
�
�

DOI: 10.2478/s12175-007-0051-2

Math. Slovaca 58 (2008), No. 1, 11–18

DIOPHANTINE EQUATIONS FOR MORGAN-VOYCE
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ABSTRACT. It is well-known that Morgan-Voyce polynomials Bn(x) and bn(x)
satisfy both a Sturm-Liouville equation of second order and a three-term recur-
rence equation ([SWAMY, M.: Further properties of Morgan-Voyce polynomials,
Fibonacci Quart. 6 (1968), 167–175]). We study Diophantine equations involving
these polynomials as well as other modified classical orthogonal polynomials with
this property. Let A, B, C ∈ Q and {pk(x)} be a sequence of polynomials defined
by

p0(x) = 1
p1(x) = x − c0

pn+1(x) = (x − cn)pn(x) − dnpn−1(x), n = 1, 2, . . . ,

with

(c0, cn, dn) ∈ {
(A,A, B), (A + B, A,B2), (A,Bn + A, 1

4
B2n2 + Cn)

}
with A �= 0, B > 0 in the first, B �= 0 in the second and C > − 1

4
B2 in the third

case. We show that the Diophantine equation

A pm(x) + Bpn(y) = C

with m > n ≥ 4, A , B, C ∈ Q, A B �= 0 has at most finitely many solutions in
rational integers x, y.
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1. Introduction

A topic of particular interest in number theory is the general Diophantine
equation

A pm(x) + Bpn(y) = C (1)
in rational integers (x, y) with {pk(x)} being an infinite family of polynomials
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with rational coefficients and A , B, C some fixed rational parameters satisfying
A B �= 0. B i l u – T i c h y ’s criterion [1] enables one to decide quite algorith-
mically the problem whether there is a finite number of solutions in rational
integers (x, y) of (1) for given m, n ≥ 2 or not. Equation (1) sometimes arises
while investigating combinatorial counting and enumeration problems, so that
it is likely the case that there appears a three-term recurrence relating the poly-
nomials

p0(x) = 1 (2)
p1(x) = x − c0

pn+1(x) = (x − cn)pn(x) − dnpn−1(x), n = 1, 2, . . . ,

where cn and dn are parameters depending just on n. Finiteness for (1) has
already been proved in case of cn = 0 and dn =const in [3] by D u j e l l a and
T i c h y , cn = 0 and dn = n2 in [5] by K i r s c h e n h o f e r , P e t h ő and T i c h y
in some special cases of m, n. In [6], K i r s c h e n h o f e r and P f e i f f e r could
give a direct combinatorial interpretation of some special case of (2) in terms of
colored permutations. Moreover, in [7] these authors attacked the general case
cn = 0 and arbitrary dn. Results of finiteness of number of integral solutions
(x, y) in case of (A , B, C ) = (1,−1, 0) could be given under certain growth
conditions of dn. Other results have recently been obtained by the authors of
this paper for pk(x) =

(
x
k

)
in [12] and pk(x) being the classical Jacobi, Laguerre

or Hermite polynomials in [11]. In all these cases it has been shown that ’two
interval monotonicity’ of stationary points of the polynomials pk(x), i.e. in-
formally speaking, the convexity of the local maxima, is a useful condition to
get reductions in the above-mentioned criterion. In this paper we continue the
investigation from [11], this time starting from a recurrence of type (2). We
give necessary and sufficient conditions on cn and dn for {pk(x)} to satisfy sec-
ond order Sturm-Liouville differential equations which automatically inherit the
wanted ‘two interval monotonicity’ property. The general results will finally be
applied to the classical Morgan-Voyce polynomials Bn(x) and bn(x) which are
known to satisfy both a recurrence of type (2) and a differential equation ([13]),
i.e.

