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ABSTRACT. In a recent paper [CHAJDA, I.—KÜHR, J.: A non-associative
generalization of MV-algebras, Math. Slovaca 57, (2007), 301–312], authors
introduced and studied a non-associative generalization of MV-algebras called
NMV-algebras. In contrast to MV-algebras, sections (i.e. principal filters) in
NMV-algebras which are proper (i.e. are not MV-algebras), do not admit a

structure of an NMV-algebra with respect to the operations defined in a natu-
ral way. The aim of the paper is to present a new class of algebras generalizing
MV-algebras but sharing the above property.
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1. Introduction

Recall that MV-algebras were introduced in 50’ties by C . C . C h a n g as an
algebraic semantics of the �Lukasiewicz many valued propositional logic (see [6],
[7]). More precisely, an MV-algebra is an algebra (A,⊕,¬, 0) of type (2, 1, 0)
satisfying the identities:
(MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
(MV2) x ⊕ y = y ⊕ x
(MV3) x ⊕ 0 = x
(MV4) ¬¬x = x
(MV5) x ⊕ 1 = 1 (where 1 := ¬0)
(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A typical example of an MV-algebra can be obtained as follows: consider
any abelian lattice ordered group (G, +,−, 0,∧,∨) and take 0 < u ∈ G. Then
the interval [0, u] = {x ∈ G : 0 ≤ x ≤ u} with the operations defined by

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 03G10, 06D35.
Keywords: MV-algebra, λ-lattice, (section) involution.
The financial support by the grant of Czech Government MSM 6198959214 is gratefully
acknowledged.

Unauthenticated
Download Date | 2/3/17 9:22 PM
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x ⊕ y := (x + y) ∧ u and ¬x := u − x becomes an MV-algebra. Denoting such
an MV-algebra as Γ(G, u), D . M u n d i c i [15] (see also [8]) proved that for
every MV-algebra A there exists an abelian l-group G and 0 < u ∈ G with
A ∼= Γ(G, u).

Given an MV-algebra A , the relation ≤ defined by

(1) x ≤ y ⇐⇒ ¬x ⊕ y = 1,

is known to be a lattice order on A with x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y =
¬(¬x ∨ ¬y), the top or the bottom element of which is 1 or 0, respectively.

Moreover, for any MV-algebra A and p ∈ A, one can define on the inter-
val [p, 1] (usually called section) a structure of an MV-algebra (called section
MV-algebra on [p, 1]) in a natural way as follows:

(2) x ⊕p y = ¬(¬x ⊕ p) ⊕ y, ¬px = ¬x ⊕ p.

In the recent years a non-commutative generalization of MV-algebras was
introduced and studied by G . G e o r g e s c u and A . I o r g u l e s c u [11] as
pseudo MV-algebras and independently by J . R a c h ů n e k under the name
GMV-algebras ([16]).

In principle, these are algebras with a binary operation ⊕ and two unary
operations ∼ and ¬ (negations) coinciding whenever ⊕ is commutative. More
precisely, given any (not necessarily commutative) l-group G and 0 < u ∈ G,
then upon defining x⊕y := (x+y)∧u, ¬x := u−x, ∼ x = −x+u, the resulting
algebra Γ(G, u) =

(
[0, u],⊕,¬,∼, 0

)
becomes a GMV-algebra.

Similarly as for a commutative case, A . D v u r e č e n s k i j [9] proved that all
GMV-algebras are of the form Γ(G, u) for any l-group G.

Another important approach to generalize MV-algebras by omitting asso-
ciativity (MV1) but keeping commutativity (MV2) was done by I . C h a j d a
and J . K ü h r [3]. More precisely, they considered algebras (A,⊕,¬, 0) of type
(2, 1, 0) satisfying the axioms (MV2)–(MV6), where the axiom (MV1) was sub-
stituted by two more axioms
(WA) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1
(here so-called weak associativity)
and

(H) ¬x ⊕ (x ⊕ y) = 1.

