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WEAK MV-ALGEBRAS

RaDOMIR HALAS — LUBOS PLOJHAR

(Communicated by Anatolij Dvureéenskij)

ABSTRACT. In a recent paper [CHAJDA, I—KUHR, J.: A non-associative
generalization of MV-algebras, Math. Slovaca 57, (2007), 301-312], authors
introduced and studied a non-associative generalization of MV-algebras called
NMV-algebras. In contrast to MV-algebras, sections (i.e. principal filters) in
NMV-algebras which are proper (i.e. are not MV-algebras), do not admit a
structure of an NMV-algebra with respect to the operations defined in a natu-
ral way. The aim of the paper is to present a new class of algebras generalizing
MV-algebras but sharing the above property.
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1. Introduction

Recall that MV-algebras were introduced in 50’ties by C. C. Chang as an
algebraic semantics of the Lukasiewicz many valued propositional logic (see [6],
[7]). More precisely, an MV-algebra is an algebra (A, ®,—,0) of type (2,1,0)
satisfying the identities:

MV)z@(y@z)=(x@y) @2

(
(
(MV4) ——z =z
(
(MV6) ~(~x@y) Dy =~(-ydx) D

A typical example of an MV-algebra can be obtained as follows: consider
any abelian lattice ordered group (G, +,—,0,A,V) and take 0 < u € G. Then
the interval [0,u] = {x € G : 0 < x < u} with the operations defined by
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xr®y = (x+y) Auand -z := u — x becomes an MV-algebra. Denoting such
an MV-algebra as I'(G,u), D. Mundici [15] (see also [8]) proved that for
every MV-algebra 7 there exists an abelian l-group G and 0 < u € G with
o 2T(G,u).

Given an MV-algebra &7, the relation < defined by

() z<y <= woy=1,

is known to be a lattice order on A with 2 Vy = (-2 @ y) @y and x Ay =
—(—z V —y), the top or the bottom element of which is 1 or 0, respectively.

Moreover, for any MV-algebra o/ and p € A, one can define on the inter-
val [p,1] (usually called section) a structure of an MV-algebra (called section
MV-algebra on [p, 1]) in a natural way as follows:

(2) z&py=-(-zdp) &Yy, —HpTr="TDHp.

In the recent years a non-commutative generalization of MV-algebras was
introduced and studied by G. Georgescu and A. ITorgulescu [11] as
pseudo MV-algebras and independently by J. Rachunek under the name
GMV-algebras ([16]).

In principle, these are algebras with a binary operation & and two unary
operations ~ and — (negations) coinciding whenever @ is commutative. More
precisely, given any (not necessarily commutative) l-group G and 0 < u € G,
then upon defining z @y := (x+y) Au, 7z := u—x, ~ £ = —x + u, the resulting
algebra I'(G,u) = ([0, 4], ®, -, ~,0) becomes a GMV-algebra.

Similarly as for a commutative case, A. Dvurecéenskij [9] proved that all
GMV-algebras are of the form I'(G,u) for any l-group G.

Another important approach to generalize MV-algebras by omitting asso-
ciativity (MV1) but keeping commutativity (MV2) was done by I. Chajda
and J. Kihr [3]. More precisely, they considered algebras (A, @, —,0) of type
(2,1,0) satisfying the axioms (MV2)-(MV6), where the axiom (MV1) was sub-
stituted by two more axioms
(WA) 2@ (—(=(=(-zdy) dy) @2)@2) =1
(here so-called weak associativity)
and

(H) 2@ (zdy) =1.

These algebras are called NMV-algebras (non-associative MV-algebras) ([3]).
Clearly, every MV-algebra fulfils the axioms (WA) and (H), but the converse is
not true.

