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DEDUCTIVE SYSTEMS OF A CONE ALGEBRA – II:

ISOMORPHISM THEOREM

N. V. Subrahmanyam
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ABSTRACT. We prove that there is an isomorphism ϕ of the lattice of deductive
systems of a cone algebra onto the lattice of convex �-subgroups of a lattice ordered
group (determined by the cone algebra) such that for any deductive system A of
the cone algebra, A is respectively a prime, normal or polar if and only if ϕ(A)
is a prime convex �-subgroup, �-ideal or polar subgroup of the �-group, thus
generalizing and extending the result of Rach̊unek that the lattice of ideals of a
pseudo MV-algebra is isomorphic to the lattice of convex �-subgroups of a unital
lattice ordered group.
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Introduction

Recently, J . R a c h ů n e k has proved [5] that the lattice of ideals of a gen-
eralized MV-algebra (equivalently, a pseudo MV-algebra) is isomorphic to the
lattice of convex �-subgroups of a unital lattice ordered group, using a theorem
of A . D v u r e č e n s k i j [3] that every pseudo MV-algebra is an interval [0, u]
of a unital �-group with strong order unit u. Now by [7, Theorems 2.8, 3.13]
(Part I), a subset A of a pseudo MV-algebra C is an ideal of C if and only if A
is a deductive system of the brick equivalent to C. Hence Rach̊unek’s theorem
([5, Theorem 2]) can be interpreted as proving that lattice of deductive systems
of a brick is isomorphic to the lattice of convex �-subgroups of a unital �-group.
The main object of this paper is to generalize Rach̊unek’s theorem (in this form)
to cone algebras (of which, bricks are a subclass). Stated briefly, we prove the
following theorem (for various definitions involved, please see inside):

���� ������	
 Let C be a cone algebra; then there exists a lattice ordered
group G = G(C) such that C is a subalgebra of the cone algebra of the �-group
cone G+ and an isomorphism ϕ of the lattice of deductive systems of C onto the
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lattice of convex �-subgroups of G such that a deductive system A of C is, respec-
tively, prime, normal or polar if and only if ϕ(A) is a prime convex �-subgroup,
an �-ideal or a polar subgroup of G.

The full version of the above theorem will be given in Section 6 (Theorem 6.8)
and we will deduce the theorem of R a c h ů n e k in the concluding part of this
paper.

This part contains the Sections 4 through 6. In Section 4, we define the
enveloping �g-cone of a cone algebra, which plays the same role for cone algebras
in our work, as Dvurečenskij’s theorem ([3]) has done for pseudo MV-algebras
in the proof of Rach̊unek’s Theorem 2 ([5]).

Sections 5 and 6 are devoted to the proof of the main theorem, given in two
steps.

4. Enveloping �g-cone of a cone algebra

In this section, we lay the foundation for the proof of the main theorem; and
for this purpose, the following theorem due to B o s b a c h ([1, p. 64]) is very
pivotal.

����
 �	������� ������	 (Bosbach)
 Necessary and sufficient condition
for an algebra (R; ∗, : ) to admit an extension (S; ∗, : ), which is the residuation
groupoid of some �-group cone is that (R; ∗, : ) is a cone algebra.

We recall from B o s b a c h [2] that a right residuation groupoid is a binary
algebra (A; ◦) satisfying the equations:

(1) (a ◦ a) ◦ b = b,
(2) (a ◦ b) ◦ (a ◦ c) = (b ◦ a) ◦ (b ◦ c),
(3) a ◦ (b ◦ b) = c ◦ c, and
(4) a ◦ b = c ◦ c = b ◦ a imply a = b.

Also, an algebra (A; ∗, : ) is called a residuation groupoid, if and only if both
(A; ∗) and (A; : ) are right residuation groupoids. For instance, the positive
cone G+ of a (not necessarily abelian) �-group (G; +,≤) with operations ∗ and :
defined by

a ∗ b = (−a + b) ∨ 0 and a : b = (a − b) ∨ 0

is a residuation groupoid called the residuation groupoid of the �-group cone G+,
and (G+; ∗, : ) is also called the cone algebra of the �-group cone (G+; +,≤).

Now let C be a cone algebra, then by the first embedding theorem of B o s -
b a c h [1], C is a subalgebra of the cone algebra of the positive cone G+ of
some �-group (G; +,≤). If Ĉ is the subsemigroup of (G+; +) generated by C,
then (Ĉ; ∗, : ) is an �-group cone ([6, Lemma 4.2]), which contains C as a convex
subalgebra ([6, Theorem 4.6]). We now prove:
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��		� 4.1
 Let (C; ∗, : ) be a cone algebra and let (K; ∗, : ) be the cone algebra
of the positive cone of an �-group. Also, let σ : C → K be a homomorphism of
cone algebras; then σ can be extended to a homomorphism σ̂ : Ĉ → K of cone
algebras.