B0(x) = 1, B1(x) = x + 1, Bn+1(x) = (x + 2)Bn(x) − Bn−1(x), resp.
b0(x) = 1, b1(x) = x + 2, bn+1(x) = (x + 2)bn(x) − bn−1(x)

x(x + 4)B′′
n(x) + 3(x + 2)B′

n(x) − n(n + 2)Bn(x) = 0, resp.

x(x + 4)b′′n(x) + 2(x + 1)b′n(x) − n(n + 1)bn(x) = 0.

The Morgan-Voyce polynomials Bn(x) and bn(x) can also be given explicitly by

Bn(x) =
n∑

j=0

(
n + j − 1

n − j

)
xj , bn(x) =

n∑
j=0

(
n + j

n − j

)
xj , (3)
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see [13]. They are also related to the well-known Fibonacci polynomials F (x)
by

Bn(x2) =
1
x

F2n+2(x), bn(x2) = F2n+1(x).

2. Main result

������� 1� Let {pk(x)} be a polynomial sequence satisfying (2). Assume one
of the following conditions (A, B, C ∈ Q):

(1) c0 = A, cn = A, dn = B, with A �= 0 and B > 0,
(2) c0 = A + B, cn = A, dn = B2, with B �= 0,
(3) c0 = A, cn = Bn + A, dn = 1

4B2n2 + Cn, with C > −1
4B2.

Then the Diophantine equation

A pm(x) + Bpn(y) = C

with m > n ≥ 4, A , B, C ∈ Q, A B �= 0 has at most finitely many solutions in
rational integers x, y.

To start with, we recall the connection between three-term recurrences and
Sturm-Liouville differential equations as given in [4] and [9]:

����� 2� The following conditions are equivalent:
(i) The second-order Sturm-Liouville differential equation (n ≥ 0)

σ(x)p′′n(x) + τ(x)p′n(x) − n((n − 1)a + d)pn(x) = 0, (4)

with σ(x) = ax2 + bx + c �≡ 0, τ = dx + e, a, b, c, d, e ∈ R, d �= −ta for all
t ∈ Z≥0 has a (up to a factor depending on n) unique infinite polynomial
family solution {pn(x)} of exact degree n.

(ii) The family {pn(x)} satisfies a three-term recurrence of type (2) with

c0 = − e

d

cn = −2nb((n − 1)a + d) − e(2a − d)

(2na + d)((2n − 2)a + d)

dn =
n((n − 2)a + d)

((2n − 1)a + d)((2n − 3)a + d)

(
−c +

((n − 1)b + e)(((n − 1)a + d)b − ae)

((2n − 2)a + d)2

)
.

The properties of Lemma 2 are of course shared by all classical orthogonal
polynomials (Jacobi, Laguerre, Hermite) but also by Bessel polynomials. On
the other hand, one has by Favard’s Theorem (see for instance [14]), that all
polynomial families defined by a three-term recurrence of shape (2) are orthog-
onal with respect to some moment functional. If one demands orthogonality with
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respect to a positive definite moment functional (in order to use all known facts
about zeros of orthogonal polynomials etc.), then one exactly gets just Jacobi,
Laguerre and Hermite polynomials up to a linear transformation x �→ ν1x + ν2

with ν1ν2 ∈ R (see [10] and [2]). Hence, one can completely characterize all
positive definite orthogonal solutions of (4) just by looking to the coefficients
a, b, c, d, e (see [4]). Note that by ‘characterization’ we mean up to a factor
depending only on n (see Lemma 2, first condition).

����� 3� The only infinite chains of polynomial solutions of (4) which are
orthogonal with respect to some positive definite moment functional are

(i) Hermite: a = 0, b = 0, c = 1, with d < 0,
(ii) Laguerre: a = 0, b = 1, c = −α, with dα + e > 0,
(iii) Jacobi: a = −1, b = α + β, c = −αβ, with α < β and d < 0, dα + e > 0,

dβ + e < 0.

