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ABSTRACT. A semi-�g-cone is an algebra (C; ∗, : , · ) of type (2, 2, 2) satisfying

the equations (a∗a)∗b = b = b : (a : a); a∗(b : c) = (a∗b) : c; a : (b∗a) = (b : a)∗b

and (ab) ∗ c = b ∗ (a ∗ c). An �-group cone is a semi-�g-cone and a bounded

semi-�g-cone is term equivalent to a pseudo MV-algebra. Also, a subset A of a

semi-�g-cone C is an ideal of C if and only if it is a deductive system of its reduct

(C; ∗, : ).
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Introduction

The concepts of a brick and a cone algebra are due to B . B o s b a c h [2] and
the notion of a pseudo MV-algebra is due to G . G e o r g e s c u and A . I o r g u -
l e s c u [7] and, in an equivalent form due to J . R a c h ů n e k [10], under the
name “generalized MV-algebra”. We have shown recently ([12]) that a pseudo
MV-algebra is term equivalent to a brick; and we show in this part, in a more
general context, that a subset A of a pseudo MV-algebra C is an ideal of C

([11, p. 156]) if and only if A is a deductive system ([13, p. 17]) of the brick
equivalent to C.

We have found that the comparison of the ideals of a pseudo MV-algebra
with the deductive systems of its equivalent brick is made easier by introduc-
ing the class of semi-�g-cones, which contains as special cases, �-group cones
and equivalents of pseudo MV-algebras. A semi-�g-cone is a generalization of
a pseudo MV-algebra within the frame work of Bosbach’s cone algebra, and is
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equivalent to an integral GMV-algebra of G a l a t o s and T s i n a k i s [5], where
a GMV-algebra is a generalization of an MV-algebra within the context of resi-
duated lattices. Also, if (A; ∗, : , · ) is a semi-�g-cone, then (A; · ,→,�, 1) is a
Wajsberg pseudo-hoop ([8]) if we define a → b = b : a, a � b = a ∗ b and 1
is the least element of the reduct (A; ∗, : ) (see Definition 2.1 and Lemma 1.2).
Conversely, if (A;�,→,�, 1) is a Wajsberg pseudo-hoop, then (A; ∗, : ,�) is a
semi-�g-cone, if we put a ∗ b = a � b and a : b = b → a. Hence, semi-�g-cones
and Wajsberg pseudo-hoops are term equivalent.

In Section 1, we introduce the concept of a precone algebra, by picking up the
common axioms from the lists presented by B o s b a c h [2] for cone algebras and
bricks separately; and show that the class of cone algebras is a proper subclass
of the class of precone algebras (Example 1.7). In Theorem 1.5, we characterize
the class of cone algebras within the class of precone algebras.

In Section 2, we introduce the class of semi-�g-cones and show that every
semi-�g-cone has a cone algebra reduct and obtain the equivalence of an ideal of
a semi-�g-cone with a deductive system of its cone algebra reduct (Theorems 2.8
and 2.13 are crucial).

Section 3 characterizes those special cases of a semi-�g-cone, which include
�-group cones and pseudo MV-algebras, which are important for our purpose.

1. Precone algebras

We begin with the following definition:

���������� 1.1� An algebra (C; ∗, : ) of type (2, 2) is called a precone algebra
if and only if the following equations are satisfied:

(1) (a ∗ a) ∗ b = b = b : (a : a)

(2) a ∗ (b : c) = (a ∗ b) : c and

(3) a : (b ∗ a) = (b : a) ∗ b.

If (C; ∗, : ) is a precone algebra, then so is (C;©∗ ,©: ) if we define a©∗ b = b : a

and a©: b = b ∗ a. Hence any equation, valid in a precone algebra, remains valid
if written in the reverse order with ∗ and : interchanged. This is the principle
of duality for a precone algebra, which we frequently use.

A precone algebra (C; ∗, : ) satisfying the equation

a ∗ b = b : a

is said to be symmetric.
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Although B o s b a c h has stated, without proof, the contents of the following
lemma ([2, p. 59 ]) in the context of cone algebras, he has proved them ([2, p. 65]),
using only the axioms (BR1) thorough (BR4) of a brick, which are precisely the
axioms of a precone algebra.

��		
 1.2 (Bosbach)� Let (C; ∗, : ) be a precone algebra; then

(1) a ∗ a = b : b =: 0

(2) 0 ∗ a = a = a : 0

(3) a ∗ 0 = 0 = 0 : a

(4) a ∗ b = 0 ⇐⇒ b : a = 0

(5) a ≤ b ⇐⇒ a : b = 0 defines a partial order on C

(6) b ∗ (a ∗ c) = 0 ⇐⇒ (c : b) : a = 0

(7) a ∗ (b ∗ a) = 0 and (a : b) : a = 0

(8) b ≤ c =⇒ c ∗ a ≤ b ∗ a and a : c ≤ a : b

(9) b ≤ c =⇒ a ∗ b ≤ a ∗ c and b : a ≤ c : a

(10) a : (b ∗ a) = inf(a, b) =: a ∧ b

(11) a : (b ∗ a) = b : (a ∗ b) = (b : a) ∗ b = (a : b) ∗ a and

(12) a ∧ b = 0 ⇐⇒ a ∗ b = b ⇐⇒ a : b = a.

