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OSCILLATION OF FOURTH ORDER NONLINEAR
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ABSTRACT. Oscillatory and asymptotic behaviour of solutions of a class of
nonlinear fourth order neutral difference equations of the form

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n− k)) = 0

and
(NH) ∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n− k)) = f(n)

are studied under the assumption
∞∑

n=0

n
r(n)

= ∞, for various ranges of p(n).

Sufficient conditions are obtained for the existence of bounded positive solutions
of (NH).
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1. Introduction

In [3], K u s a n o and N a i t o have studied oscillatory behaviour of solutions
of a class of fourth order nonlinear differential equations of the form

(r(t)y′′)′′ + yF (y2, t) = 0,

where r and F are continuous and positive on [0,∞) and [0,∞)× [0,∞) respec-
tively under the assumption that

(H1)
∞∫
0

t
r(t) dt = ∞.

The object of this paper is to study the oscillatory and asymptotic behaviour of
solutions of a class of fourth order nonlinear neutral difference equations of the
form

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n − k)) = 0, (1)
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where ∆ is the forward difference operator defined by ∆y(n) = y(n + 1)− y(n),
p, q are real valued functions defined on N(n0) = {n0, n0 + 1, . . . }, n0 ≥ 0, such
that q(n) ≥ 0, function G ∈ C(R, R) is non-decreasing and uG(u) > 0 for u �= 0
and m > 0, k ≥ 0 are integers, under the discrete analogue of the assumption
(H1) as

(A1) r(n) is a real valued function such that r(n) > 0 and
∞∑

n=0

n
r(n) = ∞.

The associated forced equation

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n − k)) = f(n), (2)

where f(n) is a real valued function is also studied under the assumption (A1).
Different ranges of p(n) and different type of forcing functions is considered. In
recent papers [4], [5], [8], P a r h i and T r i p a t h y have discussed oscillation and
asymptotic behaviour of solutions of higher order neutral difference equations of
the form

∆m(y(n) + p(n)y(n − m)) + q(n)G(y(n − k)) = 0 (3)

and
∆m(y(n) + p(n)y(n − m)) + q(n)G(y(n − k)) = f(n). (4)

If r(n) ≡ 1, then (A1) is satisfied and Eqs. (1) and (2) reduce to (3) and (4)
respectively for m = 4. However, Eqs. (1) and (2) cannot be termed in general
as the particular cases of (3) and (4) in view of (A1). Therefore it is interesting
to study Eqs. (1) and (2) under (A1). A close observation reveals that the
nature of the function r influences the behaviour of solutions of (1) and (2).
This influence is quite explicit in case of unforced equation (2). Necessary and
sufficient conditions for oscillation of (1)/(2) are obtained in this paper.

T h a n d a p a n i and A r o c k i a s a m y [7], has considered the fourth order
non-linear difference equation of the form

∆2
(
rn∆2 (yn + pnyn−k)

)
+ f

(
n, yσ(n)

)
= 0, n ∈ N(n0), (5)

where f : N(n0) × R → R is a continuous function with uf(n, u) > 0 for all
u �= 0, {rn} and {pn} are positive real sequences, {σn} is an increasing sequence
of integers and k is a non negative integer. They have obtained necessary and
sufficient conditions for (5) when 0 ≤ pn < p < 1 for all n ∈ N(n0). Clearly, if
we consider f

(
n, yσ(n)

)
= q(n)G (y (n − k)), then the work in [7] is a particular

case of the present work as the range of p(n) is concerned. Here an attempt is
made to study oscillatory and asymptotic behaviour of solutions of (1) under
various ranges of p(n). Also forced equation is considered for different ranges
of p(n).

By a solution of Eq. (1)/Eq. (2) on N(n0) we mean, a real valued function
y(n) defined on N(−ρ) = {−ρ,−ρ+1, . . .} which satisfies (1)/(2) for n ≥ n0 ≥ 0,
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OSCILLATION OF FOURTH ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS I

where ρ = max{m, k}. If

y(n) = An, n = −ρ,−ρ + 1, . . . , 0, 1, 2, 3 . . . , (6)

are given, then (1) admits a unique solution satisfying the initial condition (6). A
solution y(n) of (1) is said to be oscillatory if for every integer N > 0, there exists
an n ≥ N such that y(n)y(n + 1) ≤ 0. Otherwise, it is called non oscillatory.

Equation (1) may be regarded discrete analogue of(
r(t) (y(t) + p(t)y(t − τ))′′

)′′
+ q(t)G(y(t − σ)) = 0, t ≥ 0.

Oscillatory and asymptotic behaviour of solutions of this equation and the
associated forced equation is studied in [6].

Here is some preparatory results, which are useful in establishing the results
of the work.

����� 1.1� Let (A1) hold. Let u be a real-valued function on [0,∞) such that
∆2(r(n)∆2u(n)) ≤ 0 for large n. If u(n) > 0 ultimately, then one of the cases
(a) and (b) holds for large n and if u(n) < 0 ultimately, then one of the cases
(b), (c), (d) and (e) holds for large n, where

(a) ∆u(n) > 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) > 0,
(b) ∆u(n) > 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) > 0,
(c) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) > 0,
(d) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) < 0,
(e) ∆u(n) < 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) > 0.

P r o o f. Since ∆2(r(n)∆2u(n)) ≤ 0, then u(n), ∆u(n), ∆2u(n) and
∆(r(n)∆2u(n)) are monotonic and hence there are eight cases. Let u(n) > 0 for
n ≥ n0 > 0. It is enough to show that (c), (d), (e) and the following cases viz;

(f) ∆u(n) < 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) < 0,
(g) ∆u(n) > 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) < 0,
(h) ∆u(n) > 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) < 0

do not hold. It seems that the cases (c) and (d) do not occur due to u(n) < 0
for large n.

