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ABSTRACT. In a previous author’s paper, sequential convergences on an
MV -algebra A have been studied; the Urysohn’s axiom was assumed to be valid.
The system of all such convergences was denoted by Conv A . In the present
paper we investigate analogous questions without supposing the validity of the
Urysohn’s axiom; the corresponding system of convergences is denoted by conv A .

Both Conv A and conv A are partially ordered by the set-theoretical inclusion.
We deal with the properties of conv A and the relations between conv A and
Conv A . We prove that each interval of conv A is a distributive lattice. The
system conv A has the least element, but it does not possess any atom. Hence
it is either a singleton set or it is infinite. We consider also the relations be-
tween conv A and conv G, where (G, u) is a unital lattice-ordered group with

A = Γ(G, u).

c©2008
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

The present paper can be considered as a continuation of the article [7]. In [7],
we studied sequential convergences on an MV -algebra A under the assumption
that the Urysohn’s axiom for the convergences under consideration is valid. The
collection of such convergences was denoted by Conv A .

Now we will deal with sequential convergences on A without the Urysohn’s
axiom. The corresponding system of convergences is denoted by conv A . Both
Conv A and conv A are partially ordered by the set-theoretical inclusion.
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The well-known notion of o-convergence was studied for several types of
lattice-ordered structures (cf., e.g. [1]). We remark that the o-convergence on
an MV -algebra A belongs to conv A , but need not belong, in general, to the
system Conv A .

For a lattice-ordered group G, the definitions of Conv G and of conv G are
analogous to those of Conv A and conv A . The system Conv G was studied in
several papers; cf. e.g., [3], [4], [5]. The system conv G was dealt with in [6].

It is well-known (cf. e.g., [2]) that for each MV -algebra A there exists an
abelian lattice-ordered group G with a strong unit u such that A is the inter-
val [0, u] of G; in this situation we write A = Γ(G, u). (For a more detailed
formulation of this result cf. Section 2 below.)

We will investigate the relations between Conv A and conv A , and the rela-
tions between conv A and conv G, where A and G are as above.

We prove that each interval of conv A is a Brouwerian lattice. The system
conv A has the least element, but it does not possess any atom. Hence it is
either a one-element set or it is infinite.

Though Conv A and conv A can be strongly different (e.g., it can happen
that Conv A is finite and conv A is infinite), several methods used in [7] by
studying the relations between Conv A and Conv G can be applied without
change or with minor modifications by the investigation of the relations between
conv A and conv G.

Our investigation of systems of sequential convergences on a fixed MV -algebra
is to a certain degree analogous to the investigation of systems of topologies on
a given set which was performed in several papers. Let us remark that Section
54A10 of 2000 Mathematics Subject Classification is entitled “Several topologies
on one set”.

2. Preliminaries

An MV -algebra A = (A;⊕, ∗,¬, 0, 1) is defined to be an algebraic structure of
type (2, 2, 1, 0, 0) with the underlying set A such that the conditions (m1)–(m9)
from [7] are satisfied.

For each x and y from A we set

x ∨ y = (x ∗ ¬y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y).

Then L (A ) = (A;∨,∧) is a distributive lattice with the least element 0 and the
greatest element 1. The corresponding partial order on A will be denoted by �.

For lattice-ordered groups we apply the notation and the terminology as in [1].
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An element u of a lattice-ordered group G is a strong unit of G if for each
g ∈ G there is n ∈ N with g � nu. A lattice-ordered group with a fixed strong
unit is called unital.

Let (G, u) be a unital abelian lattice-ordered group and let A be the interval
[0, u] of G. For each x, y ∈ A we set

x ⊕ y = (x + y) ∧ u, ¬x = u − x, 1 = u,

x ∗ y = ¬(¬x ⊕ ¬y).

Then A = (A;⊕, ∗,¬, 0, 1) is an MV -algebra. We write A = Γ(G, u).

Conversely, for each MV -algebra A there exists a unital abelian lattice-
ordered group (G, u) such that A = Γ(G, u). (Cf. [2].)