P r o o f. Let C0 = C and Ck = Ck−1+Ck−1, for k ≥ 1. Then it follows that each
Ck is a cone subalgebra of the �-group cone Ĉ, by induction and the following
identities:

(a + b) ∗ (c + d) = (b ∗ (a ∗ c)) + [((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)]
and (d + c) : (b + a) = [(d : (a : c)) : (b : (c : a))] + ((c : a) : b)

}
(#)

which are valid in every �-group cone.
Let a, b, c, d ∈ C and suppose that a + b = c + d. Then, since x + y = 0 =⇒

x = y = 0 in an �-group cone, we obtain from (#):

b ∗ (a ∗ c) = 0 and ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d) = 0

since (a + b) ∗ (c + d) = 0. Since σ is a homomorphism of cone algebras, we
obtain

σ(b)∗(σ(a)∗σ(c)) = 0 and ((σ(a)∗σ(c))∗σ(b))∗((σ(c)∗σ(a))∗σ(d)) = 0

from which it follows that (σ(a) + σ(b)) ∗ (σ(c) + σ(d)) = 0. By symmetry, we
also get (σ(c) + σ(d)) ∗ (σ(a) + σ(b)) = 0 and hence σ(a) + σ(b) = σ(c) + σ(d)
whenever a+b = c+d. Hence if we put σ1(a+b) = σ(a)+σ(b), then σ1 : C1 → K
is well defined; and it is routine to verify that σ1 is a homomorphism of cone
algebras (using the identities (#)) and that σ1 extends σ.

Now

(1) {Ck} is an increasing sequence of cone algebras, each contained in Ĉ, and
(2) for each k ≥ 0, there is a homomorphism σk : (Ck; ∗, :) → (K; ∗, : ) of cone

algebras, where σ0 = σ and for k ≥ 1, σk(a + b) = σk−1(a) + σk−1(b) for
all a, b ∈ Ck−1, so that σk extends σk−1.

Now Ĉ =
⋃

k≥0

Ck and put σ̂ =
⋃

k≥0

σk. Then since (Ĉ; +) is generated by C,

σ̂ : Ĉ → K is a homomorphism of cone algebras. �

Now, if a1 + a2 + · · · + a2k ∈ Ck, then by induction

σ̂(a1 + a2 + · · · + a2k) = σk(a1 + a2 + · · · + a2k)
= σk−1(a1 + a2 + · · · + ak) + σk−1(ak+1 + · · · + a2k)
= σ(a1) + σ(a2) + · · · + σ(a2k).

Since 0 ∈ C, it follows that

σ̂(a1 + a2 + · · · + an) = σ(a1) + σ(a2) + · · · + σ(an) for all n ≥ 1.
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��		� 4.2
 Let µ : G+ → K+ be a homomorphism of the cone algebras of the
�-group cones G+ and K+; then µ(a + b) = µ(a) + µ(b) for all a, b ∈ G+.

P r o o f. µ(a) ∗ µ(a + b) = µ(a ∗ (a + b)) = µ(b) = µ(a) ∗ (µ(a) + µ(b)) and
µ(a + b) ∗ µ(a) = µ((a + b) ∗ a) = µ(0) = (µ(a) + µ(b)) ∗ µ(a). Hence µ(a + b) =
µ(a) + µ(b) by Lemma 3.6 (Part I). �

��		� 4.3
 With the notations preceding the above Lemma 4.2, σ̂ : Ĉ → K+

is the unique extension of σ.

P r o o f. Let σ̄ : Ĉ → K+ be a homomorphism of cone algebras extending σ;
then by Lemma 4.2,

σ̄(a1 + a2 + · · · + an) = σ̄(a1) + σ̄(a2) + · · · + σ̄(an)
= σ(a1) + σ(a2) + · · · + σ(an)
= σ̂(a1 + a2 + · · · + an) for all a1, . . . , an ∈ C.

Since (Ĉ; +) is generated by C, we have σ̄ = σ̂. �

Summarizing, we have:

������	 4.4
 Let C be a cone algebra, then there exists an �-group cone Ĉ
such that

(1) (C; ∗, : ) is a convex subalgebra of the cone algebra (Ĉ; ∗, : ) of the �-group
cone Ĉ;

(2) (Ĉ; +) is generated by C; and
(3) if K is an �-group cone, then every homomorphism σ of C into the cone

algebra of the �-group cone K can be uniquely extended to a homomorphism
σ̂ : Ĉ → K of cone algebras; and σ̂ is then also a monoid homomorphism
of Ĉ → K.

Remark 4.5
 We have seen that if K is an �-group cone, then (K; ∗, : , +) is
an �g-cone where (K; ∗, : ) is the cone algebra of K. Hence σ̂ : Ĉ → K can be
described as a homomorphism of �g-cones.