In case (e), ∆2u(n) > r(n1)∆2u(n1)/r(n), for n ≥ n1 > n0. Hence

n∆2u(n) > r(n1)∆2u(n1)
(

n

r(n)

)
. (7)

Taking sum to the inequality (7), we have
n−1∑
s=n1

s∆2u(s) > r(n1)∆2u(n1)
n−1∑
s=n1

s

r(s)
.
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Using summation by parts, we obtain

n∆u(n) > n1∆u(n1) +
n−1∑
s=n1

∆u(s + 1) + r(n1)∆2u(n1)
n−1∑
s=n1

s

r(s)

= n1∆u(n1) + u(n + 1) − u(n1 + 1) + r(n1)∆2u(n1)
n−1∑
s=n1

s

r(s)

> n1∆u(n1) − u(n1 + 1) + r(n1)∆2u(n1)
n−1∑
s=n1

s

r(s)

that is, ∆u(n) > 0 for large n due to (A1), a contradiction. As ∆(r(n)∆2u(n))
is monotonic decreasing, then for n ≥ n1 > n0,

∆(r(n)∆2u(n)) ≤ ∆
(
r(n1)∆2u(n1)

)
.

Summing the above inequality from n2 to (n − 1), we obtain

r(n)∆2u(n) ≤ (n − n2)∆
(
r(n1)∆2u(n1)

)
, n ≥ n2 > n1.

Consequently, in each of the cases (f) and (g), ∆2u(n) < 0 for large n, a con-
tradiction. In case (h), ∆2

(
r(n)∆2u(n)

) ≤ 0 implies that ∆
(
r(n)∆2u(n)

) ≤
∆
(
r(n1)∆2u(n1)

)
, that is,

n−1∑
s=n1

∆
(
r(s)∆2u(s)

) ≤ (n − n1)∆
(
r(n1)∆2u(n1)

)
,

that is,

r(n)∆2u(n) ≤ r(n1)∆2u(n1) + (n − n1)∆
(
r(n1)∆2u(n1)

)
< −Ln, n ≥ n2 > n1,

where L > 0 is a constant. Hence
n−1∑
s=n2

∆2u(s) < −L

n−1∑
s=n2

s

r(s)

that is,

∆u(n) < ∆u(n2) − L

n−1∑
s=n2

s

r(s)

for large n, a contradiction. Next, assume that u(n) < 0 for n ≥ n0 > 0. The
case (a) does not occur because in this case u(n) > 0 ultimately. In each of the
cases (f) and (g), ∆2u(n) < 0 for large n, a contradiction. Similar contradiction
can be obtained for the case (h). Thus the lemma is proved. �
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OSCILLATION OF FOURTH ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS I

Remark� If 0 ≤ p(n) < 1, then the cases (a) and (b) hold ultimately. In [1]
(or in [7]), the lemma holds for 0 ≤ p(n) < 1. With different ranges of p(n),
Lemma 1.1 strengthens [1, Lemma].

����� 1.2� Let the conditions of Lemma 1.1 hold. If u(n) > 0 ultimately, then
u(n) > RN (n − 1)∆(r(n)∆2u(n)), where

RN (n) =
n−1∑
t=N

t−1∑
s=N

(s − N)
r(s)

.

The proof of the lemma can be followed from [1].

����� 1.3� ([2, p. 184]) If q(n) ≥ 0 for n ≥ 0 and

lim inf
n→∞

n−1∑
s=n−k

q(s) >
kk+1

(k + 1)k+1
,

then ∆x(n) + q(n)x(n − k) ≤ 0, n ≥ 0, cannot have an eventually positive
solution.

2. Oscillations of homogeneous equations

In this section, sufficient conditions are obtained for the oscillation and asymp-
totic behaviour of all solutions of Eq. (1). We need the following assumptions
for our use in the sequel.

(A2) There exists λ > 0 such that G(u) + G(ν) ≥ λG(u + ν) for u > 0 and
ν > 0.

(A3) G(u)G(ν) = G(uν).
(A1

3) G(u)G(ν) ≥ G(uν).

(A4)
±c∫
0

du
G(u) < ∞ for all c > 0.

(A5)
∞∑

n=N+ρ

G(RN (n − 1))Q(n) = ∞, N ≥ 0,

where Q(n) = min{q(n), q(n − m)} for n ≥ m.
(A6) G(u) = −G(u), u ∈ R.

(A7)
∞∑

n=m
Q(n) = ∞.

(A8) lim inf
|x|→0

G(x)
x ≥ γ > 0.
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(A9) lim inf
n→∞

n−1∑
s=n−k

G(RN(s − k − 1))q(s) > kk+1

G(1−p)(k+1)k+1 .

(A10)
∞∑

n=N+k

G(RN (n − k − 1))q(n) = ∞.

(A11)
G(x1)

xα
1

≥ G(x2)
xα
2

for x1 ≥ x2 > 0 and α ≥ 1,

(A12)
∞∑

n=N+k

Rα
N (n − k − 1))Q(n) = ∞,

(A13)
∞∑

n=0
q(n) = ∞.

������� 2.1� Let 0 ≤ p(n) ≤ p < 1. Suppose that (A1), (A3), (A8) and (A9)
hold. Then every solution of (1) oscillates.

Remark 1� (A9) implies that (A10) holds. Indeed, if
∞∑

s=N+k

G(RN (s − k − 1))q(s)

= α < ∞, then for n > N + 2k

n−1∑
s=n−k

G (RN (s − k − 1)) q(s) =

(
n−1∑

s=N+k

−
n−k∑

s=N+k

)
G (RN (s − k − 1)) q(s)

implies that

lim inf
n→∞

n−1∑
s=n−k

G (RN (s − k − 1)) q(s) ≤ α − α = 0,

a contradiction to (A9).

