versii I\/\%’ihemoﬁco
ovaca

DOI: 10.2478/s12175-007-0056-x
Math. Slovaca 58 (2008), No. 1, 77-94

OSCILLATION OF SOLUTIONS OF NEUTRAL
PARABOLIC DIFFERENTIAL EQUATIONS
WITH OSCILLATING COEFFICIENTS

N. ParHI* — SuNIiTA CHAND**

(Commaunicated by Michal Feékan)

ABSTRACT. Sufficient conditions are obtained for oscillation of solutions of a
class of neutral parabolic differential equations with oscillating coefficients.
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1. Introduction

In recent years, several authors (see [1]-[4], [6]-[12]) have studied oscillatory
behaviour of solutions of parabolic differential equations. In [6], [7], [8], [12]
parabolic equations of neutral type are considered with nonnegative coefficients.
In [3], Kusano and Yoshida have studied oscillatory behaviour of solutions
of delay parabolic differential equations of the form

k
w(z,t) — (a(t)Au(x, t)+ > bi(t)Au(x,t — ai)>

+ c(z, t,u(x, t), u(m,;’l(t)), cou(m, T (t)) = f(x,t)

with oscillating coefficients b; (t).

It seems that no work is done for neutral parabolic differential equations with
oscillating coefficients.
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In this paper we consider nonlinear, nonhomogeneous parabolic differential
equations of neutral type of the form

o[ ¢
En u(x,t)-f—;ai(t)u(xvt_n)

m 1
— [b()Au(z, 1) + Y bi(t) Au(z,t — o)) M

j=1

+c(x, tyu(x, t),u(x, t — p1), ..., u(z,t — pp)) = f(z,1),

(z,t) € Q, where @ := 2 x (0,00), £ is a bounded domain in R™ with piecewise
smooth boundary I" and A is the Laplacian in R", along with following boundary
conditions
(DBC) u=1 onTI x (0,00),
(NBC) g_;f Y on T x (0,00),
where 1, 1) are real-valued continuous functions on T" x (0, 00).
Following assumptions are made for our use in the sequel:
(Ci) Let ; > 0,1 <i<l,0;>0,1<j<mandp, >0,1<k<r, be
constants. Let Ty = max{r;,0j,pr: 1 <i<Il, 1<j<m, 1<k<r}.

(Ca) f(z,t)is areal valued continuous function on @ and a;, b;,b € C([0,00), R),
1<i<l,1<j<m withb(t) > 0.

(C3) ¢: Q@ x R™™! — R be continuous such that
c(z,t,&,&1,...,&) >0 for & >0, 0<k<r
and
e(w,t, &0, &1,...,&) <0 for & <0, 0<k<r

By a solution of the problem (1), (DBC) (or (NBC)) we mean a real valued
continuous function u(z,t) on Q_p, = Q x (=T, c0) such that

5 !
5 u(z,t) + ; ai(t)u(z, t — ;)

exists, (1) is satisfied identically in @ and (DBC) (or(NBC)) holds.
A solution u(z,t) of the problem (1), (DBC) (or(NBC)) is said to be oscilla-
tory if u(z,t) has a zero in Qy, = 2 X (tg, 00) for every ¢y > 0.
It is well-known that the first eigenvalue A\; of the eigenvalue problem
—Aw = Aw in Q

w=0 on I
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is positive and the corresponding eigenfunction ¢(x) is of one sign in Q. We
assume that ¢(z) > 0 in Q.

For a solution u of the problem (1), (DBC), we denote

U(t) = /u(x,t)qb(x) dz, t>0

Q

—/¢(x,t)—aq;§/x) ds, >0
r

= /f(:l;,t)¢(a;) dz, t>0
0

and for a solution u of the problem (1), (NBC), we denote

0(t)—/u(x,t)da;, t>0
Y(x,t)ds t>0
fz,t)dz, t>0.

In Section 2, we consider a first-order neutral differential inequality of the form

/
+Zal y(t — )

where b;(t) is allowed to change sign. We assume that

(C4) ai,9 € C(fto,0), R), 1 <i <1,

(C5) Ti2070j>0,1§7;§l,1§j§m

(Ce) b; € C([to,0),R), j=1,...,mand b;(t) >0 on U241, ;,

where I,, ; = (t, —20,,t,) and the sequence {t,}°2; is chosen so that {I,, ;}52;
are disjoint intervals for each j =1,...,m and ¢, — 00 as n — oo.