��������� 4.6
 Given a cone algebra C, the �-group cone Ĉ satisfying the
conditions (1) and (2) of the above Theorem 4.4, is uniquely determined up to
isomorphism.

P r o o f. Routine. �

We now formally introduce the following definition:

������
��� 4.7
 The �-group cone Ĉ described in the above Corollary 4.6, will
be called the enveloping �-group cone (or simply, �g-cone) of C.

The following theorem sharpens Theorem 4.4(3) above.
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������	 4.8
 Let C be a convex subset of the positive cone of an �-group
(G; +,≤), which generates the semigroup (G+; +). Then

(i) C is a cone algebra with (G+; ∗, : ) as its enveloping �g-cone Ĉ, and
(ii) every cone algebra homomorphism σ of C into the cone algebra of the pos-

itive cone of an �-group (K; +,≤) can be uniquely extended to an �-homo-
morphism σ̃ : G → K of �-groups.

P r o o f.
(i) Since a ∗ b ≤ b and a : b ≤ a, the convexity of C implies that (C; ∗, : ) is

a cone algebra contained in G+; and since C generates (G+; +), (G+; ∗, : ) is an
enveloping �g-cone of C.

(ii) By Theorem 4.4(3), σ : C → K+ can be uniquely extended to a homo-
morphism σ̂ : Ĉ → K+ and σ̂ is also a monoid homomorphism of Ĉ → K+.
Further, σ̂(a∧b) = σ̂(a : (b∗a)) = σ̂(a) : (σ̂(b)∗ σ̂(a)) = σ̂(a)∧ σ̂(b). If we define
σ̃(a) = σ̂(a+) − σ̂(a−) for each a ∈ G, then it is a routine verification to show
that σ̃ is an �-homomorphism G → K. Uniqueness of σ̃ is clear. �

Theorem 4.8 above is the cone algebra version of [4, Corollary 7.5] of K ü h r
where a similar result has been proved by K ü h r for pseudo LBCK-algebras.
Clearly, Theorem 4.8 establishes directly a categorical equivalence of the cate-
gory of cone algebras and homomorphisms with the category LG whose objects
are pairs (G, X) where (G; +,≤) is an �-group and X is a convex subset of
G+, which generates the semigroup (G+; +) and whose morphisms f : (G, X) →
(H, Y ) are �-group homomorphisms f : G → H such that f(X) ⊆ Y . We omit
the details, which are similar to those presented by K ü h r in [4].

Now Lemma 4.2 says that for �g-cones (or equivalently, �-group cones — see
Section 3, Part I), every homomorphism of their cone algebra reducts is also a
homomorphism of the �g-cones. However, this is not true for semi-�g-cones as
shown by the following example.

Example 4.9. Let (C; ∗, : ,∨) be a Boolean cone (Remark 3.8, Part I) — which
is a semi-�g-cone, in which every element is idempotent — and let Ĉ be the
enveloping �-group cone of its reduct (C; ∗, : ). Then (Ĉ; ∗, : , +) is an �g-cone
and hence a semi-�g-cone, and since (C; ∗, : ) is a subalgebra of (Ĉ; ∗, : ), the
inclusion mapping j : C → Ĉ is a monomorphism of cone algebras. Now let
a, b ∈ C; then a ∨ b is a common upper bound of a and b in Ĉ also, since the
partial ordering in Ĉ is an extension of the partial ordering in C. Hence, if u

is least upper bound of a and b in Ĉ (which exists, since every semi-�g-cone
is a join semilattice), we have u ≤ a ∨ b; and since C is a convex subset of Ĉ
(Theorem 4.4(1)) and a∨b ∈ C, we get u ∈ C and hence u = a∨b. But u �= a+b
unless a ∧ b = 0 and hence j is not a homomorphism of monoids. So j is not a
homomorphism of the �g-cones.
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5. Proof of Main Theorem — First step

This section presents the first step in the proof of our main theorem. In the
following, we let (C; ∗, : ) be a cone algebra and (Ĉ; ∗, : , +) its enveloping �-group
cone. Also, if A ⊆ C, we write Â for the subsemigroup of (Ĉ; +) generated by A.

��		� 5.1 (Riesz Decomposition)
 Let (G+; ∗, : , +) be an �-group cone,
c, a1, a2, . . . , an ∈ G+ and let

c ≤ a1 + a2 + · · · + an.

Then there exist c1, c2, . . . , cn ∈ G+ such that ci ≤ ai for i = 1, 2, . . . , n and
c = c1 + c2 + · · · + cn.

The proof of this well known lemma is omitted.

��		� 5.2
 If A is a convex subset of C, then Â is a convex subset of Ĉ.