These algebras are called NMV-algebras (non-associative MV-algebras) ([3]).
Clearly, every MV-algebra fulfils the axioms (WA) and (H), but the converse is
not true.

To clarify the role of the axiom (WA), its validity enables to prove that
the relation ≤ defined by (1) remains transitive (and hence being the order
relation). From a logical point of view, such a property is quite natural since in
all reasonable logics the set of truth values should be partially ordered.
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We have seen that the sections in MV-algebras form MV-algebras as given
by (2). However, this property is not true for NMV-algebras: I . C h a j d a
recently proved that given an NMV-algebra A , the sections [p, 1] have a structure
of an NMV-algebra as defined by (2) iff ⊕ is associative. In other words, an
NMV-algebra shares the mentioned property iff it is an MV-algebra.

The aim of this paper is to find a new class of generalized MV-algebras ad-
mitting the same structure on sections.

2. Weak MV-algebras

���������� 1� An algebra (A,⊕,¬, 0) is called a weak MV-algebra of type
(2, 1, 0) or WMV-algebra briefly if it satisfies the axioms (1 := ¬0):
(WMV1) ¬¬x = x
(WMV2) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1
(WMV3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.
(WMV4) x ⊕ 0 = 0 ⊕ x = x
(WMV5) ¬y ⊕ (¬x ⊕ y) = 1
(WMV6) p ≤ x ≤ y =⇒ ¬y ⊕ p ≤ ¬x ⊕ p, where ≤ is defined by (1).

Note that applying (WMV4) and (WMV5), every WMV-algebra satisfies the
identity

x ⊕ 1 = 1 ⊕ x = 1.

To show that the relation defined by (1) is a partial order on A for any
WMV-algebra A , we use the same arguments as in the case of NMV-algebras:
putting x = 0 in (WMV5), with respect to (WMV4), we obtain the identity
¬y ⊕ y= 1, so ≤ is reflexive. The antisymmetry of ≤ is guaranteed just by
(WMV1), (WMV4) and (WMV3). Finally, if x ≤ y and y ≤ z then ¬x ⊕ y =
¬y⊕z = 1, hence (WMV2) together with (WMV4) entail ¬x⊕z = 1. Altogether,
≤ is a partial order on A.

In the sequel we will discuss a structure of sections in WMV-algebras. To
this aim, we need the following terminology.

Given a poset (P,≤), we denote L(x, y) = {a ∈ P : a ≤ x, a ≤ y} and
U(x, y) = {a ∈ P : a ≥ x, a ≥ y} for any x, y ∈ P . A poset (P,≤) is called
upwards (downwards) directed if U(x, y) 
= ∅ (L(x, y) 
= ∅) holds for all x, y ∈ P .
Directed poset is both upwards and downwards directed.

In his unpublished thesis [17], V . S n á š e l introduced the concept of a
λ-semilattice as a natural generalization of semilattices:
an algebra (L,∪) of type (2) is called a λ-semilattice if it satisfies the identities
(S1) x ∪ x = x (idempotency)
(S2) x ∪ y = y ∪ x (commutativity)
(S3) x ∪ ((x ∪ y) ∪ z) = (x ∪ y) ∪ z (weak associativity).
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Remark that λ-semilattices were studied by J . J e ž e k and R. Quackenbush
under the name directoids, see [12].

Similarly as for lattices, by a λ-lattice ([18]) we mean a structure (L,∪,∩),
where (L,∪) and (L,∩) are two λ-semilattices connected by absorption laws

(Ab) x ∩ (x ∪ y) = x, x ∪ (x ∩ y) = x.

It is quite easy to show that given a λ-semilattice (L,∪), the relation ≤ defined
by

(3) x ≤ y ⇐⇒ x ∪ y = y

is partial order on L, where x ∪ y ∈ U(x, y) for all x, y ∈ L.
An order relation defined by (3) will be referred as an induced order. Thus

(L,≤) is an upwards directed poset.
Remark that given a λ-lattice L = (L,∪,∩), the induced order ≤ defined by

(3) coincides with that given by x ≤ y ⇐⇒ x ∩ y = x. Hence we can refer to
≤ as the induced order on a λ-lattice L .