In Section 3, we study the oscillation results of the problem (1), (DBC) and
(1), (NBC).

m

+D byt —oy) <g(t),  t=t>0, (2)

2. Oscillation results for the neutral differential inequality

LEMMA 1. Let (C4)—(Cg) hold. Further, let
(C7) —a; < a;i(t) <0, where a; is a positive constant, 1 < i <.

Let us assume that there is a subsequence {t,, }7°, C {t,}n, with the properties
that
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tn
(Cs) klirgonk =00 and 1 < t f:* bjx(t)dt < ¢, where g+ = 12[]11<n {o;} and
c 18 a positive constant, .
(Co) kli_)nglo ni = oo and kli>_nolo G(t,, ) = —o0 where
t ¢ t—0j.
G(t) = / g(s)ds + / bj(s) / g(0)do | ds.
t—o t—oyx 5—0.

Then (2) has no eventually positive bounded solution.

Proof. If possible, let y(¢) be an eventually positive bounded solution of (2)
on [ti,00) for some t; > tg > 0. Then y(t — ;) >0, y(t —o;) > 0,1 < i <,
1 < j < mon [tz,00) for some ty > t;. We may note that lim (¢, —20,) = o0
n—oo

for every j and hence there is an integer N > 0 such that ¢, —20; > ts forn > N
and for every j. Letting &, = t,, — 20, we find that (&,,t,) C (¢, — 2aj,t ),
j=1,...m. So b;j(t) > 0in (&,,t,) and y(t — ) >0, y(t —o;) > 0,1 <i <,
1<j<m,forte (&,t,) and n > N. So it follows from (2) that

!/

+Zaz t_Tz] Sg(t)

in (&,,t,). By continuity

+Zaz t_Tz] Sg(t)

in [&,,t,]. For any t € [t, — 0js,tn], [t — 0js,tn — 0ji] C [&n,tn] and hence
integrating the above inequality we obtain

— Ojx +Zaz n U]* (tn — Ojx _Ti)

tpn—0;x
Y/ J
ylt- ) =Sl -yt < [ geds @)
i=1 t—0 ;.
that is
t,,—Uj*
Yyt —oji) > y(tn — 0js) + Zal n— 0 )Y(tn — Ojs — Ti) — / g(s) ds,
t—0
80
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for t € [t, — 0, tn]. From (2) it follows that

/

+ 05+ ()y(t = ajx) < g(b),

—I—Zal t—n

for ¢t € [t, — 0jx,t,]. Hence

!/

by (Dy(tn — 1)

+Zal t—n

? tn—0jx

+0j(t) Zai(tn = 0 )Y (tn — 0 = 7i) < g(t) + by (1) / g(s)ds.

t—0 .«

Integrating the above inequality from ¢,, — 0. to t,, we get

l V4
y(tn) + Zai(tn)y(tn —Ti) = Z ai(tn — 0jx)y(tn — 04 — Ti)
=1 =1
tn
olt—op) | [ beode-
tnfaj*

t,L—O'j*
tn tn—0jx
< [ |oo+u.0 [ oo ds] dt
tnfaj* t Tjx
In particular,
L
y(tn,) + Z i (tny)y(tn, — 7i)
i=1
¢ b
+ (Za (tny — 05:)Y(tn, — 04 — Ti) bj«(t) dt < G(tn,),
i=1 t o
ng, —
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that is
' by
y(tnk) < Z a; ly<tnk - Ti) + y(tnk — Ojx — Ti) / bj*(t> dt| + G(tnk>
i=1 ty, 0
4 b
<L (Z ai> (1 + / bjw(s) ds) + Gltn,)
i=1 t”k —0j
¢
SL<XyJu+@m D
i=1

where L is the bound of y(¢). Taking the limit infimum on both sides we get the
contradiction 0 < lim y(t,,) < 0 due to (Cgy). Thus the proof is complete. O

k—oo

LEMMA 2. Suppose that all the conditions of Lemma 1 are satisfied except (Cr)
which is replaced by

(C10) 0 < a;(t) < a;, where a; is a positive constant, 1 < i <.
Then (2) has no eventually positive bounded solution.