Observe that we are using 0 in place of 1 used by B o s b a c h .
The precone algebras are term equivalent to the so called commutative pseudo

BCK-algebras considered by K ü h r [9], who has shown that ([9, Theorem 4.2])
an algebra (A;→,�, 1) of type (2, 2, 0) is a commutative pseudo BCK-algebra
if and only if it satisfies the following identities:

(i) (x → y)� y = (y → x)� x = (x� y) → y = (y � x) → x

(ii) x → (y � z) = y � (x → z)

(iii) x → x = 1 = x� x and

(iv) 1 → x = x = 1� x

Clearly, the equations (iii) and (iv) together imply the equations: (x → x) → y

= y = (x� x)� y. Writing x∗y, y : x and 0 respectively for x → y, x� y and
1, it is clear that if (A;→,�, 1) is a commutative pseudo BCK-algebra, then
(A; ∗, :) is a precone algebra. Conversely, if (A; ∗, :) is a precone algebra, then,
by Lemma 1.2 and the above theorem of K ü h r , (A;→,�, 1) is a commutative
pseudo BCK-algebra, where a → b, a � b and 1 stand for a ∗ b, b : a and 0
(see Lemma 1.2) respectively. Hence precone algebras and commutative pseudo
BCK-algebras are term equivalent. Also observe that it follows from the above
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that in [9, Theorem 4.2], the equations (i) can be replaced by the single equation:

(x → y)� y = (y � x) → x.

We now present an alternative characterization of commutative pseudo
BCK-algebras in the following theorem:

����
�	 1.3� An algebra (A;→,�, 1) of type (2, 2, 0) is a commutative pseudo
BCK-algebra if and only if it satisfies the following identities:

(α) (y → x)� x = (x� y) → y

(β) 1 → x = x = 1� x

(γ) (x� y)� [(y � z) → (x� z)] = 1 and

(δ) (x → y) → [(y → z)� (x → z)] = 1.

P r o o f. By Lemma 1.2(5) and the discussion in [9, Section 3], every commmu-
tative pseudo BCK-algebra satisfies the equations (α) through (δ). Conversely,
assume that (A;→,�, 1) is an algebra of type (2, 2, 0) satisfying the equations
(α) through (δ). Then we have:

(1) z � z = z → z = 1 by taking x = y = 1 in (γ) and (δ) and using (β).
(2) a� 1 = 1 = a → 1.
For, by (1), 1 = a � a = (1 → a) � a (by β) = (a � 1) → 1 by (α) and

hence a � 1 = a � [(a � 1) → 1] = (1 � a) � [(a � 1) → (1 � 1)] = 1 by
(γ). Similarly, a → 1 = 1 by using (δ).

(3) a → b = 1 ⇐⇒ a� b = 1.
For, assuming a → b = 1, we have b = 1 � b = (a → b) � b = (b � a) → a

and hence a� b = ((b� a) → 1) → [(1 → a)� ((b� a) → a)] = 1 and hence
a → b = 1 =⇒ a� b = 1. The reverse implication follows similarly.

We now define a ≤ b ⇐⇒ a → b = 1 ⇐⇒ a � b = 1. Then a ≤ b

and b ≤ a =⇒ a = b by (3) and (α). Also, taking x = 1 in (γ) and (δ)
respectively and using (3), we have y ≤ (y � z) → z and y ≤ (y → z) � z.
Hence (A;≤,→,�, 1) is a pseudo BCK-algebra. It was proved in [6] that pseudo
BCK-algebras satisfy x → (y � z) = y � (x → z). Hence by Kühr’s theorem
([9, Theorem 4.2]), (A;→,�, 1) is a commutative pseudo BCK-algebra. �

��		
 1.4� Let (C; ∗, : ) be a precone algebra and let a, b, c ∈ C; and assume
that (C;≤) is directed above. Then

(1) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) and

(2) (c : a) : (b : a) = (c : b) : (a : b).
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P r o o f. Since (C;≤) is directed above, there exists s ∈ C such that a ≤ s, b ≤ s
and c ≤ s. Hence a ∗ b = a ∗ (b ∧ s) = a ∗ (s : (b ∗ s)) = (a ∗ s) : (b ∗ s). Hence

(a ∗ b) ∗ (a ∗ c) = [(a ∗ s) : (b ∗ s)] ∗ [(a ∗ s) : (c ∗ s)]

= [((a ∗ s) : (b ∗ s)) ∗ (a ∗ s)] : (c ∗ s)

= [((b ∗ s) : (a ∗ s)) ∗ (b ∗ s)] : (c ∗ s) by Lemma 1.2(11)

= (b ∗ a) ∗ (b ∗ c)

The other equation follows by duality. �

B o s b a c h has defined a cone algebra as a precone algebra satisfying both
the equations (1) and (2) of the above Lemma 1.4. Hence by that lemma, every
precone algebra which is directed above, is a cone algebra and in particular, every
precone algebra bounded above, is a cone algebra. We recall that B o s b a c h
has defined a brick ([2, p. 64]) as an algebra (C; ∗, : , 1) — we are using 1 where
B o s b a c h has used 0 — of type (2, 2, 0) where (C; ∗, : ) is a precone algebra
and the equation 1 : (a ∗ 1) = a is satisfied. By Lemma 1.2(10), this amounts
to asserting that (C; ∗, : ) is a bounded precone algebra. Hence a brick is a cone
algebra.

B o s b a c h has proved that ([2, Statement (1.12), p. 60]) in a cone algebra
the following are identities:

(a ∗ b) ∧ (b ∗ a) = 0 and (a : b) ∧ (b : a) = 0.

Now we show below that each of these identities also characterizes a cone algebra
within the class of precone algebras.

Following K ü h r [9], we say that a precone algebra C has the relative can-
cellation property (RCP, for short) if and only if for a, b, c ∈ C,

(c ≤ a ∧ b and c ∗ a = c ∗ b) =⇒ a = b.