P r o o f. Assume a ∈ Â and c ≤ a; and write a = a1 + a2 + · · · + an where
a1, a2, . . . , an ∈ A. By the above Lemma 5.1, we have c = c1 + c2 + · · · + cn

where each ci ≤ ai for i = 1, 2, . . . , n. Since A is convex, each ci ∈ A and hence
c = c1 + · · · + cn ∈ Â. Hence Â is convex. �
��������� 5.3
 If A is a nonempty convex subset of C, then Â is an ideal of
Ĉ (Definition 2.9(ii), Part I).

P r o o f. Â is a subsemigroup of Ĉ by construction, and convex by Lemma 5.2.
So Â is an ideal of Ĉ. �
��		� 5.4
 Let A be a deductive system of C, a1, a2, . . . , an ∈ C and a1 +a2 +
· · ·+an ∈ C; then a1 +a2 + · · ·+an ∈ A if and only if ai ∈ A for i = 1, 2, . . . , n.

P r o o f. By Theorem 2.8 (Part I), every deductive system of a cone algebra C
is a convex subset of C. Hence if a1 + a2 + · · ·+ an ∈ A, then each ai ∈ A since
ai ≤ a1 + a2 + · · · + an for all i. Conversely, assume that a1, a2, . . . , an ∈ A;
since a1 + a2 + · · · + ak ≤ a1 + a2 + · · · + an ∈ C and C is convex subset of
Ĉ (Theorem 4.4(1)), a1 + a2 + · · · + ak ∈ C for all k ≤ n. Now if k < n and
a1 + a2 + · · · + ak ∈ A, then a1 + a2 + · · · + ak+1 ∈ A since (a1 + a2 + · · ·
· · · + ak) ∗ (a1 + a2 + · · · + ak+1) = ak+1 ∈ A. For n = 1, a1 ∈ A; hence by
induction, a1 + a2 + · · · + an ∈ A. �

��		� 5.5
 If A is a deductive system of C, then Â is an ideal of Ĉ and
Â ∩ C = A.

P r o o f. If A is a deductive system of C, then A is a nonempty convex subset
of C and hence, by Corollary 5.3, Â is an ideal of Ĉ.

Now, let g ∈ Â ∩ C; then we can write g = a1 + a2 + · · · + an ∈ C where
a1, a2, . . . , an ∈ A. Then by Lemma 5.4, g ∈ A. Hence Â∩C ⊆ A and obviously
A ⊆ Â ∩ C. Hence Â ∩ C = A. �
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��������� 5.6
 If A and B are deductive systems of C, then A ⊆ B ⇐⇒
Â ⊆ B̂.

P r o o f. A ⊆ B =⇒ Â ⊆ B̂ =⇒ Â ∩ C ⊆ B̂ ∩ C =⇒ A ⊆ B. �
��		� 5.7
 If J is an ideal of Ĉ, then J ∩ C is a deductive system of C and
Ĵ ∩ C = J.

P r o o f. Clearly, 0 ∈ J ∩ C; and now let a ∈ J ∩ C, b ∈ C and a ∗ b ∈ J ∩ C.
Then a ∈ J , a ∗ b ∈ J and b ∈ Ĉ and since J is an ideal of Ĉ, we get b ∈ J
(by Theorem 2.8, Part I) and hence b ∈ J ∩ C. Hence J ∩ C is a deductive
system of C.

Now let a ∈ J ; then, since J ⊆ Ĉ, we can write a = c1 + c2 + · · · + cn where
c1, c2, . . . , cn ∈ C. Now each ci ≤ a and J is an ideal Ĉ and hence ci ∈ J ∩ C

for i = 1, 2, . . . , n. Hence a ∈ Ĵ ∩ C so that J ⊆ Ĵ ∩ C. On the other hand, J ,
being an ideal of Ĉ, is a subsemigroup of Ĉ and J ∩ C ⊆ J . Hence Ĵ ∩ C ⊆ J .
Hence Ĵ ∩ C = J . �

We now combine Lemmas 5.5 and 5.7 with Corollary 5.6 to obtain the fol-
lowing preliminary theorem.

������	 5.8
 Let C be a cone algebra and Ĉ its enveloping �-group cone. Then
the mapping A �→ Â is an isomorphism of the lattice of deductive systems of C

onto the lattice of ideals of Ĉ. The inverse isomorphism is given by J �→ J ∩C.

We will now show that under the isomorphism described above, the prime,
normal and polar deductive systems of C correspond to the prime, normal and
polar ideals of Ĉ, respectively. We continue with the notation used in Theo-
rem 5.8.

��		� 5.9
 A is a prime deductive system of C if and only if Â is a prime
ideal of Ĉ.

P r o o f. Recall that a deductive system D of C (an ideal D of Ĉ ) is said to be
prime if and only if

(i) D � C (D � Ĉ ) and
(ii) a ∧ b ∈ D =⇒ a ∈ D or b ∈ D.