P r o o f o f t h e T h e o r e m. Suppose that y(n) is a non-oscillatory solution
of (1). Let y(n) > 0 for n ≥ n0 > 0. Setting

z(n) = y(n) + p(n)y(n − m) (8)

we obtain
0 < z(n) ≤ y(n) + py(n − m) (9)

and
∆2
(
r(n)∆2z(n)

)
= −q(n)G(y(n − k)) ≤ 0 (10)

for n ≥ n0 + ρ. Then one of the cases (a) and (b) of Lemma 1.1 holds. In each
case, z(n) is increasing and hence for n ≥ n0 + 2ρ,

(1 − p(n))z(n) < z(n) − p(n)z(n − m)
= y(n) − p(n)p(n − m)y(n − 2m) < y(n)
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that is, (1 − p(n))z(n) ≥ (1 − p)z(n) implies that y(n) > 1 − pz(n). From (10)
we obtain for n ≥ N + k > n0 + 2ρ + k

0 ≥ ∆2(r(n)∆2z(n)) + q(n)G((1 − p)z(n − k))

≥ ∆2(r(n)∆2z(n)) + q(n)G(1 − p)G(z(n− k))

≥ ∆2(r(n)∆2z(n)) + q(n)G(1 − p)G(RN(n − k − 1)∆(r(n − k)∆2z(n − k)))

≥ ∆2(r(n)∆2z(n)) + q(n)G(1 − p)G(RN(n − k − 1)) ·
· G(∆(r(n − k)∆2z(n − k))) (11)

using Lemma 1.2 and (A3). Let lim
n→∞∆(r(n)∆2z(n)) = α. If 0 < α < ∞, then

∆(r(n)∆2z(n)) > β > 0, n ≥ n1 > N + k. From (11) we obtain

G(1 − p)q(n)G (RN (n − k − 1))G(β) ≤ −∆2
(
r(n)∆2z(n)

)
for n ≥ n2 > n1 + k. Hence

∞∑
n=n2

G(RN (n − k − 1)q(n) < ∞,

a contradiction to (A10). Thus α = 0. Then using (A8) we have

G(∆(r(n)∆2z(n))) ≥ γ∆(r(n)∆2z(n))

for n ≥ n3 > n2. Consequently, (11) becomes

0 ≥ ∆2
(
r(n)∆2z(n)

)
+γq(n)G

(
(1 − p)G

(
RN (n − k − 1)∆

(
r(n − k)∆2z(n − k)

)))
,

for n ≥ n3+k. This shows that the inequality ∆u(n)+γG(1−p)G(RN(n−k−1))·
· q(n)u(n − k) ≤ 0 admit a positive solution (∆(r(n)∆2z(n)), a contradiction
due to (A9) and Lemma 1.3. Hence y(n) < 0 for n ≥ n0. Putting x(n) = −y(n)
we obtain x(n) > 0 for n ≥ n0 and

∆2
(
r(n)∆2(x(n) + p(n)x(n − m))

)
+ q(n)G(x(n − k)) = 0.

Proceeding as above we arrive at a contradiction. Hence the theorem is proved.
�

Example 1. Consider

∆2

[
(n/2)∆2

(
y(n) +

1
3

(1 + (−1)n) y(n − 2)
)]

+
32
3

(n + 1)y
1
3 (n − 3) = 0,

n > 0.

Clearly, all the conditions of Theorem 2.1 are satisfied. Hence all solutions of the
equation are oscillatory. In particular, y(n) = (−1)3n = (−1)n is an oscillatory
solution of the equation.
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������� 2.2� Let 0 ≤ p(n) ≤ p < ∞ and m ≤ k. If (A1), (A2), (A3), (A4)
and (A5) hold, then (1) is oscillatory.

P r o o f. Suppose for contrary that y(n) is a non-oscillatory solution of (1) such
that y(n) > 0 for n ≥ n0 > 0. The proof for the case y(n) < 0, n ≥ n0, is
similar. Setting z(n) as in (8), we obtain (9) and (10) for n ≥ n0 + ρ. From
Lemma 1.1, it follows that one of the cases (a) and (b) holds. The use of (A2)
and (A3) yields

0 = ∆2
[
r(n)∆2z(n)

]
+ q(n)G(y(n − k)) + G(p)∆2

[
r(n − m)∆2z(n − m)

]
+ G(p)q(n − m)G(y(n− m − k))

≥∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+ λQ(n)G(y(n − k)

+ py(n − k − m))

≥∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+ λQ(n)G(z(n − k))

for n ≥ n1 > n0 + 2ρ. Hence by Lemma 1.2 we obtain

0 ≥ ∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+λQ(n)G(RN (n − k − 1)∆(r(n − k)∆2z(n − k)))

= ∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+λQ(n)G(RN (n − k − 1))G(∆(r(n − k)∆2z(n − k))),

for n ≥ N + ρ > n1. Consequently,

λQ(n)G(RN(n − k − 1))

≤ −∆2
[
r(n)∆2z(n)

]− G(p)∆2
[
r(n − m)∆2z(n − m)

]
G (∆ (r(n − k)∆2z(n − k)))

≤ − ∆2
[
r(n)∆2z(n)

]
G (∆ (r(n)∆2z(n)))

− G(p)
∆2
[
r(n − m)∆2z(n − m)

]
G (∆ (r(n − m)∆2z(n − m)))

≤
∆w(n)∫

∆w(n+1)

du

G(u)
+ G(p)

∆w(n−m)∫
∆w(n−m+1)

dν

G(ν)
,

where w(n) = r(n)∆2z(n), ∆w(n + 1) ≤ u ≤ ∆w(n) and ∆w(n−m + 1) ≤ ν ≤
∆w(n − m) implies that

λ

t−1∑
n=N+ρ

Q(n)G(RN (n − k − 1))

≤
t−1∑

n=N+ρ

⎛
⎜⎝

∆w(n)∫
∆w(n+1)

du

G(u)
+ G(p)

∆w(n−m)∫
∆w(n−m+1)

dν

G(ν)

⎞
⎟⎠
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=

∆w(N+ρ)∫
∆w(t)

du

G(u)
+ G(p)

∆w(N+ρ−m)∫
∆w(t−m)

dν

G(ν)
.