Let A be an MV -algebra. The notions of a sequence (xn) in A and of a
constant sequence const x have the usual meaning. If K is a subset of AN × A
and ((xn), x) ∈ K, then we write xn →K x.

For the sake of completeness, we recall the following conditions concerning a
subset K ⊆ AN×A which will be applied by dealing with sequential convergences
(cf. [7]):

(s(i)) If xn →K x and (yn) is a subsequence of (xn), then yn →K x.
(s(ii)) If (xn) ∈ AN and if for each subsequence (yn) of (xn) there is

a subsequence (zn) of (yn) such that zn →K x, then xn →K x.
(s(ii’)) Let (xn), (yn) ∈ AN. Assume that there is m ∈ N such that xn = yn

for each n � m. If xn →K x, then yn →K x.
(s(iii)) If (xn) ∈ AN, x ∈ A, (xn) = const x, then xn →K x.
(s(iv)) If xn →K x and xn →K y, then x = y.
(s(v)) If xn →K x and yn →K y, then xn⊕yn →K x⊕y, xn∗yn →K x∗y

and ¬xn → ¬x.
(s(vi)) If xn � yn � zn for each n ∈ N and xn →K x, zn →K x,

then yn →K x.

The condition (s(ii)) is the well-known Urysohn’s axiom.

We denote by Conv A the system of all K ⊆ AN ×A satisfying the conditions
(s(j)) for j = i–vi. Further, let conv A be the system of all K ⊆ AN × A
which satisfy the conditions (s(i)), (s(ii’)) and (s(iii))–(s(vi)). Both Conv A and
conv A are partially ordered by the set-theoretical inclusion. The elements of
conv A are called sequential convergences (or simply convergences) in A . We
obviously have Conv A ⊆ conv A .
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Let K(0) be the set consisting of all elements ((xn), x) of AN × A such that
there is m ∈ N with xn = x for each n � m. Then K(0) is the least element of
Conv A . We say that K(0) is the discrete convergence on A .

We recall the notion of Conv G and conv G for a lattice ordered group G

(cf. [6]). All lattice-ordered groups dealt with in the present paper are assumed
to be abelian.

Let (gn) and (hn) be elements of GN. We set (gn) ∼ (hn) if there is m ∈ N
such that gn = hn for each n ∈ N with n � m.

The positive cone (GN)+ of the lattice-ordered group GN is a lattice ordered
semigroup. We consider the following conditions for a subset α of (GN)+:

(I) If (gn) ∈ α, then each subsequence of (gn) belongs to α.

(II) Let (gn) ∈ (GN)+. If each subsequence of (gn) has a subsequence belonging
to α, then (gn) ∈ α.

(II’) Let (gn) ∈ α and (hn) ∈ (GN)+. If (hn) ∼ (gn), then (hn) ∈ α.

(III) Let g ∈ G. Then const g belongs to α if and only if g = 0.

The system of all convex subsemigroups of (GN)+ which satisfy the conditions
(I), (II) and (III) (or (I), (II’) and (III)) will be denoted by Conv G (or by
conv G, respectively). Both Conv G and conv G are partially ordered by the
set-theoretical inclusion. We have Conv G ⊆ conv G. Let α(0) be the set of all
(xn) ∈ (GN)+ such that (xn) ∼ const 0. Then α(0) is the least element of both
Conv G and conv G; it is called the discrete convergence on G.

For (gn) ∈ GN, g ∈ G and α ∈ conv G we put gn →α g iff (|gn − g|) ∈ α.

We denote by α(o) the set of all sequences (gn) in G having the property that
there exists (hn) ∈ (GN)+ such that

(i) hn+1 � hn for each n ∈ N;

(ii)
∧

n∈N

hn = 0;

(iii) there is m ∈ N such that hn � gn for each n � m.

Then α(o) ∈ conv G; on the other hand, α(o) need not belong to Conv G

(cf. [6]). (From this it can be easily deduced that an analogous result holds for
Conv A and conv A .) We say that α(o) is the o-convergence in G.
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3. The system conv0 A

In this section we prove some auxiliary results which will be applied in the
subsequent sections. As above, let A be an MV -algebra. If (gn) and (hn)
belong to AN, then we define the meaning of (fn) ∼ (hn) analogously as we did
for elements of GN in Section 2.