Recall that, for instance, by Jacobi we mean all classical Jacobi polynomials
P

(µ1,µ2)
n (x) with possibly shifted argument x �→ ν1x + ν2 (for the notation see

the Askey-scheme [8]). We now plug these values into condition (2) of Lemma 2
and by solving the equations with computer algebra system MAPLE to the rest
of the variables we get a characterization by the three-term recurrence.

	���

��� 4�

(i) The parameters c0 = A, cn = A, dn = B with B > 0 give (shifted) Jacobi
polynomials satisfying

(x2 − 2Ax + A2 − 4B)p′′n(x) + 3(x− A)p′n(x) − n(n + 2)pn(x) = 0.

(ii) The parameters c0 = A + B, cn = A, dn = B2 with B �= 0 give (shifted)
Jacobi polynomials satisfying

(x2 − 2Ax + A2 − 4B)p′′n(x) + 2(x − A − B)p′n(x) − n(n + 1)pn(x) = 0.

(iii) The parameters c0 = A, cn = Bn + A, dn = 1
4B2n2 + Cn with C > −1

4B2

give all (shifted) Laguerre polynomials (B �= 0) satisfying(
x +

1
2
B − A +

2C

B

)
p′′n(x) − 2

B
(x − A)p′n(x) +

2
B

npn(x) = 0

and all (shifted) Hermite polynomials (B = 0) satisfying

p′′n(x) − 1
C

(x − A)p′n(x) +
1
C

npn(x) = 0.

Note that all Hermite and Laguerre polynomials (with possible shifts) are
totally characterized by the choices of the given cn and dn, while for Jacobi
polynomials we just give simple choices. Nevertheless, the classical Morgan-
Voyce polynomials Bn(x) and bn(x) defined by (c0, cn, dn) = (−2,−2, 1) (which
means A = −2 and B = 1 in the first case) resp. (c0, cn, dn) = (−1,−2, 1)
(which means A = −2 and B = 1 in the second case) are in the given classes
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and we immediately see that they are simple transformations of Jacobi poly-
nomials ([13]). The calculations to obtain Corollary 4 are straightforward with
MAPLE, we just mention one crucial point. In the first Jacobi case after solving
the system one also has to deal with the equation

(x2 − 2Ax + A2 − 4B)p′′n(x) + (x − A)p′n(x) − n2pn(x) = 0.

However, one easily sees that such equation implies B = 0, which is not allowed
by B > 0.

Polynomial solutions of Sturm-Liouville equations are always two-interval
monotone provided σ′(x) − 2τ(x) �≡ 0 (see [11]). This means there are always
two real intervals I1 and I2 on which the modulus of the values of the stationary
points is strictly decreasing on I1 and increasing on I2. All polynomial families
above are two-interval monotone except for the first case of the (shifted) Jacobi
with A = 0 in Corollary 4. We add the condition A �= 0 in our further investi-
gations. We employ now the reduction of the Bilu-Tichy criterion from [11]:

����� 5� Let {pk(x)} be a polynomial family with simple stationary points and
have the two-interval monotonicity property. Then, if there exist no parameters
v2, v1, v0, A such that for some integers m, n ≥ 4 it holds that

pm(x) = A pn(v2x
2 + v1x + v0), (5)

then the original Diophantine equation (1) has at most finitely many solutions
in rational integers x, y.

The task is now, to come to a contradiction if one supposes a quadratic
representation like (5). For this purpose we compare coefficients on both sides
of (5). Let pm(x) = xm + k

(m)
m−1x

m−1 + k
(m)
m−2x

m−2 + · · · + k
(0)
0 . Then we have

the following recursive relations

k
(m)
m−1 = −c0 −

m−1∑
j=1

cj,

k
(m)
m−2 = −

m−1∑
j=1

(
cjk

(j)
j−1 + dj

)
,

k
(m)
m−t = −

m−1∑
j=t−1

(
cjk

(j)
j−t+1 + djk

(j−1)
j−t+2

)
, t ≥ 3.