Since ∆w(n) is decreasing, then

λ
∞∑

n=N+ρ

Q(n)G(RN (n − k − 1)) ≤ lim
t→∞

⎛
⎜⎝

∆w(N+ρ)∫
∆w(t)

du

G(u)
+ G(p)

∆w(N+ρ)∫
∆w(t−m)

dν

G(ν)

⎞
⎟⎠

< ∞,

a contradiction to (A5). Hence the theorem is proved. �

������� 2.3� 0 ≤ p(n) ≤ p < ∞. Assume that (A1), (A2), (A1
3), (A6) and

(A7) hold. Then every solution of (1) oscillates.

P r o o f. Let y(n) be a non-oscillatory solution of (1). Let y(n) > 0 for n ≥
n0 > 0. The proof for the case y(n) < 0, n ≥ n0, can similarly be dealt with.
Setting z(n) as in (8), we obtain (9) and (10) for n ≥ n0 + ρ. From Lemma 1.1,
it follows that one of the cases (a) and (b) holds. Hence z(n) > β > 0 for
n ≥ n1 ≥ n0 + ρ. Proceeding as in the proof of Theorem 2.2 we obtain

0 ≥ ∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+ λQ(n)G(z(n− k))

≥ ∆2
[
r(n)∆2z(n)

]
+ G(p)∆2

[
r(n − m)∆2z(n − m)

]
+ λQ(n)G(β),

for n ≥ n2 > n1 + 2ρ. Hence
∞∑

n=n2

Q(n) < ∞, a contradiction. This completes

the proof of the theorem. �

Remark 2� (A1
3) and (A6) need not imply (A3). Indeed, if

G(u) =
((

α + β|u|λ) |u|µ) sgn u, λ > 0, µ > 0, α ≥ 0, β ≥ 1,

then (A1
3) and (A6) are satisfied but does not (A3).

Remark 3� The prototype of G satisfying (A2), (A1
3) and (A6) is G(u) =((

a + b|u|λ) |u|µ) sgn u, a ≥ 1, b ≥ 1, λ ≥ 0 and µ ≥ 0.

Remark 4� In Theorem 2.3, G could be super linear, linear or sub-linear. How-
ever, (A7) implies (A5) because ∆RN (n) > 0, for n ≥ N1 > N .

������� 2.4� Let 0 ≤ p(n) ≤ p < ∞ and m ≤ k. If (A1), (A2), (A3), (A11)
and (A12) hold, then (1) is oscillatory.

P r o o f. Proceeding as in Theorem 2.2, we obtain

∆2
[
r(n)∆2z(n)

]
+G(p)∆2

[
r(n − m)∆2z(n − m)

]
+λQ(n)G(z(n−k)) ≤ 0 (12)
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for n ≥ n1 > n0 + 2ρ. Since z(n) is increasing, then z(n) > K > 0 for n ≥ n2

> n1. Using (A11) and Lemma 1.2 we obtain

G(z(n− k)) = (G(z(n − k))/zα(n − k)) zα(n − k)
≥ (G(K)/Kα) zα(n − k)

>

(
G(K)
Kα

)
Rα

N (n − k − 1)
[
∆
(
r(n − k)∆2z(n − k)

)]α
and hence the inequality (12) yields

λ

(
G(K)
Kα

)
Rα

N (n − k − 1)Q(n)

<
−∆2

[
r(n)∆2z(n)

]− G(p)∆2
[
r(n − m)∆2z(n − m)

]
[∆ (r(n − k)∆2z(n − k))]

that is,

λ

(
G(K)
Kα

)
Rα

N (n − k − 1)Q(n)

< − ∆2
[
r(n)∆2z(n)

]
[∆r(n)∆2z(n)]α

− G(p)∆2
[
r(n − m)∆2z(n − m)

]
[∆r(n − m)∆2z(n − m)]α

≤ − ∆2w(n)
uα

− G(p)∆2w(n − m)
να

= −
∆w(n+1)∫
∆w(n)

du

uα
− G(p)

∆w(n+1−m)∫
∆w(n−m)

dν

να
,

where w(n) = r(n)∆2z(n). Consequently,

λ(G(K))
Kα

t−1∑
n=n2

Rα
N (n − k − 1)Q(n)

< −
t−1∑

n=n2

⎛
⎜⎝

∆w(n+1)∫
∆w(n)

du

uα
+ G(p)

∆w(n+1−m)∫
∆w(n−m)

dν

να

⎞
⎟⎠

= −
∆w(t)∫

∆w(n2)

du

uα
− G(p)

∆w(t−m)∫
∆w(n2−m)

dν

να
.

Since lim
t→∞

∆w(t) exists, it follows that
∞∑

n=n2

Rα
N (n− k − 1)Q(n) < ∞, a contra-

diction to (A12). Thus the theorem is proved. �
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OSCILLATION OF FOURTH ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS I

Example 2. Every solution of

∆2
[
n∆2 (y(n) + 3(1 + (−1)n)y(n − 3))

]
+ 32(n + 1)y3(n − 4) = 0

oscillates by Theorem 2.4. In particular, y(n) = (−1)n is an oscillatory solution
of the given equation.

������� 2.5� Let −1 < p ≤ p(n) ≤ 0. Suppose that (A1), (A3), (A4) and
(A13) hold. Then every solution of (1) oscillates or tends to zero as n → ∞.

P r o o f. Let y(n) be a non-oscillatory solution of (1). In view of (A3), it is
enough to consider y(n) > 0 for n ≥ n0 > 0. Setting z(n) as in (8) we obtain
(10), for n > n0 + ρ. Hence z(n) > 0 or < 0 for n ≥ n1 > n0 + ρ. Assume
that z(n) > 0 for n ≥ n1. From Lemma 1.1, it follows that one of the cases
(a) and (b) holds. Hence z(n) > RN (n − 1)∆[r(n)∆2z(n)] for n ≥ N > n1 by
Lemma 1.2. Clearly, z(n) ≤ y(n). As ∆[r(n)∆2z(n)] is monotonic decreasing,
then for n ≥ n2 > N + k,

∆2
[
r(n)∆2z(n)

] ≤ −q(n)G(RN(n − k − 1))G
[
∆(r(n)∆2z(n))

]
due to (10). Following to Theorem 2.2 we get

∞∑
n=n2

q(n)G(RN (n − k − 1)) < ∞.