Assume now that a precone algebra (C; ∗, :) has RCP, a, b, c ∈ C, c ≤ a ∧ b

and a : c = b : c; then a : c = b : c ≤ a∧ b and (a : c)∗a = c = (b : a)∗ b. Since C

has RCP, we have a = b. Thus if C has RCP, then the dual of C also has RCP
and since the dual of the dual of C is C, it follows that C has RCP if and only
if dual of C has RCP (see [9, p. 12]). We now prove:

����
�	 1.5� Let (C; ∗, : ) be a precone algebra, then:

(α) C has RCP

if and only if
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(β) C satisfies any one of the following identities:
(β1) (a ∗ b) ∧ (b ∗ a) = 0
(β2) c ∗ (a ∧ b) = (c ∗ a) ∧ (c ∗ b) and
(β3) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)

or the dual of any of the identities (β).

We first prove a lemma.

��		
 1.6� Let (C; ∗, : ) be a precone algebra; then the following equations are
valid in C.

(a ∧ b) ∗ b = a ∗ b and b : (a ∧ b) = b : a.

P r o o f. By Lemma 1.2(7), a ∗ b ≤ b and hence (a ∧ b) ∗ b = (b : (a ∗ b)) ∗ b =
b ∧ (a ∗ b) = a ∗ b. The other equality is dual. �

P r o o f o f T h e o r e m 1.5. It is enough to prove (α) =⇒ (β1) =⇒ (β2)
=⇒ (β3) =⇒ (α) since C has RCP if and only if dual of C has RCP.
K ü h r [9] has proved (α) =⇒ (β1) by invoking an embedding theorem due
to D v u r e č e n s k i j and V e t t e r l e i n [4] — see [9, Theorem 6.7, p. 14];
however, we will present an elementary proof. Also, D v u r e č e n s k i j and
V e t t e r l e i n have proved ([4]) (α) =⇒ (β2) for a pseudo �LBCK-algebra
which is precisely the dual of a commutative pseudo BCK-algebra with RCP.
We obtain this result from (α) =⇒ (β1) =⇒ (β2).

Now assume that C has RCP, i.e. (α), and let a, b ∈ C. Put c = a∧ b so that
by Lemma 1.6, (a∗b)∧(b∗a) = (c∗b)∧(c∗a) = (c∗b) : ((c∗a)∗(c∗b)) = c∗x where
x = b : ((c∗a)∗(c∗b)) = b : ((b∗a)∗(a∗b)). Similarly, (a∗b)∧(b∗a) = c∗y where
y = a : ((a∗ b)∗ (b∗a)). Now c = a∧ b = b : (a∗ b) ≤ b : ((b∗a)∗ (a∗ b)) = x and
similarly, c ≤ y. Hence x = y because of RCP so that c ≤ x = x ∧ y ≤ a ∧ b = c

(since x ≤ b and y ≤ a). Hence c = x so that (a ∗ b) ∧ (b ∗ a) = c ∗ x = 0. Hence
(α) =⇒ (β1).

Assume (β1); then by Lemma 1.2(9),

a ∗ (b ∧ c) ≤ (a ∗ b) ∧ (a ∗ c) (#)

Hence,

(a ∗ (b ∧ c)) ∗ ((a ∗ b) ∧ (a ∗ c))

≤ [(a ∗ (b ∧ c)) ∗ (a ∗ b)] ∧ [(a ∗ (b ∧ c)) ∗ (a ∗ c)]

= [((a ∗ b) : (c ∗ b)) ∗ (a ∗ b)] ∧ [((a ∗ c) : (b ∗ c)) ∗ (a ∗ c)]

= (a ∗ b) ∧ (c ∗ b) ∧ (a ∗ c) ∧ (b ∗ c)

≤ (c ∗ b) ∧ (b ∗ c) = 0 by (β1).
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Hence (a ∗ b) ∧ (a ∗ c) ≤ a ∗ (b ∧ c) so that by (#), a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c).
Hence (β1) =⇒ (β2).

Now assume (β2); then by Lemma 1.6,

(a ∗ b) ∗ (a ∗ c) = ((a ∗ b) ∧ (a ∗ c)) ∗ (a ∗ c) = (a ∗ (b ∧ c)) ∗ (a ∗ c)

(by assumption (β2)) = ((a ∗ c) : (b ∗ c)) ∗ (a ∗ c) = (a ∗ c) ∧ (b ∗ c). Similarly,
(b ∗ a) ∗ (b ∗ c) = (b ∗ c) ∧ (a ∗ c). Hence (β2) =⇒ (β3).

Finally, assume (β3); and let a, b, c ∈ C, c ≤ a ∧ b and c ∗ a = c ∗ b. Then
a ∗ b = 0 ∗ (a ∗ b) = (a ∗ c) ∗ (a ∗ b) = (c ∗ a) ∗ (c ∗ b) = 0 so that a ∗ b = 0. By
symmetry, b ∗ a = 0 and hence a = b. Thus (β3) =⇒ (α). �

We conclude this section with a couple of examples showing that

(1) the class of precone algebras is larger than the class of cone algebras and

(2) a cone algebra need not be directed above.

Example 1.7. Let A be the set consisting of four distinct elements 0, a, b, c and
define the operation ∗ by the following table and : by the equation x ∗ y = y : x.

∗ 0 a b c

0 0 a b c

a 0 0 a a

b 0 0 0 a

c 0 0 a 0

b

��
��

��
��

c

��
��

��
��

a

0

Since (a ∗ c) ∗ (a ∗ b) = 0 
= a = (c ∗ a) ∗ (c ∗ b), (A; ∗, : ) is not a cone algebra
and it is a routine verification to show that (A; ∗, : ) is a precone algebra.

[9, Example 6.1] is equivalent to the above one and illustrates the same point
within the framework of BCK-algebras.

Example 1.8. Let C = {0, a, b} where 0, a, b are distinct and define the operation
∗ by the following table and : by the equation x ∗ y = y : x.