Proof. Suppose that y(t) is an eventually positive bounded solution of (2) on
[t1,00) for some t; > top > 0. Then y(t — ;) > 0, y(t—aj) >0,1<1q <1,
1 <j < mon [t,00) for some ty > ;. Proceedlng as in Lemma 1 we get (3),

¢
for t € [t, — 0j=,t,], and hence y(t — oj+) > y(t, — 0jx) — > ai(t — o« )y(t —
i=1
tnfaj* ’
o —m)— [ g(s)ds.
tfaj*

From (2) it follows that

—Q—Zal 15—7'Z

for t € [t, — 0, ty] and hence

—I—Zal t—n

+ b5 (t)y(t — 0x) < g(t)

/

by (DYt — )

tn—0j%

¢
= bju(t) Y ailt — 0y )y(t — 0ju — 1) < g(t) + bju (1) / g(s)ds.
i=1

tfaj*
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Integrating the above inequality from ¢, — 0« to t,,

J4 tn
y(tn) _Zaz(tn — 05 )Y(tn — 0 — ) Fy(tn — 0js) / by« (t)dt —1
i=1 tn 0
tn ¢
- b]*(t)Zai(t—aj*)y(t O'j* —Ti>dt
tn—0 i=1
ty tnfo'j*
< / lg(t) +b;- () / g(s) ds] dt.
tn—0jx t—0jx

Thus, in particular,

¢
y(tnk> Zaz(tnk Uj*),y(tnk Ojx Tz)
=1
tn
— [ O et =gyl 0j. — ) dt < G,
tn, —0jx« i=1

in view of the condition (Cg), that is,

t
J4 J4 "k
Y(tny,) _Zaiy(tnk — O —Ti) _Zai / bj«(5)y(s —0js — 1) ds < G(ty,),
i=1 =1, Y
e~ 0

that is,

t

) ng
Y(tn,) < G(tn,) + (Z ai> L(l + / bix(s) ds)

tn, —0jx«
J4
< Glta) + 1 (Z) 1+
i=1

where L is the bound of y(t). Taking the limit infimum we get, 0 < lim y(t,,)
k—o0
< 0, a contradiction. Hence the Lemma is proved. O
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3. Oscillation results

THEOREM 1. Let (C1)—(C3), (Cg) and (Cr) hold. Then every bounded solution
of (1), (DBC) oscillates provided that there is a subsequence {t,, }72, C {tn}n,

with the properties that
(C11) (i) lim mg = oo,
k—o0

t"lk
i) 1<X [ bju(s)ds<ec,
tn, —0j«
where o, = min {o;} and ¢ is a constant,
1<j<m

(iii) lim G(ty,) = —o0 and lim G(t,,) = oo,

k—oo k—oo )

t

where G(t) = [ g(s)ds+ j bix(s) ( _fgj*g(e) d9> ds

t—0jx t—0j« S—0jx
and

g(t) = F(t) = b()¥(t) = Y bj()¥(t - 0y).

Jj=1

m

(4)

Proof. If possible, let u(x,t) be a bounded nonoscillatory solution of (1),
(DBC). Then there exists aty > 0 such that u(z,t) # 01in Qy,. Let u(x,t) > 0 in

Q+t,- Then multiplying (1) through by ¢(x) and integrating the resulting identity

with respect to x over the domain 2, we get

L

Ut) + Y ai()U(t —7)

i=1

— (b(t) | Au(z,t)é(z)dx
]

+> () /Au(x,t —0,)p(z) dz

< F(t)
j=1 Q

for t > t; > tg. By Green’s formula,

/Au(;z:, t)o(x) dx
Q

_/qu(x) ds—/aggjx>u(x,t) ds+/u(l’»’5>A¢’(w) do

r

r
=— /w(x,t)a(g—ij) ds — M\ /u(x,t)¢(x) de = —-9(t) — MU(1).
r

2
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Thus we have

4 m
U)+ > ai(UE—7)| + X\ |[bOUE) + D b()U(t - 0oy)
<F (1)~ bOW(E) — 32 b0 (E o).