Observe that, by Theorem 5.8, A is proper if and only if Â is proper; and now
assume that A is a prime deductive system of C. Let a, b ∈ Ĉ, a ∧ b ∈ Â and
b /∈ Â. Write a = a1 + a2 + · · · + an and b = b1 + b2 + · · · + bm where all the
a′

is and b′js are in C. Since b /∈ Â, some bj , say b1, is not in A. Then for each j,
aj ∧ b1 ∈ C and since aj ∧ b1 ≤ a ∧ b ∈ Â and Â is convex (since A is convex)
we have aj ∧ b1 ∈ Â ∩ C = A. Since A is prime and b1 /∈ A, we get aj ∈ A for
all j. Hence a = a1 + a2 + · · · + an ∈ Â. Hence Â is a prime ideal of Ĉ.
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Conversely, assume Â is a prime ideal of Ĉ; and let a, b ∈ C and a ∧ b ∈ A.
Then a, b ∈ Ĉ and a ∧ b ∈ Â; and hence a ∈ Â or b ∈ Â. Hence a ∈ Â ∩ C = A

or b ∈ Â ∩ C = A. Hence A is a prime deductive system of C. �

��		� 5.10
 If J is a normal ideal of Ĉ, then J ∩ C is a normal deductive
system of C.

P r o o f. We know that J ∩ C is a deductive system of C; and now let a, b ∈ C.
Then a∗b and b : a are in C; and hence a∗b ∈ J∩C ⇐⇒ a∗b ∈ J ⇐⇒ b : a ∈ J

(since J is a normal ideal of Ĉ and a, b ∈ Ĉ ) ⇐⇒ b : a ∈ J ∩ C. Hence J ∩ C
is a normal deductive system of C. �

��		� 5.11
 In any �-group cone, the following statements are equivalent:

(i) x = a + b

(ii) a ∗ x = b and x ∗ a = 0
(iii) x : b = a and b : x = 0.

P r o o f. Routine. �

��		� 5.12
 Let A be a normal deductive system of C, a ∈ A and c ∈ C; then
there exist b, d ∈ Â such that c + a = b + c and a + c = c + d.

P r o o f. From the identities (#) (Section 4) valid in every �-group cone, we
know

c ∗ (a + c) = (0 + c) ∗ (a + c)
= (c ∗ (0 ∗ a)) + [((0 ∗ a) ∗ c) ∗ ((a ∗ 0) ∗ c)]
= (c ∗ a) + ((a ∗ c) ∗ c),

and dually,
(c + a) : c = (c : (c : a)) + (a : c).

Since A is normal ([7, Theorem 2.13, Definition 2.14] (Part I)) (a ∗ c) ∗ c ∈ A
and c : (c : a) ∈ A; and c ∗ a ≤ a ∈ A and a : c ≤ a ∈ A and A is convex, so that
c ∗ a ∈ A and a : c ∈ A. Hence if we put b = (c + a) : c and d = c ∗ (a + c), then
b, d ∈ Â and, by Lemma 5.11, c + a = b + c and a + c = c + d. �

��������� 5.13
 Let A be a normal deductive system of C, a ∈ Â and c ∈ C;
then there exist b, d ∈ Â such that c + a = b + c and a + c = c + d.

P r o o f. Write a = a1 + a2 + · · · + an where each ai ∈ A; then, by the above
Lemma 5.12, there exist b1, b2, . . . , bn, d1, d2, . . . , dn ∈ Â such that c+ai = bi +c
and ai + c = c + di for i = 1, 2, . . . , n. Put b = b1 + b2 + · · · + bn and d =
d1 + d2 + · · · + dn; then b, d ∈ Â, c + a = b + c and a + c = c + d. �
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��������� 5.14
 If A is a normal deductive system of C, then Â is a normal
ideal of Ĉ.

P r o o f. If c ∈ C and a ∈ Â, then by Corollary 5.13, c+a ∈ Â+c and a+c ∈ c+Â

and hence c + Â ⊆ Â + c ⊆ c + Â. Hence c + Â = Â + c for all c ∈ C. Now if
c ∈ Ĉ, we can write c = c1 + c2 + · · ·+ cn where each ci ∈ C and it follows that
c+Â = Â+c by the above. Hence Â is a normal ideal of Ĉ (by [7, Theorem 2.13,
Definition 2.14] (Part I)). �

Now we combine Lemma 5.10 with Corollary 5.14 to obtain the following
lemma.

��		� 5.15
 A is a normal deductive system of C if and only if Â is a normal
ideal of Ĉ.

��		� 5.16
 If A is a subset of C, then

Â⊥ = (Â )⊥.

P r o o f. Note that A⊥ is computed in C, while (Â )⊥ is computed in Ĉ.