For each K ∈ conv A we set

K0 =
{
(xn) ∈ AN : xn →K 0

}
,

conv0 A =
{
K0 : K ∈ conv A

}
.

The direct power A N is defined in the usual way; its underlying set is AN.
From the definition of conv A we obtain:

����� 3.1� Let K1 ∈ conv0 A . Then the following conditions are satisfied:
(i1) If (gn) ∈ K1, then each subsequence of (gn) belongs to K1.
(ii1) Let (gn) ∈ K1 and (hn) ∈ AN. If (gn) ∼ (hn), then (hn) ∈ K1.
(iii1) Let g ∈ A. Then const g ∈ K1 if and only if f = 0.
(iv1) K1 is a convex subset of AN.
(v1) K1 is closed with respect to the operation ⊕.

Let ∅ 
= K(1) ⊆ AN. Consider the following conditions for ((xn), x) ∈ AN×A:
(∗) There exist (un), (vn) ∈ AN such that

(i) un � xn, un � x for each n ∈ N and (¬(un ⊕ ¬x)) ∈ K(1);
(ii) vn � xn, vn � x for each n ∈ N and (¬(x ⊕ ¬vn)) ∈ K(1).

We denote by K(2) the set of all ((xn), x) ∈ AN × A such that the condition
(∗) is valid. If ((xn), x) ∈ K(2), then we write xn →K(2) x.

����� 3.2� Let K(1) and K(2) be as above. Assume that K(1) satisfies the
condition (ii1). Then K(2) satisfies the condition (s(ii’)) from the definition of
conv A .

P r o o f. Let ((xn), x) ∈ K(2) and (yn) ∈ AN such that (yn) ∼ (xn). Assume
that (un) and (vn) are as in (∗). Put u′

n = un ∧ yn and v′n = vn ∨ yn for each
n ∈ N. Hence we have

u′
n � x, u′

n � yn, v′n � x, v′n � yn

for each n ∈ N. Further,

(¬(u′
n ⊕ ¬x)) ∼ (¬(un ⊕ ¬x)), (1)

(¬(x ⊕ ¬v′n)) ∼ (¬(x ⊕ ¬vn)), (2)

thus both (¬(u′
n ⊕ ¬x)) and (¬(x ⊕ ¬v′n)) belong to K(1). Therefore ((yn), x)

∈ K(2). �
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����� 3.3� Assume that K(1) satisfies the conditions from 3.1. Let K(2) be
as above. Then K(2) ∈ conv A .

P r o o f. We have to verify that K(2) satisfies the conditions (s(i)), (s(ii’)),
(s(iii))–(s(vi)) from the definition of conv A .

In view of 3.2, the condition (s(ii’)) is satisfied. For the verification of
the remaining conditions it suffices to apply the same method as in the proof
of [7, 2.5]. �

����� 3.4� Let K(1) and K(2) be as above. Then (K(2))0 = K(1).

P r o o f. It suffices to use the same steps as in the proof of [7, Lemma 2.6]. �

From 3.1, 3.2 and 3.3 we obtain:

����� 3.5� Let K ∈ AN. Then K belongs to conv0 A if and only if it satisfies
the conditions from 3.1.

Let K ∈ conv A and K(1) ∈ conv0 A . We put

f1(K) = K0, f2(K(1)) = K(2),

where K(2) is as above.
By the same method as in the proof of [7, Lemma 2.8] we obtain the relation

f2(K0) = K for each K ∈ conv A . Then according to 3.1–3.4 and in view of
the fact that f1 and f2 are isotone we get:

������� 3.6� The mapping f2 is an isomorphism of the partially ordered set
conv0 A onto conv A and f1 = f−1

2 .

For the analogous result concerning Conv0 A and Conv A cf. [7, Theo-
rem 2.9].

Let X ⊆ AN. We denote by X∗ the set of all sequences (an) ∈ AN such that
each subsequence of (an) has a subsequence belonging to X.

For an injective monotone mapping ϕ : N → N and a sequence (an) in A put
bn = aϕ(n). Then (bn) is a subsequence of (an); we say that (bn) is generated by
the mapping ϕ.