+)\12b t—(Tj
< F(t) i U(t— o),

that is, U(t) is an eventually positive bounded solution of

¢
ly(t)‘*‘zai(t)y(t—ﬂ +)\125 y(t — ;) < g(t),

i=1

a contradiction to Lemma 1. If u(z,t) < 0 in Q,, then setting v(z, t) = —u(x, t),
we get, v(z,t) > 0 in Q¢, and

L

% lv(w, )+ ait)(e,t - m] — [b()Av(x,t) + D bi(H)Av(z,t — o;)

i=1
—c(z,t, —v(x,t), —v(z,t — p1),...,—v(z,t — p,)) = —f(z, ).

Proceeding as above we get the required contradiction. Hence the theorem is
proved. O

Ezxample 1. Consider the problem

0 . .
(,%[ u(w,t) — u(z,t — 2m)] — [uge(z,t) — 28in 2ugy (z,t — T)]

+u(x,t —m) 4 tu(x,t — 2m) = tcostsinx — 2sin 2t cos(t — §)sinz,  (5)

(z,t) € (0,7) x (0,00) with boundary conditions
u(0,t) = 0 = u(m, t). (6)
85
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As ai(t) = =1, b(t) = 1, bi(t) = —2sin2t, 0y = §, ¢(x) = sinz and A\ = 1,
then

F(t)= [ [tcostsina — 2sin2tcos(t — F)sinz| sinx dx

DR O~y

(t cost — 2sin 2t cos(t — %))

and hence g(t) = F(t) — 0= Ftcost — msin2tcos(t — )
We notice that b;(t) = b1(t) = —2sin2t changes sign and > 0 for ¢ €

(tn — 5,tn) = (nm — m/2,n7) and

tn nm
/ b (t)dt = / (—2sin2¢t) dt = cos 2t Z:_% =1, n=12,....
tn—0jx nT—7

Here
I1 = (tn — §,tn> = (mr — 4,n7r>
Moreover,
tn tn tn—0x
Glt,) = / g(s)ds + / b, (s)< / 4(0) d@) ds
tn—0jx tn—0jx« 5—0jx
nm nm nt—4
= gl / scossds + / (—2511125)( / 00059d9> ds]
nrT—7% nwT—74 s—7
—’R’l / sin 2s cos (s— %) ds
nwt—7
nm 717"*%
+ / (—2 sin23)< / (sin 26) cos (6 — T) d9> ds]
nrT—7% s—7
™ T . . ™ i . .
=3 lcosmr + 2 / ssm2ssm(s — %) ds — 5 / sm2ssm(s — %) ds
nwt—7 nr—%
86
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+ 2 / sm2scos( )ds] —ﬂ'l / sin2scos(s—§)ds
nt—4 nt—4
+ g (sin3(n7r — %) — Cos3(n7r — %))
- ¥ (sin 28)(C083 (s—12) - sin® (s—12)) ds] .
nT—7%

In the above identity all the terms are bounded except

nm nm nm
2
/ ssin2s sin(s — ) ds = % lnﬂ' cos® nm — / sin® s ds — / cos® s ds] )

i P i
nm P nm 1 nm P

Then lim G(t,) = —co and lim G(t,) = cc. So by Theorem 1 all the bounded

solutions of (5), (6) oscillate in (0, 7) x (0, 00). In particular, u(x,t) = sinz cost
is a bounded oscillatory solution of the problem.

THEOREM 2. Let (C1)—(Cs), (Cs), (C1o) and (Ci1) hold. Then every bounded
solution of the problem (1), (DBC) oscillates.

The proof is similar to that of Theorem 1 and hence is omitted. In this case
Lemma 2 is used.