We now list the uppermost coefficient equations of (5). We do not give an ‘Eq. 5’
because we do not need it in the sequel.
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• Eq. 0, [xm]:

1 = A v
n
2

• Eq. 1, [xm−1]:

k
(m)
m−1 = A

(
nv

n−1
2 v1

)

• Eq. 2, [xm−2]:

k
(m)
m−2 = A

(
nv

n−1
2 v0 +

n(n − 1)

2
v

n−2
2 v

2
1 + k

(n)
n−1v

n−1
2

)

• Eq. 3, [xm−3]:

k
(m)
m−3 = A

(
n(n − 1)vn−2

2 v1v0 +
n(n − 1)(n − 2)

6
vn−3
2 v3

1 + k
(n)
n−1(n − 1)vn−2

2 v1

)

• Eq. 4, [xm−4]:

k
(m)
m−4 = A

(
n(n − 1)

2
v

n−2
2 v

2
0 +

n(n − 1)(n − 2)

2
v

n−3
2 v

2
1v0 +

n(n − 1)(n − 2)(n − 3)

24
v

n−4
2 v

4
1+

+k
(n)
n−1(n − 1)vn−2

2 v0 + k
(n)
n−1

(n − 1)(n − 2)

2
vn−3
2 v2

1 + k
(n)
n−2vn−2

2

)

• Eq. 6, [xm−6]:

k
(m)
m−6 = A

(
n(n − 1)(n − 2)

6
v

n−3
2 v

3
0 +

n(n − 1)(n − 2)(n − 3)(n − 4)

24
v

n−5
2 v

4
1v0

+
n(n − 1)(n − 2)(n − 3)

4
vn−4
2 v2

1v2
0 +

n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)

720
vn−6
2 v6

1

+ k
(n)
n−1

(n − 1)(n − 2)

2
v

n−3
2 v

2
0 + k

(n)
n−1

(n − 1)(n − 2)(n − 3)

2
v

n−4
2 v

2
1v0

+ k
(n)
n−1

(n − 1)(n − 2)(n − 3)(n − 4)

24
vn−5
2 v4

1 + k
(n)
n−2(n − 2)vn−3

2 v0

+ k
(n)
n−2

(n − 2)(n − 3)

2
v

n−4
2 v

2
1 + k

(n)
n−3v

n−3
2

)

We start with the Jacobi case, in which c0 = A �= 0.

k
(m)
m−1 = − Am

k
(m)
m−2 =

1

2
(m − 1)(A

2
m − 2B)

k
(m)
m−3 = − 1

6
A(m − 1)(m − 2)(A

2
m − 6B)

k
(m)
m−4 =

1

24
(m − 2)(m − 3)(A4m2 − 12A2Bm − A4m + 12A2B + 12B2)

k
(m)
m−6 =

1

720
(m − 3)(m − 4)(m − 5)(A6m3 − 3A6m2 − 30A4Bm2 + 180A2mB2

+ 2A6m + 90A4mB − 360A2B2 − 60A4B − 120B3)

Combing the equations Eq. 0, 1, 2, 3 and 4 we get

v2
2 =

2n

B(2n + 1)
.
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Finally, Eq. 6 gives (2n + 1)(n − 2)B3/n2 = 0, which is a contradiction. In the
second Jacobi case c0 = A + B and dn = B2 we calculate

k
(m)
m−1 = − B − Am

k
(m)
m−2 =

1

2
(m − 1)(A

2
m + 2AB − 2B

2
)

k
(m)
m−3 = − 1

6
(m − 2)(A3m2 − A3m + 3A2mB − 6AmB2 − 3A2B + 6AB2 − 6B3)

k
(m)
m−4 =

1

24
(m − 2)(m − 3)(A4m2 − A4m + 4A3mB − 12A2mB2

− 4A3B − 12B + 12A2B2 − 24AB3)

k
(m)
m−6 =

1

720
(m − 3)(m − 4)(m − 5)(A

6
m

3 − 30A
4
B

2
m

2 − 3A
6
m

2
+ 6A

5
Bm

2
+ 90A

4
mB

2

− 120A
3
mB

3
+ 2A

6
m + 180A

2
mB

4 − 18A
5
mB − 360A

2
B

4 − 60A
4
B

2

+ 240A
3
B

3 − 120B
6

+ 12A
5
B + 360AB

5
)