∗ 0 a b

0 0 a b

a 0 0 b

b 0 a 0

a

��
��

��
�� b

��
��

��
�

0

Then (C; ∗, : ) is a symmetric cone algebra, which is not directed above, since
the elements a and b have no common upper bound.
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2. Semi-�g-cones

In this section, we present a generalization of a pseudo MV-algebra of G e o r -
g e s c u and I o r g u l e s c u [7] (or equivalently, of a generalized MV-algebra of
R a c h ů n e k [10]) within the framework of B o s b a c h ’s cone algebras ([2]), by
means of the following definition:

���������� 2.1� An algebra (C; ∗, : , ·) of type (2, 2, 2) is called a semi-
�g-cone if and only if (C; ∗, : ) is a precone algebra and the following identity
holds in C:

(ab) ∗ c = b ∗ (a ∗ c).

A related concept, which will be convenient for us in the sequel, is introduced
by the following definition:

���������� 2.2� An algebra (C; ∗, :, +) of type (2, 2, 2) is called an �g-cone if
and only if (C; ∗, : ) is a precone algebra and the following are valid in C:

a ∗ (a + b) = b = (b + a) : a.

Clearly, the duality principle of a precone algebra extends to �g-cones also
(by the defining equations above) and we will show below (Lemma 2.3) that it
extends to semi-�g-cones also.

We now assume that (C; ∗, : , ·) is a semi-�g-cone and a, b, c, . . . ∈ C. We now
prove:

��		
 2.3� We have c : (ab) = (c : b) : a.

P r o o f. If u ∈ C, then c : (ab) ≤ u ⇐⇒ (u ∗ c) : (ab)=0 ⇐⇒ (ab) ∗ (u ∗ c)=0
⇐⇒ b ∗ (a ∗ (u ∗ c)) = 0 ⇐⇒ (ua) ∗ c ≤ b ⇐⇒ (ua) ∗ (c : b) = 0
⇐⇒ a ∗ (u ∗ (c : b)) = 0 ⇐⇒ ((c : b) : a) : u = 0 (by Lemma 1.2(6))
⇐⇒ (c : b) : a ≤ u. Hence c : (ab) = (c : b) : a. �

Observe that a semi-�g-cone can be as well defined by means of the equation
c : (ab) = (c : b) : a.

��
���

� 2.4� c ≤ ab ⇐⇒ a ∗ c ≤ b ⇐⇒ c : b ≤ a.

��
���

� 2.5� a ≤ ab and b ≤ ab.

P r o o f. a ∗ a = 0 ≤ b =⇒ a ≤ ab and b : b = 0 ≤ a =⇒ b ≤ ab. �

Now by Corollary 2.5, the reduct (C; ∗, : ) of a semi-�g-cone (C; ∗, :, ·) is a
precone algebra, which is directed above. Hence by Lemma 1.4, we get:

����
�	 2.6� If (C; ∗, : , ·) is a semi-�g-cone, then (C; ∗, : ) is a cone algebra.
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However, not every cone algebra is the reduct of some semi-�g-cone; for in-
stance, the cone algebra of Example 1.8 cannot be the reduct of a semi-�g-cone,
since this cone algebra is not directed above and the reduct (C; ∗, : ) of a semi-
�g-cone must be directed above by Corollary 2.5.

��		
 2.7� If (C; ∗, : , ·) is a semi-�g-cone, then (C; ·) is a semigroup with
identity element 0.

P r o o f. By Corollary 2.4, u ≤ a0 ⇐⇒ u = u : 0 ≤ a and dually, u ≤ 0a ⇐⇒
u = 0 ∗ u ≤ a. Hence a0 = 0a = a.

Further, u ≤ (ab)c ⇐⇒ u : c ≤ ab ⇐⇒ a ∗ (u : c) ≤ b ⇐⇒ (a ∗ u) : c ≤ b

⇐⇒ a ∗ u ≤ bc ⇐⇒ u ≤ a(bc). Hence (ab)c = a(bc). �

The following theorem is very important for our purpose.

����
�	 2.8� Let (C; ∗, : ) be a precone algebra and let A be a nonempty subset
of C; then the following statements are equivalent:

(1) (α) 0 ∈ A and
(β) a ∈ A and a ∗ b ∈ A =⇒ b ∈ A

(2) (α) 0 ∈ A and
(β) a ∈ A and b : a ∈ A =⇒ b ∈ A.

Further, if (C; ∗, : ) is the reduct of a semi-�g-cone (C; ∗, : , ·), then each of the
above is equivalent to

(3) (α) a ∈ A, b ∈ A =⇒ ab ∈ A and
(β) a ∈ A and b ≤ a =⇒ b ∈ A.

P r o o f. Assume (1); then if a ∈ A and b ≤ a, we have a ∗ b = 0 ∈ A and hence
b ∈ A. Thus A is convex. Now let a ∈ A and b : a ∈ A; then (b : a)∗b = b∧a ≤ a

and hence (b : a) ∗ b ∈ A. Since b : a ∈ A, we get b ∈ A by (1)(β). Thus
(1) =⇒ (2); and (2) =⇒ (1) by duality.

Now assume that (C; ∗, : , ·) is a semi-�g-cone and assume (1). Then (3)(β) is
true by the first part of the proof. Now let a ∈ A and b ∈ A; then a∗ab ≤ b ∈ A

(since ab ≤ ab) and so a ∗ ab ∈ A. Since a ∈ A, this implies ab ∈ A by (1)(β).
Hence (1) =⇒ (3).

Conversely assume (3); and suppose a ∈ A and a ∗ b ∈ A. Since a ∗ b ≤ a ∗ b,
we have b ≤ a(a ∗ b) ∈ A; and hence b ∈ A by (3)(β). Also, 0 ∈ A since A is
nonempty. Hence (3) =⇒ (1). �

We now introduce the following definition:
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���������� 2.9�

(i) If (C; ∗, : ) is a precone algebra, then a subset A of C is called a deductive
system (or simply, d.s.) if and only if it satisfies either of the conditions
(1) and (2) of the above Theorem 2.8; and

(ii) if (C; ∗, : , ·) is a semi-�g-cone, then a nonempty subset A of C satisfying
condition (3) of the above Theorem 2.8, is called an ideal.