Since RN (n) > 0 and non-decreasing, it shows that
∞∑

n=n2

q(n) < ∞, a contradic-

tion to (A13). Hence z(n) < 0 for n ≥ n1. Consequently, y(n) < −p(n)y(n−m)
< y(n − m) implies that y(n) is bounded and so is z(n). Here one of the cases
(b)–(e) holds by Lemma 1.1. Let the case (b) hold. If lim sup

n→∞
z(n) = α, then

−∞ < α ≤ 0. Assume that α = 0. Then lim sup
n→∞

z(n) = 0 ≥ lim sup
n→∞

(y(n) +

py(n−m) ≥ lim sup
n→∞

y(n)+lim inf
n→∞

(py(n−m)) = lim sup
n→∞

y(n)+p lim sup
n→∞

y(n−m) =

(1 + p) lim sup
n→∞

y(n), that is, lim
n→∞

y(n) = 0. If −∞ < α < 0, then there exists

n∗ > 0 and β < 0 such that z(n) < β < 0 for n ≥ n3 > max{n2, n
∗}. Hence

y(n) > py(n − m) for n ≥ n0 implies that y(n − k) > p−1β > 0, for n ≥ n3 + ρ.
Consequently, (10) yields

q(n)G(p−1β) ≤ −∆2
[
r(n)∆2z(n)

]
that is,

∞∑
n=n3+ρ

q(n) < ∞, a contradiction. In each of the cases (c) and (d),

lim
n→∞ z(n) = −∞, a contradiction to the fact that z(n) is bounded. Let the case

(e) hold. Clearly,

∆2z(n) >

(
r(n1)∆2z(n1)

r(n)

)
for n > n1.
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Thus

n−1∑
s=n1

s∆2z(s) > r(n1)∆2z(n1)
n−1∑
s=n1

s

r(s)
.

Applying summation by parts we get ∆z(n) > 0 for large n due to bounded z(n)
and (A1), a contradiction. Hence the theorem is proved. �

������� 2.6� Let −∞ < p1 ≤ p(n) ≤ p2 < −1. If (A1) and (A13) hold, then
every bounded solution of (1) oscillates or tends to zero as n → ∞.

P r o o f. Suppose for contrary that y(n) is a bounded non-oscillatory solution
of (1) such that y(n) > 0 for n ≥ n0. Setting z(n) as in (8), we obtain (10)
for n ≥ n0 + ρ and hence z(n) > 0 or < 0 for n ≥ n1 > n0 + 2ρ. If z(n) > 0
for n ≥ n1, then one of the cases (a) and (b) of Lemma 1.1 holds and y(n) >
−p(n)y(n − m) > y(n − m). Hence lim inf

n→∞
y(n) > 0. From (10), it follows that

∞∑
n=n2

q(n) < ∞, n2 > n1, a contradiction to (A13). Thus z(n) < 0 for n > n1.

Since z(n) is bounded, none the cases (c), (d) and (e) of Lemma 1.1 occurs.
Considering the case (b) and if −∞ < lim

n→∞ z(n) < 0, then proceeding as in

the proof of Theorem 2.5, the contradiction is obtained. If lim
n→∞

z(n) = 0, then

0 = lim inf
n→∞

z(n) ≤ lim inf
n→∞

(y(n)+p2y(n−m)) ≤ lim sup
n→∞

y(n)+lim inf
n→∞

(p2y(n−m))

= (1 + p2) lim sup
n→∞

y(n), that is, lim sup
n→∞

y(n) = 0. Hence lim
n→∞

y(n) = 0. If

y(n) < 0, for n ≥ n0, then setting x(n) = −y(n) > 0 for n ≥ n0, Eq. (1)
becomes

∆2
[
r(n)∆2(x(n) + p(n)x(n − m))

]
+ q(n)G̃(x(n − k)) = 0,

where G̃(u) = −G(−u). Proceeding as above we obtain lim
n→∞

x(n) = 0 and hence

lim
n→∞ y(n) = 0. This completes the proof of the theorem. �

Example 3. Consider

∆2
[
2−n∆2(y(n) − (2 + 2−n)y(n − 1))

]
+
(

27
1024

en +
441
8192

y3(n − 2)
)

= 0,

n ≥ 0.

From Theorem 2.6, it follows that every solution of the equation oscillates or
tends to zero as n → ∞. In particular, y(n) = 2−(n+1) is such a solution.
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3. Oscillation of forced equations

This section deals with the oscillation of all solutions of (2). In the following,
we obtain sufficient conditions of oscillation of solutions of forced equation (2).
Let

(A14) there exist a real valued function F (n) such that it changes sign and

∆2(r(n)∆2F (n)) = f(n);

(A15) there exist a real valued function F (n) such that F (n) changes sign with

−∞ < lim inf
n→∞ F (n) < 0 < lim sup

n→∞
F (n) < ∞ and ∆2(r(n)∆2F (n)) = f(n);

(A16) there exist a real valued function F (n) such that F (n) does not change
and sign

lim
n→∞ F (n) = 0 and ∆2(r(n)∆2F (n)) = f(n);

(A17) there exist a real valued function F (n) such that

lim
n→∞

F (n) = 0 and ∆2(r(n)∆2F (n)) = f(n);

Remark 5� If lim
n→∞F (n) = α �= 0 in (A16), then we may proceed as follows:

We set F̃ (n)=F (n)−α to obtain ∆2F̃ (n)=∆2F (n) and hence lim
n→∞ F̃ (n)=0.

If F̃ (n) changes sign, then it comes under (A14). If F̃ (n) does not change sign,
then it comes under (A16).