Now suppose that a, b1, b2 ∈ Ĉ and a∧b1 = a∧b2 = 0; then b1 ∗a = b2 ∗a = a
and hence (b1 +b2)∗a = b2 ∗ (b1 ∗a) = b2 ∗a = a so that (b1 +b2)∧a = 0. On the
other hand, if a ∧ (b1 + b2) = 0, then a ∧ b1 = a ∧ b2 = 0 since b1 ≤ b1 + b2 and
b2 ≤ b1+b2. Hence a∧(b1+b2) = 0 ⇐⇒ a∧b1 = a∧b2 = 0. Hence by induction
and symmetry, we get (a1 + a2 + · · ·+ am)∧ (b1 + b2 + · · ·+ bn) = 0 if and only
if ai ∧ bj = 0 for all i, j where a1, a2, . . . , am, b1, b2, . . . , bn ∈ Ĉ. In particular,
this is true if a1, a2, . . . , am, b1, b2, . . . , bn ∈ C. Now let c1, c2, . . . , cm ∈ C; then

c1 + c2 + · · · + cm ∈ (Â )⊥ ⇐⇒ (c1 + c2 + · · · + cm) ∧ (a1 + a2 + · · · + an) = 0

for all a1, a2, . . . , an ∈ A ⇐⇒ (c1 + c2 + · · · + cm) ∧ a = 0 for all a ∈ A ⇐⇒
ci∧a = 0 for all a ∈ A and i = 1, 2, . . . , m ⇐⇒ ci ∈ A⊥ for i = 1, 2, . . . , m ⇐⇒
c1 + c2 + · · · + cm ∈ Â⊥. Hence Â⊥ = (Â )⊥. �

��		� 5.17
 A is a polar deductive system of C if and only if Â is a polar
ideal of Ĉ.

P r o o f. Assume A is a polar deductive system of C; then A = A⊥⊥. Hence
Â = (̂A⊥⊥) = (Â )⊥⊥ by applying Lemma 5.16 twice. Hence Â is a polar ideal
of Ĉ.
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Conversely, assume that Â is a polar ideal of Ĉ; then A⊥ = Â⊥ ∩ C (since
A⊥ is a deductive system of C) = (Â )⊥ ∩ C (by Lemma 5.16). Hence

A⊥⊥ = (Â⊥)⊥ ∩ C (replacing A by A⊥ in the above)

= (Â )⊥⊥ ∩ C (by Lemma 5.16)

= (Â ) ∩ C (since Â is a polar ideal of Ĉ)
= A.

Hence A is a polar deductive system of C. �

In the next section, we will prove our main theorem.

6. Proof of Main Theorem — Final step

Let (G; +,≤) be an arbitrary lattice ordered group and A an ideal of the
�g-cone (G+; ∗, : , +); then we know that A is a convex �-submonoid of (G+; +,≤).
Then

��		� 6.1
 If g ∈ G, then the following are equivalent:
(α) |g| ∈ A, where |g| = g ∨−g; and
(β) there exists a ∈ A such that g + a ∈ A.

P r o o f. Assume (α); then since A is convex and 0 ≤ g ∨ 0 ≤ |g| ∈ A and
0 ≤ −g∨ 0 ≤ |g|, both g∨ 0 and −g∨ 0 are in A. Also, g +(−g∨ 0) = g∨ 0 ∈ A.
Hence (α) =⇒ (β).

Assume (β); and write g+a = b ∈ A. Then g = b−a and |g| = (b−a)∨(a−b) =
|a − b| ≤ |a| + |b| + |a| ∈ A since A is a submonoid of (G+; +). Since A is also
convex, it follows that |g| ∈ A. Hence (β) =⇒ (α). �
��		� 6.2
 Let A be an ideal of (G+; ∗, : , +) and write

ϕ(A) = {g ∈ G ; |g| ∈ A}.
Then ϕ(A) is the convex �-subgroup of G generated by A.

P r o o f. If g, h ∈ ϕ(A), then |g − h| ≤ |g|+ |h| + |g| ∈ A and hence |g − h| ∈ A,
since A is convex. Hence g − h ∈ ϕ(A) so that ϕ(A) is a subgroup of G. If
g ∈ ϕ(A) and |h| ≤ |g|, then |g| ∈ A and hence |h| ∈ A since A is convex. Hence
h ∈ ϕ(A) so that ϕ(A) is a convex subgroup of G. Also, if g ∈ ϕ(A), then
0 ≤ g ∨ 0 ≤ |g| ∈ A and so g ∨ 0 ∈ ϕ(A). Hence ϕ(A) is also a sublattice of
(G;≤). Thus ϕ(A) is a convex �-subgroup of G.

Now let K be a convex �-subgroup of G containing A; and let g ∈ ϕ(A). Then
by Lemma 6.1, there exist a, b ∈ A such that g + a = b and hence |g| = |a− b| ≤
a + b + a ∈ A ⊆ K; and since K is convex, |g| ∈ K. Hence g ∈ K so that
ϕ(A) ⊆ K. Hence ϕ(A) is the convex �-subgroup of G, generated by A. �
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��		� 6.3
 Let K be a convex �-subgroup of G and let A = K ∩ G+; then A
is an ideal of (G+; ∗, : , +) and ϕ(A) = K.