Given a λ-semilattice L = (L,∪) with the induced ordering ≤, a mapping
f : L → L is called an antitone involution on L if

(i) f(f(x)) = x

(ii) x ≤ y =⇒ f(x) ≥ f(y).

A structure (L,∪, f) is then said to be a λ-semilattice with an antitone involu-
tion f .

By a λ-lattice with an antitone involution f we mean a structure (L,∪,∩, f),
where (L,∪, f) is a λ-semilattice with an antitone involution f .

The next statement shows that each WMV-algebra can be viewed as a λ-semi-
lattice of WMV-algebras:

�	��
�� 1� Let (A,⊕,¬, 0) be a WMV-algebra, p ∈ A, x, y ∈ [p, 1]. Then
upon defining

x ⊕p y := ¬(¬x ⊕ p) ⊕ y,

¬px := ¬x ⊕ p,

the structure ([p, 1],⊕p,¬p, p) is a WMV-algebra. Moreover, putting

x ∪ y := ¬(¬x ⊕ y) ⊕ y,

x ∩p y := ¬p(¬px ∪ ¬py),

the algebra ([p, 1],∩p,∪,¬p) is a λ-lattice with an antitone involution.
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P r o o f. First we show that (A,∪) is a λ-semilattice. Indeed, putting y = z = 0
in (WMV2) we obtain ¬x⊕x = 1, thus x∪x = ¬(¬x⊕x)⊕x = ¬1⊕x = 0⊕x = x

due to (WMV4). Clearly (WMV3) just means that x ∪ y = y ∪ x. The axiom
(WMV2) can be rewritten to ¬x ⊕ ((x ∪ y) ∪ z) = 1. Thus

x ∪ ((x ∪ y) ∪ z) = ¬(¬x ⊕ ((x ∪ y) ∪ z)) ⊕ ((x ∪ y) ∪ z)

= ¬1 ⊕ ((x ∪ y) ∪ z) = 0 ⊕ ((x ∪ y) ∪ z) = (x ∪ y) ∪ z.

Further, the axiom (WMV5) is equivalent to y ≤ ¬x ⊕ y, hence for each p ∈ A,
∪ is a binary operation on [p, 1].

To show that ([p, 1],∩p) is a λ-semilattice, we compute

x ∩p x = ¬p(¬px ∪ ¬px) = ¬p¬px = ¬(¬x ⊕ p) ⊕ p = x ∪ p = x

for each x ∈ [p, 1]. The commutativity of ∩p is easily seen from its definition.
Let us prove the identity x∩p((x∩py)∩pz) = (x∩py)∩pz for all x, y, z ∈ [p, 1].

To simplify expressions, denote by P = (x ∩p y) ∩p z and x • p = ¬x ⊕ p. Then
we have x ∪ y = (x • y) • y = (y • x) • x and

P = (((((x•p)∪ (y •p))•p)•p)∪ (z•p))•p = ((((x•p)∪ (y •p))∪p)∪ (z•p))•p.

According to (WMV5), x•p, y•p ≥ p, hence ((x•p)∪(y•p))∪p = (x•p)∪(y•p)
and P = (((x • p) ∪ (y • p)) ∪ (z • p)) • p. This yields

P • p = (((x • p) ∪ (y • p)) ∪ (z • p)) ∪ p = ((x • p) ∪ (y • p)) ∪ (z • p) ≥ x • p

by (WMV2), hence also

x ∩p P = ((x • p) ∪ (P • p)) • p = (P • p) • p = P ∪ p = P.

