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DIOPHANTINE EQUATIONS FOR MORGAN-VOYCE
AND OTHER MODIFIED ORTHOGONAL
POLYNOMIALS
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(Communicated by Stanislav Jakubec)

ABSTRACT. It is well-known that Morgan-Voyce polynomials By, (z) and by, (z)
satisfy both a Sturm-Liouville equation of second order and a three-term recur-
rence equation ([SWAMY, M.: Further properties of Morgan-Voyce polynomials,
Fibonacci Quart. 6 (1968), 167-175]). We study Diophantine equations involving
these polynomials as well as other modified classical orthogonal polynomials with
this property. Let A, B,C € Q and {py(x)} be a sequence of polynomials defined

by
po(z) =1
pi(z) =z —co
Pnt+1(x) = (z — cn)pn(z) — dppn—1(2), n=12...,
with

(co,cn,dn) € {(A,A,B),(A+ B,A,B?),(A,Bn+ A, 1B*n* + Cn)}

with A # 0, B > 0 in the first, B # 0 in the second and C' > —%BQ in the third
case. We show that the Diophantine equation
A pm(x) + Bpn(y) =C
withm >n >4, &, B, € Q, /% # 0 has at most finitely many solutions in
rational integers z,y.
2008

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

A topic of particular interest in number theory is the general Diophantine
equation

A pm (1) + Bpn(y) = € (1)

in rational integers (x,y) with {px(z)} being an infinite family of polynomials

2000 Mathematics Subject Classification: Primary 11D45; Secondary 33C45, 34B24.
Keywords: Diophantine equation, three-term recurrence, orthogonal polynomial, Morgan-
Voyce polynomial, Sturm-Liouville differential equation.

Both authors are supported by the Austrian Science Foundation (FWF)

FSP-Project S 8307-MAT.

Unauthenticated
Download Date | 2/3/17 9:20 PM



THOMAS STOLL — ROBERT F. TICHY

with rational coefficients and o7, Z, ¢ some fixed rational parameters satisfying
B #0. Bilu—-Tichy’s criterion [1] enables one to decide quite algorith-
mically the problem whether there is a finite number of solutions in rational
integers (z,y) of (1) for given m,n > 2 or not. Equation (1) sometimes arises
while investigating combinatorial counting and enumeration problems, so that
it is likely the case that there appears a three-term recurrence relating the poly-
nomials

po(r) = (2)
p1(z) = —co

pn+1(x> = (517 - Cn)pn(x> - dnpnfl(x% n= 1; 27 ceey

where ¢, and d, are parameters depending just on n. Finiteness for (1) has
already been proved in case of ¢, = 0 and d,, =const in [3] by Dujella and
Tichy,c, =0andd, =n?in[5]by Kirschenhofer, Peth6 and Tichy
in some special cases of m, n. In [6], Kirschenhofer and Pfeiffer could
give a direct combinatorial interpretation of some special case of (2) in terms of
colored permutations. Moreover, in [7] these authors attacked the general case
¢, = 0 and arbitrary d,. Results of finiteness of number of integral solutions
(z,y) in case of (7, B,%¢) = (1,—1,0) could be given under certain growth
conditions of d,,. Other results have recently been obtained by the authors of
this paper for py(2) = (7) in [12] and py(2) being the classical Jacobi, Laguerre
or Hermite polynomials in [11]. In all these cases it has been shown that 'two
interval monotonicity’ of stationary points of the polynomials py(z), i.e. in-
formally speaking, the convexity of the local maxima, is a useful condition to
get reductions in the above-mentioned criterion. In this paper we continue the
investigation from [11], this time starting from a recurrence of type (2). We
give necessary and sufficient conditions on ¢,, and d,, for {px(z)} to satisfy sec-
ond order Sturm-Liouville differential equations which automatically inherit the
wanted ‘two interval monotonicity’ property. The general results will finally be
applied to the classical Morgan-Voyce polynomials B, (x) and b,(z) which are
known to satisfy both a recurrence of type (2) and a differential equation ([13]),
ie.