P r o o f. If A = K ∩ G+, then A is clearly a convex submonoid of (G+; +,≤)
and hence is an ideal of (G+; ∗, : , +). Now, if g ∈ G, then g ∈ ϕ(K ∩G+) ⇐⇒
|g| ∈ K ∩ G+ ⇐⇒ |g| ∈ K ⇐⇒ g ∈ K since K is a convex �-subgroup of G.
Hence K = ϕ(A). �

��		� 6.4
 If A is an ideal of (G+; ∗, : , +), then ϕ(A) ∩ G+ = A.

P r o o f. g ∈ ϕ(A) ∩ G+ =⇒ g = |g| ∈ A so that ϕ(A) ∩ G+ = A. �

������	 6.5
 Let (G; +,≤) be an arbitrary �-group and let (G+; ∗, : , +) be its
positive cone. Then the mapping ϕ : A �→ ϕ(A) is an isomorphism of the lattice
of ideals of (G+; ∗, : , +) onto the lattice of convex �-subgroups of (G; +,≤).
Further,
(α) A is a prime ideal of (G+; ∗, : , +) if and only if ϕ(A) is a prime convex

�-subgroup of (G; +,≤),
(β) A is a normal ideal of (G+; ∗, : , +) if and only if ϕ(A) is an �-ideal of

(G; +,≤), and
(γ) A is a polar ideal of (G+; ∗, : , +) if and only if ϕ(A) is a polar subgroup

of (G; +,≤).

P r o o f. We need only prove (α), (β) and (γ).
(α) Assume A is a prime ideal of (G+; ∗, : , +) and let g, h ∈ G and g ∧ h ∈

ϕ(A). Then by Lemma 6.1, there exists a ∈ A such that (g ∧ h) + a ∈ A,
i.e., (g + a) ∧ (h + a) ∈ A. Since A ⊆ G+, 0 ≤ (g + a) ∧ (h + a) and hence
g + a, h + a ∈ G+. Since A is prime ideal, g + a ∈ A or h + a ∈ A. Hence by
Lemma 6.1 again g ∈ ϕ(A) or h ∈ ϕ(A) so that ϕ(A) is a prime �-subgroup.
The converse is clear.

(β) Assume that A is a normal ideal of (G+; ∗, : , +); then c + A = A + c for
all c ∈ G+. Now, if g ∈ G, then a = −g ∨ 0 ∈ G+ and g + a ∈ G+. Hence
(g +A)+a = g+(A+a) = g +(a+A) = (g +a)+A = A+(g+a) = (A+g)+a
and hence A + g = g + A, since (G+; +, 0) is a cancellative monoid. Hence if
g ∈ G, then g + A − g ⊆ A.

Now let k ∈ ϕ(A) and g ∈ G; then |g + k − g| = (g + k − g) ∨ (g − k − g) =
g + |k| − g ∈ A since |k| ∈ A. Hence g + k − g ∈ ϕ(A); and hence ϕ(A) is a
normal subgroup of G and hence an �-ideal of G.

Conversely, assume that ϕ(A) is a normal subgroup of G, and let k ∈ A.
Then k ∈ G+ and hence for any g ∈ G, g + k − g ∈ ϕ(A) ∩ G+ = A (since
A ⊆ ϕ(A)). Hence g + A = A + g for all g ∈ G, and in particular, c + A = A + c
for all c ∈ G+. Hence A is a normal ideal of (G+; ∗, : , +).

(γ) We first prove that ϕ(A⊥) = (ϕ(A))⊥; note that A⊥ is computed in
G+, while (ϕ(A))⊥ is computed in G. Now g ∈ ϕ(A⊥) ⇐⇒ |g| ∈ A⊥ ⇐⇒
|g| ∧ a = 0 for all a ∈ A ⇐⇒ |g| ∧ |k| = 0 for all k ∈ ϕ(A) ⇐⇒ g ∈ ϕ(A)⊥.
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Hence ϕ(A⊥) = (ϕ(A))⊥. Hence, if A is a polar ideal of (G+; ∗, : , +), then
ϕ(A) = ϕ(A⊥⊥) = (ϕ(A⊥))⊥ = (ϕ(A))⊥⊥ so that ϕ(A) is a polar subgroup of G.
Conversely, if ϕ(A) is a polar subgroup of G, then ϕ(A) = (ϕ(A))⊥⊥ = ϕ(A⊥⊥)
and hence A = ϕ(A) ∩ G+ = ϕ(A⊥⊥) ∩ G+ = A⊥⊥ (by Lemma 6.4) and hence
A is a polar ideal of (G+; ∗, : , +). �

We now assume that (C; ∗, : ) is a cone algebra, (Ĉ; ∗, : , +) its enveloping
�-group cone and (Ĉ; +,≤) is the positive cone of the lattice ordered group
(G; +,≤) so that Ĉ = G+. Further, let A be a nonempty convex subset of C;
then, with the above notation,

��		� 6.6
 ϕ(Â ) is the subgroup of G, generated by A.