To clarify the role of the axiom (WA), its validity enables to prove that
the relation < defined by (1) remains transitive (and hence being the order
relation). From a logical point of view, such a property is quite natural since in
all reasonable logics the set of truth values should be partially ordered.
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We have seen that the sections in MV-algebras form MV-algebras as given
by (2). However, this property is not true for NMV-algebras: I. Chajda
recently proved that given an NMV-algebra o7, the sections [p, 1] have a structure
of an NMV-algebra as defined by (2) iff @ is associative. In other words, an
NMV-algebra shares the mentioned property iff it is an MV-algebra.

The aim of this paper is to find a new class of generalized MV-algebras ad-
mitting the same structure on sections.

2. Weak MV-algebras

DEFINITION 1. An algebra (A,@®,—,0) is called a weak MV-algebra of type
(2,1,0) or WMV-algebra briefly if it satisfies the axioms (1 := —0):

(WMV1) ~—z ==z

( ) 2@ ((o(~(z@y) By ®2)Bz) =1

( ) 2(rz@y) Dy =-(ydz)d.

(WMV4) 260=0®z =2
( )
(

Note that applying (WMV4) and (WMV5), every WMV-algebra satisfies the

identity
z@®l=102=1.

To show that the relation defined by (1) is a partial order on A for any
WDMV-algebra o7, we use the same arguments as in the case of NMV-algebras:
putting z = 0 in (WMV5), with respect to (WMV4), we obtain the identity
-y @ y=1, so < is reflexive. The antisymmetry of < is guaranteed just by
(WMV1), (WMV4) and (WMV3). Finally, if 2 < y and y < z then -z &y =
—y®z = 1, hence (WMV?2) together with (WMV4) entail ~z@z = 1. Altogether,
< is a partial order on A.

In the sequel we will discuss a structure of sections in WMV-algebras. To
this aim, we need the following terminology.

Given a poset (P, <), we denote L(z,y) = {a € P: a <z, a < y} and
U(z,y) ={a € P: a>=x, a>y} forany x,y € P. A poset (P, <) is called
upwards (downwards) directed if U(z,y) # 0 (L(z,y) # 0) holds for all z,y € P.
Directed poset is both upwards and downwards directed.

In his unpublished thesis [17], V. Snasel introduced the concept of a
A-semilattice as a natural generalization of semilattices:
an algebra (L, U) of type (2) is called a A-semilattice if it satisfies the identities

(S1) z Uz = z (idempotency)
(S2) z Uy =y Uz (commutativity)
(S3) zU((zUy)Uz) = (x Uy) Uz (weak associativity).
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Remark that A-semilattices were studied by J. Jezek and R. Quackenbush
under the name directoids, see [12].

Similarly as for lattices, by a A-lattice ([18]) we mean a structure (L,U,N),
where (L,U) and (L,N) are two A-semilattices connected by absorption laws
(Ab) zN(zUy) =z, zU(xNy) = z.

It is quite easy to show that given a A-semilattice (L, U), the relation < defined
by

(B) z<y <= zUy=y
is partial order on L, where x Uy € U(x,y) for all z,y € L.

An order relation defined by (3) will be referred as an induced order. Thus
(L, <) is an upwards directed poset.

Remark that given a A-lattice £ = (L, U, N), the induced order < defined by
(3) coincides with that given by 2 <y <= x Ny = x. Hence we can refer to
< as the induced order on a A-lattice .Z.

Given a A-semilattice .¢ = (L,U) with the induced ordering <, a mapping
f: L — L is called an antitone involution on & if

(i) f(f(2) ==
(i) 2 <y = f(2) = f(y).
A structure (L,U, f) is then said to be a A-semilattice with an antitone involu-
tion f.
By a A-lattice with an antitone involution f we mean a structure (L, U, N, f),
where (L, U, f) is a A-semilattice with an antitone involution f.