Bo(z) =1, Bi(z)=z+1, Bpti(z)=(rx+2)B,(z)— Bp_1(x), resp.
bo(x) =1, bi(z) =242, byyi(x)= (4 2)by(z) — bp_1(x)

z(x +4)B)(z) + 3(z + 2)B),(z) — n(n + 2)B,(z) =0, resp.
z(z + 4! (z) + 2(x + 1), (z) — n(n + 1)b,(z) = 0.
The Morgan-Voyce polynomials B, (x) and b, (z) can also be given explicitly by
i1\ SNEETAW
By = ja br, = . ]7
@=3 ("N =3 (1) ®)
j=0 7=0
12

Unauthenticated
Download Date | 2/3/17 9:20 PM



MODIFIED ORTHOGONAL POLYNOMIALS

see [13]. They are also related to the well-known Fibonacci polynomials F(x)
by
1
Bn(x2) = EF2n+2($)v bn(x2) = Fopy1(2).

2. Main result

THEOREM 1. Let {pr(z)} be a polynomial sequence satisfying (2). Assume one
of the following conditions (A, B,C € Q):

(1) co=A4,cn=A4A,d, =B, with A#0 and B > 0,
(2) co=A+ B, ¢, = A, d, = B?, with B#0,
(3) co=A, ¢, =Bn+ A, d, = 1B*n* + Cn, with C > —1B2,
Then the Diophantine equation
A pm () + Bpn(y) =€
withm >n>4, o, B,€ € Q, AP # 0 has at most finitely many solutions in

rational integers x,y.

To start with, we recall the connection between three-term recurrences and
Sturm-Liouville differential equations as given in [4] and [9]:
LEMMA 2. The following conditions are equivalent:

(i) The second-order Sturm-Liouville differential equation (n >0)
o(@)pyp(z) + 7(2)py, () —n((n — )a+ d)pu(z) =0, (4)
with o(z) = ax® +br +c#0, T =dx +e, a,b,c,d,e €R, d# —ta for all
t € Z>o has a (up to a factor depending on n) unique infinite polynomial
family solution {p,(x)} of exact degree n.

(ii) The family {p,(x)} satisfies a three-term recurrence of type (2) with

e
Co = ——

d
_ 2nb((n —la+d) —e(2a —d)
" (2na + d)((2n — 2)a + d)
i = n((n —2)a + d) (—c ((n=1)b+e)(((n— 1)a+d)b—ae))
" ((2n—1Da+d)((2n — 3)a + d) ((2n — 2)a + d)2 ’

The properties of Lemma 2 are of course shared by all classical orthogonal
polynomials (Jacobi, Laguerre, Hermite) but also by Bessel polynomials. On
the other hand, one has by Favard’s Theorem (see for instance [14]), that all
polynomial families defined by a three-term recurrence of shape (2) are orthog-
onal with respect to some moment functional. If one demands orthogonality with

13
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respect to a positive definite moment functional (in order to use all known facts
about zeros of orthogonal polynomials etc.), then one exactly gets just Jacobi,
Laguerre and Hermite polynomials up to a linear transformation x — 112 + 15
with 115 € R (see [10] and [2]). Hence, one can completely characterize all
positive definite orthogonal solutions of (4) just by looking to the coefficients
a,b,c,d,e (see [4]). Note that by ‘characterization’” we mean up to a factor
depending only on n (see Lemma 2, first condition).

LEMMA 3. The only infinite chains of polynomial solutions of (4) which are
orthogonal with respect to some positive definite moment functional are
(i) Hermite: a=0,b=0, c=1, withd <0,
(ii) Laguerre: a=0,b=1, ¢ = —«, with dao + e > 0,
(iii) Jacobi: a = -1, b=a+ 8, c = —af, witha < and d < 0, da+ ¢ > 0,
dg+e <0.
Recall that, for instance, by Jacobi we mean all classical Jacobi polynomials

plrk 2)(;L‘) with possibly shifted argument x — 12 + v5 (for the notation see
the Askey-scheme [8]). We now plug these values into condition (2) of Lemma 2
and by solving the equations with computer algebra system MAPLE to the rest
of the variables we get a characterization by the three-term recurrence.

COROLLARY 4.

(i) The parameters co = A, ¢, = A, d,, = B with B > 0 give (shifted) Jacobi
polynomials satisfying

(2 — 2Ax + A2 —4B)p!!(z) + 3(x — A)p.,(z) — n(n + 2)p,(z) = 0.