(A18)
∞∑

n=k

Q(n)G(F+(n − k)) = ∞ =
∞∑

n=k

Q(n)G(F−(n − k)), where F+(n)

= max{F (n), 0} and F−(n) = max{−F (n), 0};
(A19)

∞∑
n=k

q(n)G(F+(n − k)) = ∞ =
∞∑

n=k

q(n)G(F−(n + m − k));

(A20)
∞∑

n=k

q(n)G(F−(n − k)) = ∞ =
∞∑

n=k

q(n)G(F+(n + m − k)).

������� 3.1� Let 0 ≤ p(n) ≤ p < ∞. Suppose that (A1), (A2), (A1
3), (A6),

(A14) and (A18) hold. Then all solutions of (2) oscillate.

P r o o f. Let y(n) be a non-oscillatory of (2). Hence y(n) > 0 or < 0 for n ≥
n0 > 0. Suppose that y(n) > 0 for n ≥ n0. Setting z(n) as in (8) and

w(n) = z(n) − F (n) (13)

we obtain
∆2(r(n)∆2w(n)) = −q(n)G(y(n − k)) ≤ 0, (14)
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for n ≥ n0 +ρ. Thus w(n) > 0 or < 0, for n ≥ n1 > n0 +2ρ. Since F (n) changes
sign, then w(n) > 0 for n ≥ n1 by (13). Hence one of the cases (a) and (b) of
Lemma 1.1 holds for large n and z(n) ≥ F+(n). For n ≥ n2 > n1, we have

0 = ∆2
[
r(n)∆2w(n)

]
+ G(p)∆2

[
r(n − m)∆2w(n − m)

]
+ q(n)G(y(n − k))

+ G(p)q(n − m)G(y(n− m − k))

≥∆2
[
r(n)∆2w(n)

]
+ G(p)∆2

[
r(n − m)∆2w(n − m)

]
+ λQ(n)G(y(n − m)

+ py(n − m − k))

≥∆2
[
r(n)∆2w(n)

]
+ G(p)∆2

[
r(n − m)∆2w(n − m)

]
+ λQ(n)G(z(n− k))

≥∆2
[
r(n)∆2w(n)

]
+ G(p)∆2

[
r(n − m)∆2w(n − m)

]
+ λQ(n)G(F+(n − k))

(15)

Hence
∞∑

n=n2+k

Q(n)G(F+(n − k)) < ∞,

a contradiction to (A18). If y(n) < 0 for n ≥ n0, set x(n) = −y(n) to obtain
x(n) > 0 for n ≥ n0 and

∆2(r(n)∆2(x(n) + p(n)x(n − m))) + q(n)G̃(x(n − k)) = f̃(n),

where f̃(n) = −f(n). If F̃ (n) = −F (n), then F̃ (n) changes sign F̃+(n) = F−(n)
and ∆2(r(n)∆2F̃ (n)) = f̃(n). Proceeding as above we obtain a contradiction.
Hence the theorem is proved. �

������� 3.2� Let −1 < p ≤ p(n) ≤ 0. Suppose that (A1), (A15), (A19) and
(A20) hold. Then every solution of (2) oscillates.

P r o o f. Proceeding as in proof of Theorem 3.1 we obtain w(n) > 0 or < 0, for
n ≥ n1 > n0 + ρ when y(n) > 0 for n ≥ n0. Let w(n) > 0 for n ≥ n1. Hence
one of the cases (a) and (b) of Lemma 1.1 holds. Further w(n) > 0 implies that
y(n) ≥ y(n) + p(n)y(n − m) > F (n) and hence y(n) ≥ F+(n). From (14) we

obtain
∞∑

n=n1+k

q(n)G(F+(n − k)) < ∞, a contradiction. Hence w(n) < 0, for

n ≥ n1. Then one of the cases (b)–(e) of Lemma 1.1 holds. Let the case (b)
hold. w(n) < 0 implies that y(n) > F−(n + m)) for n ≥ n1. Consequently, (14)
gives

∞∑
n=n1+k

q(n)G(F−(n + m − k)) < ∞,

a contradiction. If y(n) is unbounded, then there exists a subsequence {n′
j} of

{n} such that n′
j → ∞ and y(n′

j) → ∞ as j → ∞ and y(n′
j) = max

{
y(n) : n1 ≤
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n ≤ n′
j

}
. For n′

j > n1, we obtain w(n′
j) = y(n′

j) + p(n′
j)y(n′

j − m) − F (n′
j) ≥

(1 + p)y(n′
j) − F (n′

j). Since F (n) is bounded and (1 + p) > 0, then w(n′
j) > 0

for large n′
j , a contradiction. Hence y(n) is bounded, that is, w(n) is bounded.

Consequently, the cases (c) and (d) of Lemma 1.1 fail to hold. On the other
hand, w(n) is bounded and (A1) implies that the case (e) of Lemma 1.1 does
not hold. If y(n) < 0 for n ≥ n0, then setting x(n) = −y(n) > 0 for n ≥ n0,
Eq. (2) becomes

∆2
[
(r(n)∆2(x(n) + p(n)x(n − m))

]
+ q(n)G̃(x(n − k)) = f̃(n),

where G̃(u) = −G(u) and f̃(n) = −f(n). If F̃ (n) = −F (n), then F̃ (n) changes
sign with −∞ < lim inf

n→∞
F̃ (n) < 0 < lim sup

n→∞
F̃ (n) < ∞, F̃ (n) = F−(n), F̃−(n) =

F+(n) and ∆2(r(n)∆2F̃ (n) = f̃(n). Proceeding as above a contradiction is
obtained. Thus the theorem is proved. �

Example 4. Consider

∆2
[
(e−n∆2(y(n) + p(n)y(n − 1))

]
+ q(n)y3(n − 2) = f(n), n ≥ 0, (16)

where p(n) = 2(1 + (−1)n), q(n) =
[
en +

(
8e−1 + 4e−2

)
e−n

]
and f(n) =

(en − 4e−n) (−1)n, Q(n) = min
{
q(n), q(n − 1)

}
= en−1 +

(
8 + 4e−1

)
e−n. If

we define

F (n) =
[

e2n

(e + 1)2(e2 + 1)2
− 1

(e−1 + 1)2

]
(−1)n,

then ∆2[e−n∆2F (n)] = (en − 4e−n)(−1)n. Hence

F+(n − 2) =

{
e2n

e4(e+1)2(e2+1)2 − 1
(e−1+1)2 , if n is even,

0, if n is odd,

F−(n − 2) =

{
0, if n is even,

e2n

e4(e+1)2(e2+1)2 − 1
(e−1+1)2 , if n is odd.