The next statement shows that each WMV-algebra can be viewed as a A-semi-
lattice of WMV-algebras:

THEOREM 1. Let (A, ®,—,0) be a WMV-algebra, p € A, z,y € [p,1]. Then
upon defining
T@®py:=(-zSp) By,
pX = X D P,
the structure ([p, 1], ®p, p,p) is a WMV-algebra. Moreover, putting
rUy:=-(-zdy) Dy,
T My y = 7p(mpx U py),

the algebra ([p,1],Np, U, 7p) is a A-lattice with an antitone involution.
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Proof. First we show that (A4,U) is a A-semilattice. Indeed, putting y = 2 =0
in (WMV2) we obtain ~z@®x = 1, thus 2Uz = ~(-z®z)dr = ~1&z = 0dzr =
due to (WMV4). Clearly (WMV3) just means that z Uy = y Ux. The axiom
(WMV2) can be rewritten to -z @ ((x Uy) U z) = 1. Thus

zU((zUy)Uz)=-(-2zd ((zUy)Uz2)) @ (rUy)Uz)
=-1®((zUy)Uz) =0 ((zUy)Uz) = (zUy) Uz

Further, the axiom (WMYV5) is equivalent to y < —x @ y, hence for each p € A,
U is a binary operation on [p, 1].

To show that ([p,1],N,) is a A-semilattice, we compute
xNpx="p(prU—pr) =", pr="(-cdp) Gp=acUp==z

for each € [p,1]. The commutativity of N, is easily seen from its definition.

Let us prove the identity N, ((xNp,y)Np2) = (xNpy)Npz for all z,y, z € [p, 1].
To simplify expressions, denote by P = (z N, y) Ny 2z and x e p = =2 & p. Then
we have z Uy = (zey)ey = (yex)ex and

P=((((zep)U(yep))ep)ep)U(zep))ep = ((((zep)U(yep))Up)U(zep))ep.
According to (WMV5), zep,yep > p, hence ((zep)U(yep))Up = (zep)U(yep)
and P= (((zep)U(yep))U(zep))ep. This yields

Pep=(((zep)U(yep))U(zep))Up=((xep)U(yep))U(zep)=zep
by (WMV2), hence also
zN,P=((zrep)U(Pep))ep=(Pep)ep=PUp=P.
Finally, we show the validity of absorption laws: we have
zNp (zUy)=((zep)U((zUy)ep))ep=(rep)ep=xUp=ux,
since zep > (x Uy) e p by (WMV6). Applying (WMV6) again we obtain
rNyy=((rep)U(yep))ep<(zep)ep=uz,
which gives
2U(@0yy) = (zep) U(yep) ep)sn)ea—les—z,
and we are done.
Now we show that ([p, 1], ®p, 7, p) is a WMV-algebra.

(WMV1) We have -,z = (zep)ep=aUp=x.
(WMV?2) Given z,y € [p, 1], we compute

T Bpy = ((rep)epley=(zUp)ey=zey=-zdy.
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Hence, the validity of (WMV?2) for [p, 1] is a conclusion of (WMV?2) for «7.
(WMV3) Again, take z,y € [p,1]. Then

(T ®py) Bpy = (((rep)ep)ey)ep)ep)ey
=(((zey)op)ep)ey = ((zey)Up)ey.
Clearly, due to (WMV6), p <y < z ey, hence
“p(TpT Bpy) Bpy =z Uy =yUz = —p(py &p z) Sp 7.

(WMV4) For x € [p,1] we derive s ®py = (zep)ep=aUp=uz, pByz =
(pep)ex=1ex=uz.

(WMVE) If 2,y € [p, 1], then by (WMV2), =py@p (mpz@py) = —py@p(zey) =
(yop)ep)e(zey)=(yUp)e(zey)=ye(zey) =1

(WMV6) Let p < ¢ < 2 <y. Then we conclude —,y®,p = ~y®p, “px®H,p =
-z @ p. Hence -y & p < -~ & p by (WMV6); moreover, denoting <,, the order
on [p, 1] given by z <, y iff ~px @, y = 1, we have -,z &, y = ~x Sy, thus < is
the same as <, and we are done. g

3. )-semillatices with section antitone involutions

By a A-semilattice with section antitone involutions we mean a A-semilattice
(S,U) with the top element 1, where every section [p, 1] has an antitone involution
P: gz zP. If, moreover, (S,U) has a least element 0, we speak about a bounded
A-semilattice with section antitone involutions.