Finally, we show the validity of absorption laws: we have

x ∩p (x ∪ y) = ((x • p) ∪ ((x ∪ y) • p)) • p = (x • p) • p = x ∪ p = x,

since x • p ≥ (x ∪ y) • p by (WMV6). Applying (WMV6) again we obtain

x ∩p y = ((x • p) ∪ (y • p)) • p ≤ (x • p) • p = x,

which gives

x ∪ (x ∩p y) = ((((x • p) ∪ (y • p)) • p) • x) • x = 1 • x = x,

and we are done.
Now we show that ([p, 1],⊕p,¬p, p) is a WMV-algebra.
(WMV1) We have ¬p¬px = (x • p) • p = x ∪ p = x.
(WMV2) Given x, y ∈ [p, 1], we compute

¬px ⊕p y = ((x • p) • p) • y = (x ∪ p) • y = x • y = ¬x ⊕ y.
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Hence, the validity of (WMV2) for [p, 1] is a conclusion of (WMV2) for A .
(WMV3) Again, take x, y ∈ [p, 1]. Then

¬p(¬px ⊕p y) ⊕p y = (((((x • p) • p) • y) • p) • p) • y

= (((x • y) • p) • p) • y = ((x • y) ∪ p) • y.

Clearly, due to (WMV6), p ≤ y ≤ x • y, hence

¬p(¬px ⊕p y) ⊕p y = x ∪ y = y ∪ x = ¬p(¬py ⊕p x) ⊕p x.

(WMV4) For x ∈ [p, 1] we derive x ⊕p y = (x • p) • p = x ∪ p = x, p ⊕p x =
(p • p) • x = 1 • x = x.

(WMV5) If x, y ∈ [p, 1], then by (WMV2), ¬py⊕p(¬px⊕py) = ¬py⊕p(x•y) =
((y • p) • p) • (x • y) = (y ∪ p) • (x • y) = y • (x • y) = 1.

(WMV6) Let p ≤ q ≤ x ≤ y. Then we conclude ¬py⊕pp = ¬y⊕p, ¬px⊕pp =
¬x ⊕ p. Hence ¬y ⊕ p ≤ ¬x ⊕ p by (WMV6); moreover, denoting ≤p the order
on [p, 1] given by x ≤p y iff ¬px⊕p y = 1, we have ¬px⊕p y = ¬x⊕ y, thus ≤ is
the same as ≤p and we are done. �

3. λ-semillatices with section antitone involutions

By a λ-semilattice with section antitone involutions we mean a λ-semilattice
(S,∪) with the top element 1, where every section [p, 1] has an antitone involution
p : x �→ xp. If, moreover, (S,∪) has a least element 0, we speak about a bounded
λ-semilattice with section antitone involutions.

Thus a λ-semilattice with section antitone involutions is a structure of type
(S,∪, (a)a∈S, 1).

In order to overcome the difficulties with many partial unary operations p,
one can define a total binary operation • on S by

(4) x • y := (x ∪ y)y.

Clearly x • y is well defined since x ∪ y ∈ [y, 1].
The following easy lemma shows that λ-semilattices with section antitone

involutions can be axiomatized by identities:

����
 1� A λ-semilattice (S,∪) with the top element 1 is a λ-semilattice with
section antitone involutions iff there is a binary operation • on S having the
properties:
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(i) (((x ∪ p) ∪ y) • p) • ((x ∪ p) • p) = 1,

(ii) x ∪ y = (x • y) • y,

(iii) ((x • y) • y) • y = x • y.

P r o o f. Let (S,∪) be a λ-semilattice with section antitone involutions with the
induced order ≤ and let • be defined by (4). Observe that x ≤ y iff x • y = 1.

Now given x, y, p ∈ S, clearly α = (x∪p)∪y ≥ x∪p ≥ p. Since the involution
p on [p, 1] is antitone, we have αp ≤ (x ∪ p)p, thus αp • (x ∪ p)p = 1, which is
just (i).