(ii) The parameters co = A+ B, ¢, = A, d, = B? with B # 0 give (shifted)
Jacobi polynomials satisfying

(2 — 2Ax + A® —4B)p!!(z) + 2(x — A — B)p,(x) — n(n + 1)p,(x) = 0.
(iii) The parametersco = A, ¢, = Bn+ A, d,, = %BQn2 + Cn with C > —iBQ
give all (shifted) Laguerre polynomials (B # 0) satisfying

<x+ %B . E);;;{(x) _ 3(;1; — A)pl, () + znpn(ﬂf) =0

B B B
and all (shifted) Hermite polynomials (B = 0) satisfying
1 1
Pu(e) = & (@ = A)pi (@) + Zrwa(z) = 0.

Note that all Hermite and Laguerre polynomials (with possible shifts) are
totally characterized by the choices of the given ¢, and d,, while for Jacobi
polynomials we just give simple choices. Nevertheless, the classical Morgan-
Voyce polynomials B, (x) and b, (x) defined by (co, ¢n,dy) = (=2, —2,1) (which
means A = —2 and B = 1 in the first case) resp. (co,cn,dy) = (—1,-2,1)
(which means A = —2 and B = 1 in the second case) are in the given classes
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and we immediately see that they are simple transformations of Jacobi poly-
nomials ([13]). The calculations to obtain Corollary 4 are straightforward with
MAPLE, we just mention one crucial point. In the first Jacobi case after solving
the system one also has to deal with the equation

(x% — 24z + A? —4B)pl(z) + (z — A)pl,(z) — n’pn(z) = 0.

However, one easily sees that such equation implies B = 0, which is not allowed
by B > 0.

Polynomial solutions of Sturm-Liouville equations are always two-interval
monotone provided o’(z) — 27(x) £ 0 (see [11]). This means there are always
two real intervals I; and I on which the modulus of the values of the stationary
points is strictly decreasing on I; and increasing on I5. All polynomial families
above are two-interval monotone except for the first case of the (shifted) Jacobi
with A = 0 in Corollary 4. We add the condition A # 0 in our further investi-
gations. We employ now the reduction of the Bilu-Tichy criterion from [11]:

LEMMA 5. Let {pi(x)} be a polynomial family with simple stationary points and
have the two-interval monotonicity property. Then, if there exist no parameters
va, V1, Vo, & such that for some integers m,n > 4 it holds that

() = pp(v22® + v17 + V), (5)

then the original Diophantine equation (1) has at most finitely many solutions
in rational integers x,y.

The task is now, to come to a contradiction if one supposes a quadratic
representation like (5). For this purpose we compare coefficients on both sides

of (5). Let pp(z) = 2™ + kfn"i)lxm_l + kfn"i)2xm_2 +- 4 k(()o). Then we have
the following recursive relations

m—1

(m) _ §
km—l = —Co — Cj,

j=1

m—1
o, =5 (o4, ),
=1
m—1
m ] i—1
kKoY, = — (cjk:ﬁ.{)m + djkzg.{tﬁg) . t>3.
j=t—1

We now list the uppermost coefficient equations of (5). We do not give an ‘Eq. 5’
because we do not need it in the sequel.
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e Eq. 0, [z™]:
1= vy
Eq. 1, [z 1:

m—1

k(m) :d(nU;71U1>
e Eq. 2, 2™ 2]

nn—1) ,_5 2
2

m—2

kJ("'> :JZ{<7’LU;71U0+
e Eq. 3, [z™73]:

m—

k(m) = o (n(n - 1)7);727)1110 + 5 vy

e Eq. 4, [z™ 1]

2 20 2

+kf;i)1(n — vy~ 20 + k) 5

e Eq. 6, 2™ 5]:

-1 -1 —2)
(771,)4 :d(n(n )’0”72’02 + TL(TL )(n )’U; vi’UO +

TICHY

V2 1+kEL7L1 5 1)

-1 -2
n(n )(n ) 3,3 3+ kfynjl(n _ 1)115"72111)

nn—1)(n-2)(n—3) ,_4 4
24 vy vt

ny (n—=1)(n-2) ,_ n
()( )( )v2 802 4 k(W)_up— )

6 2 Yot 24

V1Yo

y =D —2)(n —3) 202 n(n—1)(n = 2)(n - 3)(n —4)(n - 5)u;”*%§

vy +

720

4
—1 — 2 —1 -2 —-3) ,
+ M, (n )2(n )v;”*%g +E, (n—1)(n . )(n )U;ﬂ; 2
ny (=1 —-2)(n-3)(n—4) .5
+ k( ) o1 Vg
2 -3
+E, (n — )2(n )U; 192 4 )y )

v Vo

1+ k(">2 (n = 2)v7 3w

We start with the Jacobi case, in which ¢y = A # 0.