Thus a A-semilattice with section antitone involutions is a structure of type
(87 U, (a)a657 1)'

In order to overcome the difficulties with many partial unary operations P,
one can define a total binary operation e on S by

(4) 2oy = (U,
Clearly z o y is well defined since z Uy € [y, 1].

The following easy lemma shows that A-semilattices with section antitone
involutions can be axiomatized by identities:

LEMMA 1. A A-semilattice (S,U) with the top element 1 is a A-semilattice with
section antitone involutions iff there is a binary operation e on S having the
properties:
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(i) (zUp)Uy)ep)e((xUp)ep) =1,
(i) zUy = (rey) ey,
(iii) ((zoey)ey)oy=1mzeoy.

Proof. Let (S,U) be a A\-semilattice with section antitone involutions with the
induced order < and let e be defined by (4). Observe that x <y iff x e y = 1.

Now given x,y,p € S, clearly o = (xUp)Uy > xUp > p. Since the involution
P on [p, 1] is antitone, we have a? < (x U p)?, thus o e (x Up)? = 1, which is
just (i).

To prove (ii), we compute (zey)ey = ((xUy)YUy)? = (zUy)¥¥ = zUy. Finally,
applying (ii) we get ((zey)ey)ey = (zUy)ey = ((zUy)Uy)?¥ = (zUy)¥ = zey.

Conversely, assume that e satisfies the conditions (i)—(iii). For z € [p,1],
define 2P := x e p. By (ii) and (iii), (xep) Up = ((rep) e p) ep = x e p, thus
2P = xz ep > pand so zP € [p,1]. Further, 2P? = (rep)ep =z Up = x
by (ii), hence x — zP is an involution on [p,1]. To show that z — zP is
antitone, assume p < z < y. Then (xUp)Uy = zUy =y, zUp = =z,
which due to (i) gives y? < zP as desired. Moreover, in view of (ii) and (iii)
zey=((rey)ey)ey=(zUy)ey=(xUy)". O

Lemma 1 shows that A-semilattices with section antitone involutions can be
considered as algebras (S,U, 1,e) of type (2,0,2), where (S,U,1) is a A-semi-
lattice with a top element 1 satisfying the identities (i)—(iii).

By a A-lattice with section antitone involutions we mean a structure
(A,U,N, 1,e), where (4,U,N, 1) is A-lattice with a top element 1 and (A4,U, 1, e)
is a A-semilattice with section antitone involutions.

We show that A-lattices with section antitone involutions fulfill from a con-
gruence point of view as much as we can hope:

THEOREM 2. The variety of all A-lattices with sectional antitone involutions is
regular and arithmetical.

Proof. Let ¥ be the variety of A-lattices with section antitone involutions.
¥ is regular: Let
t1(z,y,2) = ((xey)N(yex)) Nz,
ta(z,y,2) = ((zrey)ez)U((yex)ez).
We show that t1(z,y, 2) = ta(z,y,2) =z iff z = y.

Obviously, t1(z, x, z) = ta(z, x, 2z) = z. Conversely, assume that ¢1(z,y,2) =
to(x,y,z) = z. Then z < xey,yex and z > (rey) ez (yex)ez Butby
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Lemma 1(iii) we have (zey)ez, (yex)ez > z so that (zey)ez= 2= (yex)ez,
whence oy = (zey)Uz = ((rey)ez)ez=z0z=1 s0x <y. Similarly
y < x, and hence z = y.