Consequently,
∞∑

n=2

Q(n)G(F+(n − 2)) =
∞∑

n=2

[
en−1 + (8 + 4e−1)e−n

] [
F+(n − 2)

]3 = ∞

and
∞∑

n=2

Q(n)G(F−(n − 2)) =
∞∑

n=2

[
en−1 + (8 + 4e−1)e−n

] [
F−(n − 2)

]3 = ∞.

From Theorem 3.1 it follows that all solutions of (16) oscillate. In particular
y(n) = (−1)n is an oscillatory solution of (16).
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������� 3.3� Let −∞ < p ≤ p(n) ≤ 0. If (A1), (A3), (A15), (A19) and (A20)
hold, then every solution of (2) oscillates or tends to ±∞ as n → ∞.

P r o o f. Proceeding as in the proof of Theorem 3.2 we obtain a contradiction if
w(n) > 0 for n ≥ n1 > n0+ρ. Hence w(n) < 0 for n ≥ n1. Then one of the cases
(b)–(e) of Lemma 1.1 holds. Let the case (b) hold. Clearly, py(n − m) < F (n)
due to w(n) < 0, that is, y(n) > (−p−1)F−(n + m) for n ≥ n1. Using (A3) it
follows from (14) that

∞∑
n=n1+k

q(n)G(F−(n + m − k)) < ∞,

a contradiction. In each of the cases (c) and (d), lim
n→∞w(n) = −∞. However,

if −∞ < lim
n−→∞ w(n) ≤ 0, then we obtain a contradiction due to (A1). Hence

for each of the cases (c)–(e), lim
n→∞w(n) = −∞. Consequently, py(n − m) <

w(n) + F (n) implies that lim sup
n→∞

y(n − m) ≤ lim
n→∞ w(n) + lim sup

n→∞
F (n), that is,

p lim inf
n→∞

y(n) = −∞ due to (A15). Hence lim
n→∞

y(n) = ∞. The proof for the case

y(n) < 0 for n ≥ n0 is similar. Thus the proof of the theorem is complete. �
	���

��� 3.4� If the conditions of Theorem 3.3 are satisfied, then every
bounded solution of (2) oscillates.

������� 3.5� Let 0 ≤ p(n) ≤ p < ∞ and let (A1), (A2), (A1
3), (A6) and

(A16) hold. If
∞∑

n=k

Q(n)G(|F (n − k)|) = ∞, then every bounded solution of (2)

oscillates or tends to zero as n → ∞.

P r o o f. Proceeding as in Theorem 3.1 we obtain w(n) > 0 or < 0 for n ≥
n1 > n0 + ρ. Let w(n) > 0 for n ≥ n1. Hence z(n) > F (n). Suppose
that F (n) > 0 for n ≥ n2 > n1. From (15) and Lemma 1.1, it follows

that
∞∑

n=n2+k

Q(n)G(F (n − k)) = ∞, a contradiction. Hence F (n) < 0 for

n ≥ n2. From (14) we obtain
∞∑

n=n2+k

Q(n)G(y(n − k)) < ∞ due to Lemma 1.1.

Thus lim inf
n→∞ y(n) = 0, because

∞∑
n=n2+k

Q(n)G(|F (n − k)|) < ∞ implies that

∞∑
n=k

q(n) = ∞. Since w(n) is bounded and monotonic, then lim
n→∞w(n) exists

and hence lim
n→∞

z(n) exists. Thus lim
n→∞

z(n) = 0 ([4, Lemma 2.1]). Conse-

quently, z(n) ≥ y(n) implies that lim
n→∞

y(n) = 0. Let w(n) < 0 for n > n1.

Then y(n) ≤ z(n) < F (n) implies that lim
n→∞

y(n) = 0. Thus the theorem is
proved. �
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������� 3.6� Let −1 < p ≤ p(n) ≤ 0. (A1), (A13) and (A16) hold, then every
solution of (2), oscillates or tends to zero as n → ∞.

P r o o f. Proceeding as in the proof of Theorem 3.1, we have w(n) > 0 or < 0
for n ≥ n1 > n0 + ρ. Let w(n) > for n ≥ n1. From (14) we obtain due to
Lemma 1.1 that

∞∑
n=n2+k

q(n)G(y(n − k)) < ∞, n2 > n1. (17)

Hence lim inf
n→∞

y(n) = 0. On the other hand, lim
n→∞

w(n) = ∞ in case (a) of

Lemma 1.1. Then it follows that lim
n→∞

z(n) = ∞. However, y(n) ≥ z(n) im-

plies that y(n) → ∞ as n → ∞, a contradiction. In case of Lemma 1.1(b),
lim

n→∞ w(n) = α, 0 < α ≤ ∞. The above contradiction is obtained if α = ∞.

Hence 0 < α < ∞. Consequently, lim
n→∞

z(n) = α. From [4, Lemma 2.1], it

follows that α = 0, a contradiction. Thus w(n) < 0 for n > n1. Following
to Theorem 3.2 we obtain that y(n) is bounded and hence w(n) is bounded.
In each of the cases (c) and (d) of Lemma 1.1, lim

n→∞w(n) = −∞, a contra-

diction. In each of the cases (b) and (e) of Lemma 1.1, (17) holds and hence
lim inf
n→∞

y(n) = 0. Consequently, lim
n→∞

z(n) exists. Using [4, Lemma 2.1], we

have lim
n→∞

z(n) = 0. Hence 0 = lim
n→∞

z(n) = lim sup
n→∞

[y(n) + p(n)y(n − m)] ≥
lim sup

n→∞
y(n) + lim inf

n→∞
[py(n − m)] = (1 + p) lim sup

n→∞
y(n), that is lim

n→∞
y(n) = 0.