Hence, by Theorem 2.8, the ideals of a semi-�g-cone (C; ∗, : , ·) are precisely
the deductive systems of its reduct cone algebra (C; ∗, : ). Clearly, an ideal of
a semi-�g-cone (C; ∗, : , ·) is a convex submonoid of (C; · , 0); and we will next
show that an ideal A is �-submonoid of C, i.e., (A;≤) is a sublattice of (C;≤).
First we prove:

��		
 2.10� Let (C; ∗, : , ·) be a semi-�g-cone; then (C;≤) is a lattice, in which
a ∨ b = a(a ∗ b) = b(b ∗ a) = (b : a)a = (a : b)b.

P r o o f. By Corollary 2.5, (C; ∗, : ) is a directed precone algebra and hence a
cone algebra. Now, if a, b, c ∈ C, then (a(a ∗ b)) ∗ c = (a ∗ b) ∗ (a ∗ c) =
(b ∗ a) ∗ (b ∗ c) = (b(b ∗ a)) ∗ c. Taking c = a(a ∗ b) and b(b ∗ a) respectively, we
get a(a ∗ b) = b(b ∗ a) by Lemma 1.2(5). Hence by Corollary 2.5, a ≤ a(a ∗ b)
and b ≤ a(a ∗ b). Suppose now that a ≤ c and b ≤ c; then by Lemma 1.2(9),
a ∗ b ≤ a ∗ c and hence a ∗ (a(a ∗ b)) ≤ a ∗ b ≤ a ∗ c so that by Corollary 2.5,
a(a∗b) ≤ a(a∗c) = c(c∗a) = c0 = c. Hence a(a∗b) = b(b∗a) = sup(a, b) =: a∨b.
By duality, we also have a ∨ b = (a : b)b = (b : a)a.

We already know that inf(a, b) = a : (b∗a) (by Lemma 1.2(10)). Hence (C;≤)
is a lattice. �

��		
 2.11� Let (C; ∗, : , ·) be a semi-�g-cone and A an ideal of C; then (A;≤)
is a sublattice of (C;≤). Hence every ideal is a convex �-submonoid of C.

P r o o f. Let a, b ∈ A; since A is convex and a ∗ b ≤ b and a : b ≤ a, (A; ∗, : ) is
a subalgebra of (C; ∗, : ). Hence, if a, b ∈ A, then a ∧ b = a : (b ∗ a) ∈ A and
a ∨ b = a(a ∗ b) ∈ A. Hence (A;≤) is a sublattice of (C;≤). �

��		
 2.12� Let (C; ∗, : , ·) be a semi-�g-cone, then

(α) a(b ∧ c) = (ab) ∧ (ac) and (b ∧ c)a = (ba) ∧ (ca) for all a, b, c ∈ C; and

(β) (C;≤) is a distributive lattice.

P r o o f.

(α) u ≤ a(b ∧ c) ⇐⇒ a ∗ u ≤ b ∧ c ⇐⇒ a ∗ u ≤ b and a ∗ u ≤ c ⇐⇒ u ≤ ab

and u ≤ ac ⇐⇒ u ≤ (ab) ∧ (ac). The other equality follows by duality.
Hence (α) holds.
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(β) We know that (C;≤) is a lattice (Lemma 2.10). Now

a ∨ (b ∧ c) = a(a ∗ (b ∧ c)) (Lemma 2.10)

= a((a ∗ b) ∧ (a ∗ c)) (by Theorem 1.5)

= (a(a ∗ b)) ∧ (a(a ∗ c)) (by (α))

= (a ∨ b) ∧ (a ∨ c).

Hence (C;≤) is a distributive lattice.

�

����
�	 2.13� Let (C; ∗, : ) be a precone algebra and let A be a deductive
system of C; then the following are equivalent:

(1) c : (c : a) ∈ A and (a ∗ c) ∗ c ∈ A for all a ∈ A and c ∈ C;

(2) If a, b ∈ C, then a ∗ b ∈ A ⇐⇒ b : a ∈ A.

Further, if (C; ∗, : ) is the reduct of a semi-�g-cone (C; ∗, : , ·), then each of the
above is equivalent to:

(3) cA = Ac for all c ∈ C.

P r o o f. Assume (1); then a ∗ b ∈ A =⇒ b : a = b : (a∧ b) = b : (b : (a ∗ b)) ∈ A

and b : a ∈ A =⇒ a ∗ b = (a ∧ b) ∗ b = ((b : a) ∗ b) ∗ b ∈ A. Hence (1) =⇒ (2).
Assume (2); and let c ∈ C and a ∈ A. Then (c : a) ∗ c = c ∧ a ≤ a ∈ A

and since A is convex, (c : a) ∗ c ∈ A. Hence by (2), c : (c : a) ∈ A. Dually,
(a ∗ c) ∗ c ∈ A. Hence (2) =⇒ (1).

Now assume that (C; ∗, :, ·) is a semi-�g-cone; then A is an ideal of C. Further,
assume (2); and let a ∈ A and c ∈ C. Then c ∗ (ca) ≤ a and hence c ∗ (ca) ∈ A.
Hence by (2), (ca) : c ∈ A. Now ca = (ca) ∨ c = (ca : c)c ∈ Ac so that cA ⊆ Ac.
By duality, Ac ⊆ cA so that Ac = cA. Hence (2) =⇒ (3).