¥ is arithmetical: Let

m(z,y,z) = ((zey)ez)N((zey)ex))N(zUz2).
Prove that m(z,y,y) = m(z,y,z) = m(y,y, ) = . We have

m(z,y,y) = ((zey)ey)N((yey)ex))N(xVy) = ((xUy)Na)N(zUy) =z,
m(z,y,z) = (((zey)ezx)N((rey)ex))N(zUz)=((zey)ex)Nz ==z

since (r e y) @ x > x by Lemma 1(ii) and (iii), and m(y,y,z) = (((yey) e x) N
(zoy)ey))N(yUz)=(zN(zUy))N(yUz) =z O

We shall prove that there is a 1-1 correspondence between WMYV-algebras
and bounded A-semilattices with section antitone involutions:

THEOREM 3.
(a) Let (A, ®,,0) be a WMV-algebra. Define
rUy:==(-2&y) &y and
rTey:=-xrDy.
Then ®(A) = (A,U,,0,1) is a bounded \-semilattice with section antitone
tnvolutions.

(b) Let (S,U,e,0,1) be a bounded A-semilattice with section antitone involu-
tions. If we define
r@y:=(re0)ey,

—z:=xe0,

then ¥(S) = (S,®,-,0) is a WMV-algebra.
(c) Moreover, we have ¥(®(A)) = A and &(V(S)) = S.
Proof.
(a) We already know from Theorem 1 that (A,U) is a bounded A-semilattice.

We show that the conditions (i)—(iii) of Lemma 1 are satisfied. It is immediately
seen from the definition of induced order < on A that

5) z<y <= 2Py=1 <= zey=1.
Thus given z,y,p € A, we have p <z Up < (z Up) Uy, which due to (WMV6)
yields
(zUp)Uy)ep=—-((zUp)Uy)&p < ~(zUp)@&p=(zUp)ep.
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This inequality is with respect to (5) just (i). The identity (ii) is just the
transcription of the axiom (WMV3). Finally, to prove (iii) we compute

(zoey)oy)oy=(=(zdy)dy)dy=(rdyUy=—28y==10y,
since y < —x @y by (WMV5).

(b) Assume conversely that (S,U, .0, 1) is a bounded A-semilattice with sec-
tion antitone involutions.

Observe that by (ii), -z @y = ((re0)e0)ey=(zU0) ey =zey.
(WMV1) -~z = (xe0)e0=2U0 ==z by (ii),

(WMV2) =2 @ (~(-(-(-zdy) @y d2)dz)=ce(((zey)ey)ez)ez) =
zeo((xUy)Uz)=1since z < (xUy) U z.
(WMV3) ~(rz@y)®y=(zey)ey=aUy=yUz=—(-y®z)dz by (i),
(WMV4) 230=(x00)e0=2U0=2,002r=(0ezx)exr=1ex=1" =z as
for each x € A the involution * on [z, 1] exchanges the elements z < 1.
(WMV5) -z @y=zey >y, hence 7y ® (-zdy) = 1.
(WMVG6) Rewriting (i) in terms of @ and —, we get

~((zUp)Uy) &p < ~(zUy) ®p,
which is just (WMV6).

Now, let (A,®,—,0) be a WMV-algebra and denote ®(A) = (A,U,e,0,1),
U(P(A) =(A4,8,-",0). Wehave z &'y = (z00)oy=—(-2®0)Py=zdy,
“rx=x00=-2®0= -z Hence ¥(P(A4)) = A.

Conversely, let (S,U, e,0,1) be a bounded A-semilattice with section antitone
involutions. Denote ¥(S) = (S, ®,—,0) and ®(V(S)) = (S,U',#’,0,1"). Clearly
U y=-(2dy) dy=(rey)ey=aUy, zey=-xdy=xey and
"=-0=0e0=1, thus ®(¥(5)) = S. O

COROLLARY. The variety of all WMV-algebras is reqular and arithmetical.
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