For K1 ∈ Conv A we set

K0
1 =

{
(xn) ∈ AN : xn →K1 0

}
,

Conv0 A =
{
K0

1 : K1 ∈ Conv A
}
.

According to [7, Corollary 2.7] we have:
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����� 3.7� The collection Conv0 A is the system of all subsets K1 of AN which
satisfy the following conditions:

(i) If (gn) ∈ K1, then each subsequence of (gn) belongs to K1.

(ii) K1 fulfils the Urysohn’s condition.

(iii) Let g ∈ A. Then const g ∈ K1 iff g = 0.

(iv) K1 is a convex subset of the lattice (AN,∨,∧).

(v) K1 is closed with respect to the operation ⊕.

	��
���
��� 3.8� Let K ∈ conv0 A . Then K∗ ∈ Conv0 A . If K1 ∈ Conv0 A

and K1 � K, then K1 � K∗.

P r o o f. For proving the relation K∗ ∈ Conv0 A we have to verify that K∗ sat-
isfies the conditions (i)–(v) from 3.7. The validity of (i) and (ii) is a consequence
of the properties of K. In view of the definition of K∗, (iii) is valid.

Assume that (xn) ∈ K∗, (yn) ∈ AN and yn � xn for each n ∈ N. Let (zn)
be a subsequence of (yn); hence there exists an injective monotone mapping
ϕ : N → N such that zn = yϕ(n) for each n ∈ N. Put z′n = xϕ(n) for each n ∈ N.
Then (z′n) is a subsequence of (xn) and zn � z′n for each n ∈ N. Thus (zn) ∈ K.
This yields that (yn) belongs to K∗. Hence condition (iv) is satisfied.

The validity of (v) can be verified by applying the same idea we have just
used for the condition (iv).

Assume that K1 ∈ Conv0 A and K1 ⊇ K. Since K1 satisfies the Urysohn’s
axiom, we conclude that K∗ ⊆ K1. �

A subset X of AN is said to be regular with respect to conv0 A if there exists
K ∈ conv0 A with X ⊆ K. The regularity with respect to Conv0 A is defined
analogously.

����� 3.9� Let X ∈ AN. Then X is regular with respect to conv0 A iff it is
regular with respect to Conv0 A .

P r o o f. Let X be regular with respect to conv0 A . Then in view of 3.8, it is
regular with respect to Conv0 A , since K ⊆ K∗ for each K ∈ conv0 A . The
converse assertion follows from the relation Conv0 A ⊆ conv0 A . �

In view of 3.9 we say simply “regular” instead of “regular with respect to
conv0 A ”.
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4. The relation between conv A and conv G

As above, let A be an MV -algebra and let (G, u) be a unital lattice-ordered
group such that A = Γ(G, u).

The relation between Conv G and Conv A was investigated in [7]. In the
present section we deal with the relation between conv G and conv A . As we
have already remarked in Section 1, we can apply some methods from [7].

Our present notation is slightly different from that used in [7]. Namely, in-
stead of Conv G (in the sense defined in Section 2 above), the symbol Conv0 G
was applied in [7]. Our notation is in accordance with that of [6].

For K ∈ conv G we set
g1(K) = AN ∩ K.

If (xn) and (yn) are elements of K, then (xn ∨ yn), (xn ∧ yn) and (xn + yn)
also belong to K. Then from the properties of conv G and from 3.7 we obtain:

����� 4.1� For each K ∈ conv G, g1(K) ∈ conv0 A .

According to 3.9 and by applying the same method as in [7] (cf. [7, Lemma 3.8])
we get:

����� 4.2� Let X ∈ conv0 A . Then the set X is regular.

For X ∈ conv0 A let Y = {Yi}i∈I be the system of all elements Yi of conv G
such that X ⊆ Yi. In view of 4.2, Y 
= ∅. Put

g2(X) =
⋂

i∈I

Yi.

From the definition of conv G we conclude that
⋂
i∈I

Yi belongs to conv G. Hence
g2 is a mapping of conv0 A into conv G.