P r o o f. By Corollary 5.3, Â is an ideal of Ĉ and so, by Lemma 6.2, ϕ(Â ) is
the convex �-subgroup of G, generated by Â. Now let H be a subgroup of G

containing A, then Â ⊆ H. If g ∈ ϕ(Â ), then by Lemma 6.1, there exist a, b ∈ Â

such that g + a = b so that g = b− a ∈ H. Hence ϕ(Â ) ⊆ H. Thus ϕ(Â ) is the
subgroup of G, generated by A. �

��������� 6.7
 With the same notation as above, the subgroup of G generated
by a convex subset A of C — in particular, a deductive system of C — is just
the convex �-subgroup of G generated by A.

Hence we obtain our main theorem.

������	 6.8
 Let C be a cone algebra and suppose that its enveloping �-group
cone Ĉ is the positive cone of the lattice ordered group G. Also, if A is a subset
of C, then write [A] for the subgroup of G generated by A. Then

(a) if A is a deductive system of C, then [A] is a convex �-subgroup of G; and
(b) the mapping A �→ [A] is an isomorphism of the lattice of deductive systems

of C onto the lattice of convex �-subgroups of G.

Further,

(i) A is a prime deductive system of C if and only if [A] is a prime convex
�-subgroup of G;

(ii) A is a normal deductive system of C if and only if [A] is an �-ideal of G;
and

(iii) A is a polar deductive system of C if and only if [A] is a polar convex
�-subgroup of G.

Remark 6.9
 K ü h r has proved ([4, Theorem 7.7]) the above Theorem 6.8 for
pseudo LBCK-algebras except (i) and (iii); also observe that a normal deductive
system has been called a compatible deductive system in [4].
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Remark 6.10
 By [7, Theorem 3.13], A is an ideal of a pseudo MV-algebra
(C;⊕,− ,∼ , 0, 1) if and only if A is an ideal of the equivalent semi-�g-cone
(C; ∗, : ,⊕) if and only if A is deductive system of the brick (C; ∗, : ). If C

in Theorem 6.8 is a brick, then Ĉ is the positive cone of a unital �-group with
strong order unit u and C = [0, u] (see [6, Lemma 4.4] and also [3]). Hence
Theorem 6.8 yields:

������	 (Rach̊unek)
 ([5, Theorem 2, p. 157]) The lattice of ideals of a pseudo
MV-algebra is isomorphic to the lattice of convex �-subgroups of a unital lattice
ordered group.

Remark 6.11
 Let (C; ∗, : ) be a precone algebra and A a normal deductive
system of C; then the relation ΘA defined by

(a, b) ∈ ΘA ⇐⇒ a ∗ b ∈ A and b ∗ a ∈ A

is a congruence relation on C with A = ΘA[0]; and if Θ is a congruence relation
on C, then Θ[0] is a normal deductive system of C such that Θ = ΘΘ[0] (see
K ü h r [4, Section 7], for a discussion on commutative pseudo BCK-algebras,
which we know are equivalent to precone algebras). Thus, the lattice of normal
deductive systems of a precone algebra C is isomorphic to the lattice of congru-
ences of C. Hence, if C is a cone algebra, then by Theorem 6.8, the congruence
lattice of C is isomorphic to the lattice of �-ideals of an �-group G, which is, as
is well known, isomorphic to the congruence lattice of G. Since the congruence
lattice of an �-group is distributive, so is the congruence lattice of a cone algebra.
Now, �-groups are congruence permutable, but we show below that cone algebras
are not. (By the way, the example shows a well-known fact that commutative
BCK-algebras are not congruence permutable.)

Example 6.12. Let (C; ∗, : ) be the cone algebra given in [7, Example 1.8] (Part I).
Then (C; ∗, : ) is a symmetric cone algebra and hence all deductive systems are
normal. If Θ and Φ are the congruences respectively determined by the deductive
systems (a] and (b], then (a, b) ∈ Θ ◦Φ and (a, b) �∈ Φ ◦Θ. Hence Θ ◦Φ �= Φ ◦Θ.

However, we have:

������	 6.13
 If C is a cone algebra directed above, then the congruence
lattice of C is permutable.

P r o o f. Since a commutative pseudo BCK-algebra is equivalent to a precone
algebra, it follows by [4, Lemma 3.8], that a directed cone algebra (recall that a
directed precone algebra is a cone algebra) is a lattice and hence, by [4, Propo-
sition 4.4], is permutable. �
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