The proof of the theorem is complete. �
Example 5. Consider

∆2
[
e−2n∆2

(
y(n) + (e−n − 1)y(n − 1)

)]
+ q(n)y3(n − 2) = e−3n, n ≥ 1

(18)
q(n) = e−6 + e−6(e − 1)(e−1 − 1)2(e−3 − 1)2 − e(e−2 − 1)2(e−4 − 1)2e−n. Here
−1 < −e−1 < p(n) < 0 and f(n) = e−3n. If F (n) = (e−3 − 1)−2(e−1 − 1)−2e−n,
then ∆2

[
e−2n∆2F (n)

]
= e−3n and lim

n→∞
F (n) = 0. As all the conditions of

Theorem 3.6 are satisfied, then every solution of (18) oscillates or tends to zero
as n → ∞. In particular, y(n) = e−n is a solution of (18) such that y(n) → 0 as
n → ∞.

������� 3.7� Let −∞ < p(n) ≤ 0. If (A1), (A13) and (A16) hold, then every
bounded solution of (2) oscillates or tends to zero as n → ∞.

The proof is similar to that of Theorem 3.6 and hence is omitted.

	���

��� 3.8� Suppose that the conditions of Theorem 3.7 are satisfied.
Then every non-oscillatory solution of (2) which does not tend to zero as n → ∞
is unbounded.
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Remark 6� Theorems 3.1–3.3, 3.5 and Corollary 3.4 do not hold for Eq. (1).
However, Theorems 3.6 and 3.7 hold for Eq. (1).

4. Existence of positive solutions

In this section, sufficient conditions are obtained for the existence of bounded
positive solutions of Eq. (2).

������� 4.1� Let 0 ≤ p(n) ≤ p < 1. Suppose that (A15) holds with −1
8 (1−p) <

lim inf
n→∞ F (n) < 0 < lim sup

n→∞
F (n) < (1/2)(1−p) and G is Lipschitzian on intervals

of the form [a, b], 0 < a, b,∞. If
∞∑

n=0

(n + 1)
r(n)

∞∑
s=n

(s + 1)q(s) < ∞, (19)

then (2) admits a positive bounded solution.

P r o o f. It is possible to choose a positive integer N1 such that

L

∞∑
n=N1

(n + 1)
r(s)

∞∑
s=n

(s + 1)q(s) <
1
4
(1 − p),

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on
[

1
8 (1 − p), 1

]
.

Let X = lN1∞ , Banach space of all real valued functions x(n), n > N1, with
supremum norm ‖x‖ = sup

{|x(n)| : n > N1

}
. Define

S =
{
x ∈ X : 1

8 (1 − p) ≤ x(n) ≤ 1, n > N1

}
.

Hence S is a complete metric space, when the metric is induced by the norm
on X. For y ∈ S, define

Ty(n) =

⎧⎪⎪⎨
⎪⎪⎩

Ty(N1 + ρ), N1 ≤ n < N1 + ρ,

−p(n)y(n − m) + p+1
2 + F (n),

−
∞∑

i=n

(i−n+1)
r(i)

∞∑
s=i

(s − i + 1)q(s)G(y(s− k)), n ≥ N1 + ρ.

Hence Ty(n) < 1+p
2 + 1−p

2 = 1 and Ty(n) > −p + 1+p
2 − 1−p

8 − 1−p
4 = 1−p

8 for
n ≥ N1 + ρ. Consequently Ty ∈ S, that is, T : S → S. Further, for x, y ∈ S,

|Ty(n) − Tx(n)| ≤ p‖x − y‖ +
1 − p

4
‖x − y‖ =

1 + 3p

4
‖x − y‖.

Hence ‖Ty − Tx‖ ≤ 1+3p
4

‖x − y‖, for every x, y ∈ S. Thus T is a contraction.
Consequently, T has a unique fixed point y in S. Then y(n) is a solution of (2)
with 1

8 (1 − p) ≤ y(n) ≤ 1. Thus the theorem is proved. �
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������� 4.2� Let 0 < p(n) ≤ p < 1. Suppose that (A17) and (19) hold. If G
is Lipschitzian on intervals of the form [a, b], 0 < a < b < ∞, then (2) admits a
positive bounded solution.

P r o o f. We may choose N1 sufficiently large such that |F (n)| < 1−p
20 and

L

∞∑
n=N1

(n + 1)
r(n)

∞∑
s=n

(s + 1)q(s) <
1 − p

20
,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on
[

1−b
20 , 1

]
.

We set X = lN1∞ and

S =
{
x ∈ X : 1−p

20 ≤ x(n) ≤ 1, n ≥ N1

}
.

For y ∈ S, we set

Ty(n) =

⎧⎪⎪⎨
⎪⎪⎩

Ty(N1 + ρ), N1 ≤ n ≤ N1 + ρ,

−p(n)y(n − m) + 1+4p
5 + F (n),

−
∞∑

i=n

(i−n+1)
r(i)

∞∑
s=n

(s + 1)q(s)G(y(s− k)), n ≥ N1 + ρ.

Proceeding as in the proof of Theorem 4.1 we may show that T has a unique
fixed point y in S and it is the required solution of (2). This completes the proof
of the theorem. �

Remark 7� Theorems similar to Theorems 4.1 and 4.2 can be proved in other
ranges of p(n).

5. Summary

In [8], Eq. (3) is studied with even and odd m. When r(n) ≡ 1, the results
for super linear case are hold to that of the results in [8]. Other than r(n) ≡ 1,
the present work is more general than the works in [5] and [8]. Equations (1)

and (2) are studied under the assumption
∞∑

n=0

n
r(n)

< ∞ in a separate paper. It

would be interesting to study neutral difference equations with quasi-differences
of the form

∆(r3(n)(∆r2(n)(∆r1(n)∆(y(n) + p(n)y(n − m))))) + q(n)G(y(n − k)) = f(n).
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