To prove (ii), we compute (x•y)•y = ((x∪y)y∪y)y = (x∪y)yy = x∪y. Finally,
applying (ii) we get ((x•y)•y)•y = (x∪y)•y = ((x∪y)∪y)y = (x∪y)y = x•y.

Conversely, assume that • satisfies the conditions (i)–(iii). For x ∈ [p, 1],
define xp := x • p. By (ii) and (iii), (x • p) ∪ p = ((x • p) • p) • p = x • p, thus
xp = x • p ≥ p and so xp ∈ [p, 1]. Further, xpp = (x • p) • p = x ∪ p = x

by (ii), hence x �→ xp is an involution on [p, 1]. To show that x �→ xp is
antitone, assume p ≤ x ≤ y. Then (x ∪ p) ∪ y = x ∪ y = y, x ∪ p = x,
which due to (i) gives yp ≤ xp as desired. Moreover, in view of (ii) and (iii)
x • y = ((x • y) • y) • y = (x ∪ y) • y = (x ∪ y)y. �

Lemma 1 shows that λ-semilattices with section antitone involutions can be
considered as algebras (S,∪, 1, •) of type (2, 0, 2), where (S,∪, 1) is a λ-semi-
lattice with a top element 1 satisfying the identities (i)–(iii).

By a λ-lattice with section antitone involutions we mean a structure
(A,∪,∩, 1, •), where (A,∪,∩, 1) is λ-lattice with a top element 1 and (A,∪, 1, •)
is a λ-semilattice with section antitone involutions.

We show that λ-lattices with section antitone involutions fulfill from a con-
gruence point of view as much as we can hope:

�	��
�� 2� The variety of all λ-lattices with sectional antitone involutions is
regular and arithmetical.

P r o o f. Let V be the variety of λ-lattices with section antitone involutions.
V is regular: Let

t1(x, y, z) = ((x • y) ∩ (y • x)) ∩ z,

t2(x, y, z) = ((x • y) • z) ∪ ((y • x) • z).

We show that t1(x, y, z) = t2(x, y, z) = z iff x = y.
Obviously, t1(x, x, z) = t2(x, x, z) = z. Conversely, assume that t1(x, y, z) =

t2(x, y, z) = z. Then z ≤ x • y, y • x and z ≥ (x • y) • z, (y • x) • z. But by
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Lemma 1(iii) we have (x•y)•z, (y •x)•z ≥ z, so that (x•y)•z = z = (y •x)•z,
whence x • y = (x • y) ∪ z = ((x • y) • z) • z = z • z = 1, so x ≤ y. Similarly
y ≤ x, and hence x = y.

V is arithmetical: Let

m(x, y, z) = (((x • y) • z) ∩ ((z • y) • x)) ∩ (x ∪ z).

Prove that m(x, y, y) = m(x, y, x) = m(y, y, x) = x. We have

m(x, y, y) = (((x • y) • y) ∩ ((y • y) • x)) ∩ (x ∪ y) = ((x ∪ y) ∩ x) ∩ (x ∪ y) = x,

m(x, y, x) = (((x • y) • x) ∩ ((x • y) • x)) ∩ (x ∪ x) = ((x • y) • x) ∩ x = x

since (x • y) • x ≥ x by Lemma 1(ii) and (iii), and m(y, y, x) = (((y • y) • x) ∩
((x • y) • y)) ∩ (y ∪ x) = (x ∩ (x ∪ y)) ∩ (y ∪ x) = x. �

We shall prove that there is a 1–1 correspondence between WMV-algebras
and bounded λ-semilattices with section antitone involutions:

�	��
�� 3�

(a) Let (A,⊕,¬, 0) be a WMV-algebra. Define
x ∪ y := ¬(¬x ⊕ y) ⊕ y and
x • y := ¬x ⊕ y.

Then Φ(A) = (A,∪, •, 0, 1) is a bounded λ-semilattice with section antitone
involutions.