This time Eq. 0–3 yield the contradiction B3(2m+1)(m− 2) = 0. Next, in the
Laguerre-Hermite case we have the following upper coefficients:

k
(n)
n−1 = − 1

2
n(Bn − B + 2A)

k
(n)
n−2 =

1

8
n(n − 1)(B

2
n

2
+ 4ABn − 3B

2
n − 4AB + 4A

2 − 4C + B
2
)

k
(n)
n−3 = − 1

48
n(n − 1)(n − 2)(B3n3 − 6B3n2 + 6AB2n2 + 12BA2n + 8B3n − 12BCn − 18AB2n

+ 8A3 + 6AB2 − B3 − 24AC + 20BC − 12BA2)

k
(n)
n−4 =

1

384
n(n − 1)(n − 2)(n − 3)(B

4
n

4 − 10B
4
n

3
+ 8AB

3
n

3
48AB

3
n

2 − 24B
2
Cn

2
+ 29B

4
n

2

+ 24B
2
A

2
n

2
+ 64AB

3
n − 96BACn − 24B

4
n + 104B

2
Cn − 72B

2
A

2
n + 32BA

3
n − 96A

2
C

+ 48C
2 − 32BA

3
+ 24B

2
A

2
+ 16A

4
+ B

4 − 80B
2
C − 8AB

3
+ 160BAC)

k
(n)
n−6 =

1

46080
n(n − 5)(n − 1)(n − 2)(n − 3)(n − 4)(−12AB5 − 160B3A3 + 240B2A4 + 4720B2C2

− 192BA
5 − 1636B

4
C − 960A

4
C + 2880A

2
C

2
+ 3200BA

3
C − 6720BAC

2
+ B

6
+ 64A

6

− 960C3 + 4032B3AC − 4800B2A2C + 60B4A2 + 12AB5n5 + 1068AB5n + 240B2A4n2

− 4080B
2
C

2
n − 1740AB

5
n

2
+ 814B

6
n

2 − 21B
6
n

5 − 415B
6
n + B

6
n

6 − 1440B
4
A

2
n

+ 4376B
4
Cn − 720B

2
A

4
n − 1440B

2
A

2
Cn

2 − 1920BA
3
Cn + 2880BAC

2
n + 3840B

3
ACn

2

− 8160B
3
ACn + 6240B

2
A

2
Cn − 480B

3
ACn

3
+ 1280B

3
A

3
n + 192BA

5
n − 545B

6
n

3

+ 160B
6
n

4 − 960B
3
A

3
n

2 − 3060B
4
Cn

2
+ 720B

2
C

2
n

2
+ 900AB

5
n

3
+ 160B

3
A

3
n

3

+ 760B4Cn3 − 600B4A2n3 + 60B4A2n4 − 180AB5n4 − 60B4Cn4 + 1740B4A2n2)

In this case Eq. 0–3 and MAPLE give

Bn(2n − 1)(n − 1)(B2n + 2C) = 0,

which does not vanish with exception of B = 0 (Hermite case). In the latter
cases Eq. 4 gives 1/v2

2 = 2C(2n− 1) and finally Eq. 6 the wanted contradiction
(2n − 1)(n − 2)(n − 1)nC3 = 0.

As an immediate consequence of Theorem 1 we have:
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	���

��� 6� Let {pk(x)} be the Morgan-Voyce polynomials {Bk(x)} and
{bk(x)} be defined by relation (3). Then the Diophantine equation (1) has at
most finitely many solutions for m, n ≥ 4.
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