) ‖Tn(ω, x) − Tn(ω, y))‖
≤ λn(ω) ‖x − y‖ .

Following an argument similar to that in Theorem 3.1, we obtain a measurable
mapping ξn : Ω → X with ξn(ω) = T (ω, ξn(ω)) for each positive integer n and
ω ∈ Ω. Now we show that

{
ξn(ω)

}
is a bounded sequence for each ω ∈ Ω. If this

is not the case, we may assume ‖ξn(ω)‖ → ∞ for some ω ∈ Ω. Let α ∈ (0, 1)
and β > 0 be such that ‖Tn(ω, x) − T (ω, u)‖ ≤ α ‖x − u‖, for each ω ∈ Ω and
x ∈ C with ‖x‖ ≥ β. For n large enough, consider

‖ξn(ω)‖ = ‖αn(ω)Tn(ω, ξn(ω)) + (1 − αn(ω))u‖
≤ αn(ω) (‖Tn(ω, ξn(ω)) − T (ω, u)‖ + ‖T (ω, u)‖) + (1 − αn(ω)) ‖u‖
≤ αn(ω) (‖Tn(ω, ξn(ω)) − T (ω, u)‖ + ‖T (ω, u)‖) + (1 − αn(ω)) ‖u‖
≤ αn(ω)α ‖ξn(ω) − u‖ + (1 − αn(ω)) ‖u‖ .

Dividing by ‖ξn(ω)‖ and taking limit n → ∞, we arrive at the conclusion 1 ≤ α,
a contradiction. Thus {ξn(ω)} is a bounded sequence for each ω in Ω. Following
similar arguments as those used in the proof of Theorem 3.1, we obtain a mea-
surable mapping ξ : Ω → C satisfying the random operator equation T (ω, x) = x

for each ω in Ω. �
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The following corollary is a generalization of [4, Theorem 3.2].

��
�

�
� 3.4� Let C be a nonempty unbounded closed starshaped subset with
respect to some u in a separable reflexive Banach space X and T : Ω×C → X be
a nonexpansive asymptotically contractive random operator with T (ω, C) ⊆ C,
for each ω in Ω. Then T has a random fixed point.

Remark 3.5� If we take a uniformly convex Banach space in Theorems 3.1
and 3.2, the conclusion of these theorems remain valid even if we drop the
condition of demiclosedness of I − T (ω, · ).
Acknowledgement� The present version of the paper owes much to the precise
and kind remarks of an annonymous referee.
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