(b) Let (S,∪, •, 0, 1) be a bounded λ-semilattice with section antitone involu-
tions. If we define

x ⊕ y := (x • 0) • y,

¬x := x • 0,

then Ψ(S) = (S,⊕,¬, 0) is a WMV-algebra.

(c) Moreover, we have Ψ(Φ(A)) = A and Φ(Ψ(S)) = S.

P r o o f.
(a) We already know from Theorem 1 that (A,∪) is a bounded λ-semilattice.

We show that the conditions (i)–(iii) of Lemma 1 are satisfied. It is immediately
seen from the definition of induced order ≤ on A that

(5) x ≤ y ⇐⇒ ¬x ⊕ y = 1 ⇐⇒ x • y = 1.

Thus given x, y, p ∈ A, we have p ≤ x ∪ p ≤ (x ∪ p) ∪ y, which due to (WMV6)
yields

((x ∪ p) ∪ y) • p = ¬((x ∪ p) ∪ y) ⊕ p ≤ ¬(x ∪ p) ⊕ p = (x ∪ p) • p.
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This inequality is with respect to (5) just (i). The identity (ii) is just the
transcription of the axiom (WMV3). Finally, to prove (iii) we compute

((x • y) • y) • y = ¬(¬(¬x ⊕ y) ⊕ y) ⊕ y = (¬x ⊕ y) ∪ y = ¬x ⊕ y = x • y,

since y ≤ ¬x ⊕ y by (WMV5).
(b) Assume conversely that (S,∪, •, 0, 1) is a bounded λ-semilattice with sec-

tion antitone involutions.
Observe that by (ii), ¬x ⊕ y = ((x • 0) • 0) • y = (x ∪ 0) • y = x • y.

(WMV1) ¬¬x = (x • 0) • 0 = x ∪ 0 = x by (ii),
(WMV2) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = x • ((((x • y) • y) • z) • z) =
x • ((x ∪ y) ∪ z) = 1 since x ≤ (x ∪ y) ∪ z.
(WMV3) ¬(¬x ⊕ y) ⊕ y = (x • y) • y = x ∪ y = y ∪ x = ¬(¬y ⊕ x) ⊕ x by (ii),
(WMV4) x⊕ 0 = (x • 0) • 0 = x∪ 0 = x, 0 ⊕ x = (0 • x) • x = 1 • x = 1x = x as
for each x ∈ A the involution x on [x, 1] exchanges the elements x ↔ 1.
(WMV5) ¬x ⊕ y = x • y ≥ y, hence ¬y ⊕ (¬x ⊕ y) = 1.
(WMV6) Rewriting (i) in terms of ⊕ and ¬, we get

¬((x ∪ p) ∪ y) ⊕ p ≤ ¬(x ∪ y) ⊕ p,

which is just (WMV6).
Now, let (A,⊕,¬, 0) be a WMV-algebra and denote Φ(A) = (A,∪, •, 0, 1),

Ψ(Φ(A)) = (A,⊕′,¬′, 0). We have x⊕′ y = (x • 0) • y = ¬(¬x⊕ 0) ⊕ y = x⊕ y,
¬′x = x • 0 = ¬x ⊕ 0 = ¬x. Hence Ψ(Φ(A)) = A.

Conversely, let (S,∪, •, 0, 1) be a bounded λ-semilattice with section antitone
involutions. Denote Ψ(S) = (S,⊕,¬, 0) and Φ(Ψ(S)) = (S,∪′, •′, 0, 1′). Clearly
x ∪′ y = ¬(¬x ⊕ y) ⊕ y = (x • y) • y = x ∪ y, x •′ y = ¬x ⊕ y = x • y and
1′ = ¬0 = 0 • 0 = 1, thus Φ(Ψ(S)) = S. �

��
���

�� The variety of all WMV-algebras is regular and arithmetical.
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Ital. 8 (1973), 68–78.

[15] MUNDICI, D.: Interpretation of AF C∗-algebras in �Lukasiewicz sentential calculus,

J. Funct. Anal 65, (1986), 15–63.
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