Ezxample 2. Consider the problem

0

E[u(m, t) + 2u(z, t — )] — [um(x, t) — 2sin 2tug,, (;U,t — %)]
+ (14 tu(z,t — m) + u(z,t — 3F) = —tsintsinz — 2sin 2t sin(t — %) sin z,
(7)
(z,t) € (0,7) x (0,00) with boundary conditions
u(0,t) = 0 = u(m, t). (8)

In this case, ¢(z) = sinz, A\ =1, g( ) = —(g)tsint msin2tsin(t — ), bj.(t) =
—2sin2t and 0, = 7. Thus, f bjx(s)ds = f —2sin2s)ds = 1, where

tn— Tjx

»bl:\
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tp, =nm,n=12,..., and I, j» = (t, — 7/2,t,) and

tn t, tn—0j
G(tn) = / g(s)ds+ / bj(s) / g(0)do | ds
tn—0ju tn—0ju 5=
tn tp th—q
= g / (—ssins)ds + / (—2sin2s) (—0sind)do | ds
tn—= ty_x s—T
tn
-7 / sin2ssin(s—%) ds
th—m
tn th—7
+ / (—2sin2s) (sin20) sin (6 — %) d6) ds
ty— T s—I

-2 ] (sin2s)sin (s — %) ds] —ﬂl ] (sin2s)sin (s — ) ds

(sin 2s) (sin3 (s—Z) +cos® (s— 1)) ds]

3
V2
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(yeava) )

tn

/ (sin2s)sin(s — §) ds + ; (sin3 (tn — Z) + cos®(t, — )

— T

tn

+ % / (sin2s) (sin® (s — ) +cos® (s — %)) ds|.

s
tn—7

Hence
lim G(t,) = —o0 and lim G(t,) = .

Thus all bounded solutions of the problem (7), (8) oscillate in (0, ) x (0, 00). In
particular, u(z,t) = sin z sint is a bounded oscillatory solution of the problem.
THEOREM 3. Let (Cy), (Cq), (Cr) be satisfied. Let

(C12) ¢: Q@ x R™™ — R be continuous such that

C(xvtvg()agla"'vfr) Zp(t)gk*v Sk 2 07

for some k* € {1,...,r}, where 0 < k < r, p(t) > 0 in U2 I,, where
I, = (tn — 2pks, tn) and {t,} is a sequence such that I,’s are disjoint
intervals, and t, — 00 as n — oo.

Then every bounded solution of the problem (1), (NBC) oscillates provided that
there exists a subsequence

{tna taz1 C{tntniy

such that
(Clg) (1) lim Nag = OO
t”u
i) 1< [ p)ydt<c
tng —Phkx
(iii) lim G(t,,) = —oco and hm G(tp,) = o0
w}?e?eoo c 18 a constant,
t t t—pPkx
G(t) = / g(s)ds + / p(s) / g(0)de | ds
t—pPkx t—pPrkx S—Pkx
and .
() = F(t) + b)) ¥(1) + Y b)) ¥(t — 7) (9)
j=1
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Proof. If possible, let u(x,t) be a bounded nonoscillatory solution of (1),
(NBC). Hence u(z,t) # 0 in @y, for some to > 0. Let u(x,t) > 0 in Q.

Integrating (1) with respect to  and using Green’s formula and (Ci2), we
get,

/

+p(t)U(t — prs) < §(1)

¢
U(t) + Zai(t)ﬁ(t —Ti)
i=1

for t > to + Ty, that is, U (t) is an eventually positive bounded solution of

!/

+p)y(t = pre) < g(1),

+Zal 15—7'Z

a contradiction, due to Lemma 1. If u(z,t) < 0, then putting v(z,t) = —u(z,t)
and proceeding as above we get the required contradiction. Hence the proof of
the theorem is complete. O

Ezxample 3. Consider the problem

aat[ (2,t) —u(z,t — 2m)] — [ugs(x,t) + Uy (2, t — 7)]
+ tu(z, t — 2m) — 2sin 2tu(z, t — %) (10)

=— 2sm2tsmxcos(t — —) + tsinx cost,

(z,t) € (0,7) x (0,00) with boundary conditions

—uz(0,t) = —cost = ug(m,t). (11)
Thus,
U(t) = p(m,t) —1b(0,t) = —2cost and W(t—7) = 2cost,
g(t) = —4sin2tcos(t — T) + 2t cost,
p(t) = —2sin2t, pr« = g
tn in
/ p(s)ds = / —2sin2sds =1,
tn—Pkx tnf%
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where t, =nm, n=1,2,..., I,, = (t, — §,t,). Furthermore,

tn

G(tn / G(s)ds + ] p(s)<tn/pk*g(9)d9> ds

tn— Pl tn— Pk« S—Pkx

~—
I

™
tn

tn tn 7
—2{ scossds + (—2Sin23< 9c089d9>> ds]
ty — ty— % s— %

z
t’!l
/ sin 2s cos (s — %) ds

s
tn tn—7

+ /(—2811125)( / sin2ecos(e—g)d9> ds]

tn—7 s—7

tn in
=2 lcostn +2 / ¢ sin 260 sin (6 — 7) df — g / sin 2ssin(s — Z) ds

tn—% tn—
tn

+2 / sin2scos(s—%)ds]