Finally, assume (3); and let a ∗ b ∈ A. Then a(a ∗ b) ∈ aA = Aa and hence
a(a ∗ b) = ua for some u ∈ A. Hence 0 = b : (a ∨ b) = b : (a(a ∗ b)) = b : (ua) =
(b : a) : u so that b : a ≤ u. Since u ∈ A, it follows b : a ∈ A. The reverse
implication follows by duality. Hence (3) =⇒ (2). �

���������� 2.14� A deductive system of a precone algebra, satisfying either of
the conditions (1) and (2) of Theorem 2.13 above is said to be normal ; and an
ideal of a semi-�g-cone satisfying (3) of Theorem 2.13, is called a normal ideal.

Now we conclude this section with a brief introduction to polars in a precone
algebra. Let (C; ∗, : ) be a precone algebra and let A ⊆ C; and write

A⊥ = {c ∈ C : c ∧ a = 0 for all a ∈ A}.
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��		
 2.15� Let (C; ∗, :) be a precone algebra and a, b, c ∈ C; then

(a ∗ b) ∗ (a ∗ c) ≤ b ∗ c and (c : a) : (b : a) ≤ c : b.

P r o o f. (a ∗ c) : (b ∗ c) = a ∗ (b ∧ c) ≤ a ∗ b; and hence 0 = (a ∗ b) ∗ ((a ∗ c) :
(b∗ c)) = ((a∗ b)∗ (a∗ c)) : (b∗ c). So (a∗ b)∗ (a∗ c) ≤ b∗ c. The second inequality
follows by duality. �

We now prove:

��		
 2.16� A⊥ is a deductive system of C.

P r o o f. Clearly, 0 ∈ A⊥; and now assume that c ∈ A⊥ and c ∗ d ∈ A⊥. Let
a ∈ A; then c∧a = 0 = (c∗d)∧a so that by Lemma 1.2(12), c∗a = a = (c∗d)∗a.
Hence, by Lemma 2.15, a = (c ∗ d) ∗ (c ∗ a) ≤ d ∗ a ≤ a and hence a = d ∗ a so
that by Lemma 1.2(12), d ∧ a = 0. Hence d ∈ A⊥. �

��		
 2.17�

(α) A ⊆ B =⇒ B⊥ ⊆ A⊥ and

(β) A⊥ = A⊥⊥⊥ for all A, B ⊆ C.

P r o o f. Routine. �

Subsets of C of the form A⊥ are called polars and so, by Lemma 2.16, every
polar is a deductive system; and deductive systems which are polars are called
polar deductive systems.

��		
 2.18� Let (C; ∗, : ) be a precone algebra; and let A be a deductive system
of C; then A is a polar deductive system if and only if A = A⊥⊥.

P r o o f. Routine. �

3. Special semi-�g-cones

In this section, we describe three special cases of a semi-�g-cone (C; ∗, : , · )
where

(1) the monoid (C; · , 0) is cancellative,

(2) (C; · , 0) is a monoid of idempotents and

(3) (C;≤) is bounded

and identify them with objects which are fairly well familiar in the literature.
Now let (C; ∗, : , · ) be a semi-�g-cone and a, b, c, . . . ∈ C.
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��		
 3.1� b ≤ c =⇒ ab ≤ ac and ba ≤ ca.

P r o o f. a ∗ ab ≤ b ≤ c and hence ab ≤ ac; and ba : a ≤ b ≤ c and hence
ba ≤ ca. �

��		
 3.2� ab = a(a ∗ ab) = (ab : b)b.

P r o o f. By Lemma 2.10, a(a ∗ ab) = a ∨ ab = ab and (ab : b)b = ab ∨ b = ab by
Corollary 2.5. �

��
���

� 3.3� (C; ·, 0) is a cancellative monoid if and only if a ∗ ab = b and
ab : b = a, for all a, b ∈ C, and hence in this case, (C; ∗, : , ·) is an �g-cone.

P r o o f. Routine; also see Definition 2.2. �

��		
 3.4� Let (C; ∗, : , +) be an �g-cone; then

(1) a ≤ a + b and b ≤ a + b

(2) (C; ∗, : , +) is a cancellative semi-�g-cone; i.e.,
(α) (a + b) ∗ c = b ∗ (a ∗ c) and
(β) the monoid (C; +, 0) is cancellative.

P r o o f.
(1) a = (a + b) : b ≤ a + b and b = a ∗ (a + b) ≤ a + b.
(2) By (1) and Lemma 1.4, (C; ∗, : ) is a cone algebra. Hence (a + b) ∗ c =

0 ∗ ((a + b) ∗ c) = ((a + b) ∗ a) ∗ ((a + b) ∗ c) = (a ∗ (a + b)) ∗ (a ∗ c) = b ∗ (a ∗ c).
Hence (C; ∗, : , +) is a semi-�g-cone. Finally, (C; +, 0) is a cancellative monoid
by Corollary 3.3. �

Combining Corollary 3.3 and Lemma 3.4, we get the following theorem.

����
�	 3.5� Let (C; ∗, : , ·) be a semi-�g-cone; then (C; ·, 0) is cancellative if
and only if (C; ∗, : , ·) is an �g-cone.

Now, let (G; +,≤) be a (not necessarily abelian) lattice ordered group and
G+ be its positive cone; then it is easily verified that (G+; ∗, : , +) is an �g-cone
if we define ∗ and : by

a ∗ b = (−a + b) ∨ 0 and a : b = (a − b) ∨ 0.

On the other hand, let (C; ∗, : , +) be an �g-cone; then (C; ∗, : ) is a cone
algebra and given a, b ∈ C, there exists x ∈ C (namely, a + b) such that
a ∗ x = b and x ∗ a = 0. We now recall the following result due to B o s b a c h
([2, Statement (1.20), p. 61]):
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����
�	 A (Bosbach)� Let R be a cone algebra. Then R is the cone algebra
of some �-group cone if it satisfies, in addition, the law:

(AC) given a, b ∈ R, there exists x ∈ R such that

a ∗ x = b and x ∗ a = 0.