£ = — Am

m—1 "

k), :§(m —1)(A%m — 2B)

1
k= - 5 A(m — 1)(m — 2)(A%m — 6B)
k), :—(m —2)(m — 3)(A*m? — 1242Bm — A'm + 124%B + 12B?)
k) :%(m —3)(m — 4)(m — 5)(A%m® — 34%m? — 304" Bm> + 180A?m B>

+2A4%m + 90A*mB — 360A%2B? — 60A*B —

120B%)

Combing the equations Eq. 0, 1, 2, 3 and 4 we get

16
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Finally, Eq. 6 gives (2n + 1)(n — 2)B3/n? = 0, which is a contradiction. In the
second Jacobi case ¢g = A + B and d,, = B? we calculate

K™ = B Am

m—1

1
£ =5 (m ~ 1)(A%m + 24B — 2B?)

m—2 7

1
B = - gm— 2)(A’m? — A’m + 34%2mB — 6AmB? — 3A2B + 6AB? — 6B°)

1
ki), =5 (m = 2)(m ~ 3)(A*m? — A*m +4A°mB — 12A%m B>

—4A®B — 12B + 12A®B? — 24AB?)

1
B
m=6 = 750

—1204°mB? + 24%m + 1804%mB* — 18A°mB — 3604%B* — 604*B?
+2404°B® — 120B° + 124°B + 360AB°)

(m = 3)(m — 4)(m — 5)(A°m® — 304*B*m? — 3A°m?* + 64° Bm? + 904*m B>

This time Eq. 0-3 yield the contradiction B*(2m+ 1)(m —2) = 0. Next, in the
Laguerre-Hermite case we have the following upper coefficients:

1
B =~ Sn(Bn — B +24)

1
k), =gn(n - 1)(B?n® + 4ABn — 3B%n — 4AB + 4A% — 4C + B?)

1
B, = — @n(n —1)(n —2)(B*n® —6B*n? + 6AB*n? + 12BA’n + 8B%n — 12BCn — 18AB>*n
+8A% + 6AB? — B® — 24AC + 20BC — 12BA?)
, 1
) =g "(n = D(n = 2)(n — 3)(B*n* — 10B*n® + 84B*n38A4B%n? — 24B%Cn? + 29B*n?

+24B%A%n? 4+ 64AB3n — 96BACn — 24B*n 4+ 104B*Cn — 72B%A%n + 32BA%n — 96A%C
+48C% — 32BA® 4+ 24B% A% + 16A* + B* — 80B>C — 8AB® + 160BAC)

kg =
"=6 46080

— 192BA® — 1636B*C — 960A*C + 2880A%C? + 3200BA°C — 6720BAC? + B® + 64A4°
— 960C° + 4032B%AC — 4800B%A%C + 60B*A% + 12AB°n® + 1068AB°n + 240B%A*n?

n(n—5)(n —1)(n —2)(n — 3)(n — 4)(—12AB° — 160B%A® + 240B%A* + 4720B%C?

— 4080B2C%n — 1740AB%n? + 814B%n? — 21B%n® — 415B% + B%n® — 1440B* A%n
+4376B*Cn — 720B%A*n — 1440B%A?Cn? — 1920BA®Cn + 2880BAC?*n + 3840B% ACn>
— 8160B%ACn + 6240B%A%Cn — 480B%ACn® + 1280B%A%n + 192BA%n — 545B%n3
+160B°n* — 960B%A%n? — 3060B*Cn? + 720B2C%*n? 4+ 900AB°n® + 160B%4%n®
+760B*Cn® — 600B*A%n® + 60B*A%n* — 180AB°n* — 60B*Cn* + 1740B* A%n?
In this case Eq. 0-3 and MAPLE give
Bn(2n —1)(n —1)(B*n +2C) = 0,

which does not vanish with exception of B = 0 (Hermite case). In the latter
cases Eq. 4 gives 1/v3 = 2C(2n — 1) and finally Eq. 6 the wanted contradiction
(2n —1)(n —2)(n — 1)nC3 = 0.

As an immediate consequence of Theorem 1 we have:
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COROLLARY 6. Let {py(x)} be the Morgan-Voyce polynomials {By(z)} and
{bk(x)} be defined by relation (3). Then the Diophantine equation (1) has at
most finitely many solutions for m,n > 4.
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