A more constructive description of g2(X) can be given as follows.
For each ∅ 
= Z ⊆ (GN)+ we denote by

δZ — the set of all (gn) ∈ (GN)+ such that (gn) is a subsequence of some
sequence belonging to Z;

〈Z〉 — the set of all (gn) ∈ (GN)+ such that there exist k ∈ N and
(g1

n), . . . , (gk
n) ∈ Z such that gn � g1

n + · · · + gk
n for each n ∈ N;

Z0 — the set of all (gn) ∈ (GN)+ such that there exists (hn) ∈ Z
with (gn) ∼ (hn).

From 4.2 and from [6, Proposition 2.3] we conclude:

����� 4.3� Let X ∈ conv0 A . Then g2(X) = 〈δX〉0.
We remark that in [6, Proposition 2.3] the symbol [Z] was also used; it is easy

to verify that this symbol can be omitted.
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����� 4.4� Let X1, X2 ∈ conv0 A . If X1 ⊆ X2, then g2(X1) ⊆ g2(X2). If
X1 � X2, then g2(X1) � g2(X2).

P r o o f. The first assertion is obvious. Let X1 � X2. By way of contradiction,
assume that g2(X1) ⊆ g2(X2). There exists (xn) ∈ X1 \X2. Since X1 ⊆ g2(X1),
we get (xn) ∈ g2(X2). Hence according to 4.3, (xn) ∈ 〈δX2〉0.

From X2 ∈ conv0 A we infer that δX2 = X2. Thus (xn) ∈ 〈X2〉0. Then there
exists (zn) ∈ 〈X2〉 such that (zn) ∼ (xn).

Further, there are k ∈ N and (t1n), . . . , (tkn) ∈ X2 such that

zn � t1n + · · · + tkn for each n ∈ N.

In view of zn ∈ A we get

zn � (t1n + · · · + tkn) ∧ u = t1n ⊕ · · · ⊕ tkn.

From this and from the relation X2 ∈ conv0 A we obtain (zn) ∈ X2; finally, from
(zn) ∼ (xn) we conclude that (xn) ∈ X2. We arrived at a contradiction. �

A sequence (xn) of elements of G is bounded if there are v1, v2 ∈ G with
v1 � v2 such that v1 � xn � v2 for each n ∈ N. It is clear that (xn) is bounded
iff there is m ∈ N such that −mu � xn � mu for each m ∈ N.

For K ∈ conv G let Kb be the set of all (xn) ∈ K such that (xn) is a bounded
sequence in G. We put

convb G = {K ∈ conv G : K = Kb}.
If K ∈ convb G then we say that K is bounded. In view of the definition of
conv G, we have Kb ∈ conv G for each K ∈ conv G. Hence convb G ⊆ conv G.
Further,

g1(K) = g1(Kb) for each K ∈ conv G.

����� 4.5� Let X ∈ conv0 A . Then g2(X) is bounded.

P r o o f. This is a consequence of 4.3. �
����� 4.6� Let Y ∈ convb G. Put g1(Y ) = X. Then g2(X) = Y .

P r o o f. In view of g1(Y ) = X we have X ⊆ Y . Then according to 4.3 we obtain
g2(X) = 〈δX〉0 ⊆ 〈δY 〉0. The relation Y ∈ convb G yields 〈δY 〉0 = Y , hence
g2(X) ⊆ Y .

Let (yn) ∈ Y . Then yn � 0 for each n ∈ N. Further, (yn) is bounded. Hence
there is m ∈ N such that yn � mu for each n ∈ N. Therefore, according to
Riesz Theorem, for each n ∈ N there exist elements zi

n (i = 1, 2, . . . , m) such
that 0 � zi

n � u for i = 1, 2, . . . , m and yn = z1
n + · · · + zm

n . Then zi
n � yn for

each n ∈ N and each i ∈ {1, 2, . . . , m}. We obtain (zi
n) ∈ AN and (zi

n) ∈ Y ,
hence (zn)i ∈ X for i = 1, 2, . . . , m. This yields (yn) ∈ 〈X〉 ⊆ g2(X). Thus
Y ⊆ g2(X). Summarizing, we obtain g2(X) = Y . �
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��������� 4.7� g2(conv0 A ) = convb G.