T
4
n—q
tn 12
2v/2
— T\/_< / sin 2s cos® (s — %) ds — / sin 2s sin® (s — %)) ds].
tn*% tn*%
In the above identity all the terms are bounded except
tn tn tn
2
/ 0 sin 26 sin (0 — %) dé = % ltncos?’tn — / sin® sds — / cosgsds] .
tn—7 tn—7 th—7%
Hence

lim G(t,) = —oco and lim G(t,) = .

n—oo n—oo

Thus by Theorem 3, bounded solutions of the problem (10), (11) oscillate in Q.
In particular, u(x, t) = sin x cost is a bounded oscillatory solution of the problem.
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Remark 1. Theorem 3 holds if the condition (Ci2) is replaced by the following
one:

T

> > pe(t)ér, if& >0

< 0 k), if & <O,
k=0

E
Sl
<]

C(x,t,€0,€1, s 7£r)

where 0 < k <r, po(t) > 0fort >0, pr(t) >00on | Ink, Ink = (tn — 2Pk, tn)
1

n=
for 1 < k < r with a sequence {t,} such that ¢,, — oo as n — oo and I, are
disjoint intervals.

THEOREM 4. Suppose that all the conditions of Theorem 3 are satisfied except
(C7) which is replaced by (C1g). Then every bounded solution of (1), (NBC)
oscillates.

The proof proceeds in the lines of that of Theorem 3 and makes use of
Lemma 2.

Ezxample 4. Consider the problem

0
5 [w(z, t) + 2u(x, t — m)] — [uge (2, 1) + Uge(x, t — )]

+ tu(z, t — ) + u(z,t — 3F) — 2sin 2tu (z,t — ) (12)
= —2sin2tsinzsin(t — ) — tsinxsint,
(z,t) € (0,7) x (0,00) with boundary conditions

—uy,(0,t) = —sint = uy, (7, t). (13)

In this case, W(t) = —2sint, U(t — 1) = 2sint, p(t) = —2tsin2t, pp. = = and
g(t) = —4sin2tsin(t — §) — 2t sint,

tn tn
/ p(s)ds = / —2sin2sds = 1.
tn—Pkx t,,/—%
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Furthermore,
tn tn tn—pPkx
G(t,) = / (s)ds + / p(s) / 9(0)de | ds
tn =Pk« In =Pk« S—Pkx
tn tr th—7
:2l / —ssinsds + /( 2Sln28< —Gsin0d0> ds]
tn—% tn—% —1

t’!l
—4{ /sin2ssin(s—£) ds
t

™

tn tn*%
+ / (—2sin 25)( / sin 20 sin (6 — T) d9> ds]
thn—7 s—7

t’!l
—2ltncostn+2 / ssin2scos(s—§) ds

tn—7%

tn
—g/ 1n2scos )ds—2 / sin2ssin(s—§) ds]

tn—

jus
4

1n2381n( ) d8+§(sm3 (t _%)+COS3 (tn_%))

] |

\ \w IS

tn

T\/_{ / sin2ssin® (s — Z) ds + / sin2s cos® (s — Z) ds

T

—

All the terms in the above identity are bounded except t, cost, and

/ Gsin29005(9 - %) dé

1
= l—tn cos®t,, + %tn cos® t, — V2w cos® t,

tn tn

+ / cos® sds — / Sin3sds],

tn*% tn*%
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which implies that lim G(t,) = —oo and lim é(tn) = oo. Hence, by The-

n—oo

orem 4, the bounded solutions of (12), (13) oscillate. In particular, u(z,t) =
sin z sint is a bounded oscillatory solution of the problem.
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