Hence, (C; ∗, : ) is the cone algebra of some �-group cone (C; ∗, : , ·) and so
has RCP.

Hence we have:

��		
 3.6� Let (C; ∗, : ) be a cone algebra and let a, x, y ∈ C. If a ∗ x = a ∗ y

and x ∗ a = y ∗ a = 0, then x = y.

Now since a + b and ab both satisfy the equations a ∗ x = 0 and x ∗ a = 0, by
the above Lemma 3.6, a + b = ab for all a, b ∈ C. Then (C; ∗, : , +) is the cone
algebra of some �-group cone. Consequently, the cancellative semi-�g-cones are
�-group cones.1

We now assume that (C; ∗, : , ·) is a semi-�g-cone such that a2 = a for all
a ∈ C. Then a∗b = a2∗b = a∗(a∗b) and hence by Lemma 1.2(12), a∧(a∗b) = 0.
Also, a∨b = a(a∗b) = a(a∗(a∗b)) = a∨(a∗b) and dually, we obtain a∧(b : a) = 0
and a ∨ b = a ∨ (b : a). Now the lattice (C;≤) is distributive (Lemma 2.12(β))
and hence a ∗ b = b : a is the complement of a in the interval [0, a ∨ b]. Hence
(C;≤) is a sectionally complemented (i.e., each interval [0, a] is complemented)
distributive lattice.

Now ab is an upper bound of a and b (Corollary 2.5) and hence a ∨ b ≤ ab.
On the other hand, a ∗ ab ≤ b and hence a ∗ (ab) = a2 ∗ (ab) = a ∗ (a ∗ ab) ≤ a ∗ b

(Lemma 1.2(9)) so that ab = a(a ∗ ab) (Lemma 3.2) ≤ a(a ∗ b) (Lemma 3.1)
= a ∨ b. Hence ab = a ∨ b. Thus we have proved the following theorem.

����
�	 3.7� Let (C; ∗, : , ·) be a semi-�g-cone in which every element is idem-
potent; then

(1) (C;≤) is a distributive lattice in which each interval [0, a] is complemented,

(2) a ∗ b = b : a is the complement of a in the interval [0, a ∨ b], and

(3) ab = a ∨ b for all a, b ∈ C.

Hence, in this case, (C; ∗, : ) is a symmetric cone algebra and (C; ·, 0) is an
abelian monoid.

Conversely, let (C;≤) be a sectionally complemented distributive lattice and
define ∗ and : by a∗b = b : a = the complement of a in the interval [0, a∨b]; then
it is a routine verification to show that (C; ∗, : ,∨) is a semi-�g-cone in which
every element is idempotent.

1The referee has kindly pointed out that this result also follows from [1, Theorem 6.2].
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Remark 3.8� The distributive lattices described in Theorem 3.7 above, are
well known to be term equivalent to Boolean rings. If (C;≤) is a sectionally
complemented distributive lattice, then (C; +, ·) is a Boolean ring if we define
a + b = (a ∗ b) ∨ (b ∗ a) and ab = a ∧ b. In the reverse direction, if (C; +, ·) is
a Boolean ring, then (C;≤) is a sectionally complemented distributive lattice if
we define a ≤ b ⇐⇒ a = ab. For this reason, we shall call a semi-�g-cone, in
which every element is idempotent, a Boolean cone.

Finally, we now consider a bounded semi-�g-cone and show that it is term
equivalent to a pseudo MV-algebra of G e o r g e s c u and I o r g u l e s c u [7].
We now recall the following definition of a pseudo MV-algebra as quoted in
D v u r e č e n s k i j [3]:

���������� 3.9 (Georgescu and Iorgulescu)� By a pseudo MV-algebra is meant
an algebra (A;⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0), which, together with an addi-
tional binary operation �, defined by

(A0) b � a =
(
ā ⊕ b̄

)∼,

satisfies the following axioms:

(A1) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

(A2) x ⊕ 0 = x = 0 ⊕ x

(A3) x ⊕ 1 = 1 = 1 ⊕ x

(A4) 1̃ = 0 = 1̄

(A5) (x̄ ⊕ ȳ)∼ = (x̃ ⊕ ỹ)−

(A6) x ⊕ (x̃ � y) = y ⊕ (ỹ � x) = (x � ȳ) ⊕ y = (y � x̄) ⊕ x

(A7) x � (x̄ ⊕ y) = (x ⊕ ỹ) � y

(A8) (x̄)∼ = x.

We also need the following lemma from [12], which is a simple consequence
of the above Definition 3.9. (Also, see [4].)

��		
 3.10� ([12, Lemma 2.2]) Let (A;⊕,− ,∼ , 0, 1) be a pseudo MV-algebra;
then

(1) (x̄)∼ = (x̃)− = x

(2) 0̄ = 1 = 0̃

(3) x � 0 = 0 � x = 0; x � 1 = 1 � x = x

(4) x � x̄ = x̃ � x = 0
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(5) (x � y)− = ȳ ⊕ x̄; (x � y)∼ = ỹ ⊕ x̃

(6) (x � y) � z = x � (y � z)

(7) (x̃ � x)∼ � y = y = y � (x � x̄)−

(8) x � (ỹ � x)− = (y � x̄)∼ � y.

��		
 3.11� Let (A;⊕,− ,∼ , 0, 1) be a pseudo MV-algebra and define a ∗ b =
ã � b and a : b = a � b̄; then (A; ∗, : ,⊕) is a bounded semi-�g-cone.