����� 4.8� Let X ∈ conv0 A . Put g2(X) = Y . Then g1(Y ) = X.

P r o o f. We have g2(X) = 〈δX〉0 ⊇ X. Hence Y ⊇ X. Further, g1(Y ) =
Y ∩ AN ⊇ X ∩ AN = X. Thus g1(Y ) ⊇ X.

Let (zn) ∈ g1(Y ). Since X ∈ conv0 A , δX = X and Y = 〈X〉0. Also,
(zn) ∈ Y and (zn) ∈ AN. Thus there exists (vn) ∈ 〈X〉 with (vn) ∼ (zn). The
first relation yields that there is m ∈ N having the property that for each n ∈ N
there exist x1

n, . . . , xm
n with vn = x1

n + · · · + xm
n and such that (x1

n), . . . , (xm
n )

belong to X. Further, there is k ∈ N such that for each n � k, vn = xn, hence

zn = x1
n + · · · + xm

n . (3)

In view of (3), xi
n � zn for i = 1, . . . , m. Thus, x1

n, . . . , xm
n ∈ A for each n ∈ N.

From this and from the relation (3) we obtain

zn = x1
n ⊕ · · · ⊕ xm

n for n � k.

In view of the properties of elements of conv0 A we conclude that (xn) ∈ X,
hence g1(Y ) ⊆ X. �

��������� 4.9� g1(convb G) = conv0 A .

������� 4.10� The mapping g2 is an isomorphism of the partially ordered
set conv0 A onto the partially ordered set convb G and g1 = g−1

2 . The partially
ordered set conv A is isomorphic to the partially ordered set convb G.

P r o o f. The first assertion is a consequence of 4.1, 4.4, 4.6 and 4.9. Applying
3.6 we conclude that the second assertion is valid. �

It is obvious that

a) the least element α(0) of conv G belongs to convb G;
b) if α ∈ convb G, then the interval [α(0), α] of conv G is a subset of convb G.

From this and from [6, Corollary 6.3] we infer:

������� 4.11� Each interval of conv A is a Brouwerian lattice.

If {Xi}i∈I is a nonempty subset of conv0 A , then we obviously have
⋂
i∈I

Xi ∈
conv0 A , hence ⋂

i∈I

Xi =
∧

i∈I

Xi

in the lattice conv0 A . Thus each interval of conv0 A is a complete lattice. The
same holds for conv A .
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5. On the power of the system conv A

As above, let A be an MV -algebra with A = Γ(G, u), where (G, u) is a
unital lattice-ordered group.

������� 5.1� The lattice conv A has no atom.

P r o o f. By way of contradiction, assume that conv A has an atom. In view
of conv A � conv0 A , we obtain that conv0 A possesses an atom X0. Let g2

be as in Section 6. According to 4.10, g2(X2) is an atom of convb G. Now
the remark b) after 4.10 yields that g2(X0) is, at the same time, an atom in
conv G. But according to [6, Theorem 5.13], conv G has no atom. We arrived
at a contradiction. �

Since conv G has the least element, from 5.1 we conclude:

��������� 5.2� Either conv A is a one-element set, or it is infinite.

Example 5.3. Let Z be the additive group of all reals with the natural linear
order. Let 0 < m ∈ Z. Then m is a strong unit of Z and we can construct the
MV -algebra Am = Γ(Z, m). It is easy to verify that conv Z is the one-element
set {α(0)}; hence Conv Z = conv Z. The set Am (the underlying set of Am) is
finite; conv Am, conv0 Am and Conv Am are one-element sets.

Example 5.4. Let R be the additive group of all reals with the natural linear
order. Then Conv R has exactly two elements, namely, the discrete convergence
and the o-convergence. (Cf. [3].) Both these convergence are bounded.

Let 0 < r ∈ R. The element r is a strong unit of R; put Ar = Γ(A, r). Then
according to [7], Conv Ar has exactly two elements. This yields that conv Ar

fails to be a one-element set. Therefore, in view of 5.2, conv Ar is infinite.
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