P r o o f. The equations (7) and (8) of the above Lemma 3.10, translate into the
equations (a ∗ a) ∗ b = b = b : (a : a) and a : (b ∗ a) = (b : a) ∗ b respectively; and
a∗(b : c) = ã�(b� c̄) = (ã�b)� c̄ (by the equation (6) of the above Lemma 3.10)
= (a ∗ b) : c. Also, (a ⊕ b) ∗ c = (a ⊕ b)∼ � c = (b̃ � ã) � c (by equation (1)
of Lemma 3.10 and the axiom (A0) of the Definition 3.9) = b ∗ (a ∗ c). Hence
(A; ∗, : ,⊕) is a semi-�g-cone and so (A; ∗, : ) is a cone algebra. Finally, if a ∈ A,
then a ∧ 1 = 1 : (a ∗ 1) = 1 � (ã � 1)− = 1 � (ã)− = (ã)− (by equation (3) of
Lemma 3.10) = a (by equation (1) of Lemma 3.10). Hence a ≤ 1 for all a ∈ A

so that the semi-�g-cone (A; ∗, : ,⊕) is bounded. �

��		
 3.12� Let (C; ∗, : ,⊕) be a bounded semi-�g-cone and let 1 denote the
greatest element of C; and define ā = 1 : a and ã = a∗1. Then (C;⊕,− ,∼ , 0, 1)
is a pseudo MV-algebra.

P r o o f. The additional binary operation of the Definition 3.9, (see (A0)) satis-
fies b � a = (ā ⊕ b̄)∼ = (ā ⊕ b̄) ∗ 1 = b̄ ∗ (ā ∗ 1) = b̄ ∗ (ā)∼ = b̄ ∗ ((1 : a) ∗ 1) =
b̄ ∗ (a∧1) = b̄ ∗a = (1 : b)∗ (1 : (a∗ 1)) = ((1 : b)∗ 1) : (a∗ 1) = (b∧1) : ã = b : ã.
Hence b� a = b̄ ∗ a = b : ã. We now verify the axioms (A1) through (A8) of the
Definition 3.9. Since (C;⊕, 0) is a monoid, we have (A1) and (A3); and since
1 ≤ x⊕ 1 and 1 ≤ 1⊕x and 1 is the greatest element, we have (A3). (A4) holds
because 1̃ = 1∗1 = 0 = 1 : 1 = 1̄. Also, (x̃⊕ỹ)− = 1 : (x̃⊕ỹ) = (1 : ỹ) : x̃ = y : x̃

= (x̄ ⊕ ȳ)∼(= y � x) and hence (A5) holds.

Now (x̄)∼ = (1 : x) ∗ 1 = x ∧ 1 = x and hence (A8); dually, (x̃)− = x. Now
ã�b = (b̄⊕a)∼ = (b̄⊕a)∗1 = a∗(b̄∗1) = a∗(b̄)∼ = a∗b and similarly, a�b̄ = a : b.
Now x ⊕ (x̃ � y) = x ⊕ (x ∗ y) = x ∨ y and similarly, each of the expressions in
(A6) is x∨y. Hence (A6) holds. Finally, x�(x̄⊕y) = x�(ỹ�x)− = x : (y∗x) =
(y : x) ∗ y = (y � x̄)∼ � y = (x ⊕ ỹ) � y. Hence (A7) is satisfied, and hence
(C;⊕,− ,∼ , 0, 1) is a pseudo MV-algebra. �

We now combine Lemmas 3.11 and 3.12 to obtain the following theorem.
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����
�	 3.13�

(a) Let A = (A;⊕,− ,∼ , 0, 1) be a pseudo MV-algebra and define a ∗ b = ã� b

and a : b = a � b̄; then (A; ∗, : ,⊕) is a bounded semi-�g-cone, which is
denoted by C(A).

(b) Let C = (C; ∗, : ,⊕) be a bounded semi-�g-cone and let 1 denote the greatest
element of C; and define ā = 1 : a and ã = a ∗ 1. Then (C;⊕, − ,∼ , 0, 1)
is a pseudo MV-algebra and we denote this by M(C).

(c) With the above notation,

C(M(C)) = C and M(C(A)) = A.

P r o o f. We need only prove (c). Let A = (A;⊕,− ,∼ , 0, 1) be a pseudo MV-al-
gebra; then C(A) is a bounded semi-�g-cone with a ∗ b = ã � b and a : b =
a � b̄. Hence M(C(A)) is a pseudo MV-algebra (A;⊕, ˇ , ˆ , 0, 1) where â =
a ∗ 1 = ã � 1= ã and ǎ = 1 : a = 1 � ā = ā. Hence M(C(A)) = A. Similarly,
C(M(C))= C. �

Summarizing the three special cases, we have proved that a semi-�g-cone is

(1) cancellative if and only if it is an �g-cone;

(2) Boolean cone if and only if every element is idempotent; and

(3) bounded if and only if it is term equivalent to a pseudo MV-algebra.

We now recall that a nonempty subset A of a pseudo MV-algebra (C;⊕, − ,∼ 0, 1)
is an ideal (by definition) if and only if

(i) a, b ∈ A =⇒ a ⊕ b ∈ A, and

(ii) b ∈ A and a ≤ b =⇒ a ∈ A.

Thus A is an ideal of a pseudo MV-algebra if and only if it is an ideal of the
equivalent semi-�g-cone (see Definition 2.9). Hence by Theorem 2.13 we get:

��
���

� 3.14� ([7, Lemma 3.2]) Let (C;⊕,− ,∼ 0, 1) be a pseudo MV-algebra
and let A be an ideal; then A is a normal ideal if and only if

c ⊕ A = A ⊕ c for all c ∈ C.

I am thankful to the referee for his/her helpful comments and to Prof. J. Kühr
for a copy of his paper [9], which have led to a substantial improvement of the
original version of Theorem 1.5.
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