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CONFIDENCE REGIONS
IN A MULTIVARIATE REGRESSION MODEL
WITH CONSTRAINTS II

LuBoMirR KUBACEK

(Communicated by Gejza Wimmer)

ABSTRACT. The multivariate model, where not only parameters of the mean
value of the observation matrix, but also some other parameters occur in con-
straints, is considered in the paper. Some basic inference is presented under the
condition that the covariance matrix is either unknown, or partially unknown, or
known.
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1. Introduction

The multivariate regression model, where not only parameters of the mean
value matrix but also other parameters are involved in the constraints (con-
straints of the type II) is dealt with.

As a motivation example the following problem can serve. A group of points
on the Earth surface is a basis for an investigation of the recent crustal move-
ment. At different times tq,...,t,,, positions of points are estimated, e.g. by
navigation satellites (GPS). After m measurements, ¢ = 1,...,m, estimated co-
ordinates of the investigated points are at our disposal. If they are on the same
Earth block, they must satisfy some constraints because their relative position
are not changed. If they are not on the same block, then in the constraints
some new parameters occur. These new parameters characterize unknown shifts
among different blocks.

The aim of the paper is to contribute to the theory of such models.
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LUBOMIR KUBACEK

2. Notation and auxiliary statements

The investigated model will be denoted as
Y ~um (XBl,2®|), GB; + G3B> + Gy = 0. (1)

Here Y is an n x m random matrix with the mean value E(Y) = XB;, X is an
n x k1 known matrix (design matrix), By is an k; x m matrix of the unknown
parameters (coordinates of the investigated points), Gi,Gs and Gy are given
matrices of the type ¢ X k1, ¢ X ko and ¢ x m, respectively, and Bs is a ¢ X ks
matrix of unknown parameters occurring in the constraints only. The rows of the
random matrix Y are independent and their common covariance matrix is 3.

The model is regular if the rank 7(X) of the matrix X is 7(X, x,) = k1 < n,
r(G1,G2) = q¢ < k1 + ko and r(Gs) = ko < gq. The matrix X is positive definite
(p.d.).

The model can be rewritten as
vee(Y) ~pm [(1® X)vee(B1), X @ 1],
(1® G1)vec(B1) + (I ® Ga)vec(Bgy) + vec(Gp) = 0. (2)

(Here vec(A) = vec(ay,...,an) = (a),...,a,)".)

The notation can be compared with the notation of the univariate regression
model with constraints of the type II

Y* ~n (X*/Blvz*)a Giﬁ1+G§ﬁ2+g0: 07
r(X*

) = k1 <, (G ()5 GE k) = @ < k1t ke, (G5 ) = ke < g
Thus it is useful to state some results from the theory of univariate regular linear
models with constraints of the type II.

In the following text the notation from [6] is used, i.e. if A is an m X n
matrix, then A~ is an n X m matrix with the property AA“A = A. If N is
an n X n positive semidefinite matrix, then A;( N) is an n X m matrix with the

property V{y € # = {Au : u € R”}}AA;(N)y =y & Yy e #(A)}

/
Vi{x: Ax=y}[|A Yl = \/y’ (A;n(N)> NA_ )Y < lIx[lv. The symbol A*
means the n x m matrix such that AATA = A, ATAAT = AT AAT = (AAT),
(ATA)Y — ATA. Further Py — AAT — A(A’A)-A, M4 — | — P.,.

LEMMA 2.1. Let C* = (X*)(X*)"!X*. Then

!
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
= {1- (€)1 (6])M6; 61 (C") 1(G}) M; " G }
X (€)XY (=)
= (C)71(61)M6;Gi(C) " (G) M;]*,
- ! * *\ — * *\ —

= {6 s 01y | GHENT XY (E),

*\/1 !
= {[(G2Hm[0;(c*)fl(c¢;)q}~

Proof. Two equalities must be valid (cf. [6]).

(i)
(%5 @S &), ) (8 )
(%5 &)
an(zii)
(oo ) (%l ) v oy (el i)

-(& &) |( % §§§>m( = 0) (% o)

The equality (i) is easy to be proved.
The relationships

X*(C)7H(G}) — X*(€")"H(G}) [Ma; 61 (C) 1 (6}) M *
XGH(C*) T (G1) = X*(C) (G [(65) I 0y 1(rpy1 (G2’
= X*(C")7H(G) ~ X*(C") 1 (G161 (C) T (Gy
+G5(63)] ™" ~ [G1(C) " (G}) + G3(G3)') !
<G3{(G3)[61(C) (61 + G3(63)) "G} (G3)[GH(C) (G
+G3(G3)] ™ }G1(C") "1 (G1)' + G3(G3)'] - X*(€*) 1 (G3)' G} (C")

<(G1) + G3(G3)] 7163 {(G3)/IG(C) ' (G1)' + G3(G3)] 'G5} = O,
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LUBOMIR KUBACEK

[Mc;Gi(C) ™' (G})' M " Gi(C") ' (GT)
= [Mc;Gi(C") 7' (G])' Mg ] F[GT(C*) ' (G])' + G3(G3)'],
[Mg; G1(C") ™ (G])'Mg;] " = [G](C)"1(G})' + G5(G3)] ™
—[G’{(C*)”(GT)’+GS(GS)’}”GS{(GS)’[GT(C*)”(G’{)’

163G MG} ((63)/GHC) (G + G3(GA)] !

and
(G3) N ntet e 161y
= [GI(C")H(GY) + GS(GS)TlGS{(GS)/[GT(C*)A(GT)/
+G3(G1)] 65}
must be taken into account in order to prove (ii). O

COROLLARY 2.2. In the regular univariate linear model with constraints II the
BLUEs of the parameters B, and By can be expressed with respect to Lemma 2.1
(cf. also, e.g. [2])

By = [1L]y* +[12](—g)
— B, (€)7(6})[Ma3GH(CT) " (6) Moy ] (GiB, + o),
B, = (©) XY ()Y,
B, = RO +[2)-20) = {165 liesey e}
%(Gi, + &),
Var(3) = (€)= (C7)(G])[Me;G;(C) 1 (G)) Mes | * G (C) !
var(By) = {(G3V[GI(C) (G + G366y} .
cov(BrBa) = —(C)NGI)IGH(C) LG + G3(G3)) G
J(63)161(C) (61 + 6365765}

COROLLARY 2.3. Using the model (2) in relationships from Corollary 2.2 we
have in the model (2) and (1), respectively,

vee(By) = vec(B1) — [Z @ (X'X)7!] (1© G})
X {M(1ea,)(1® G1) [E® (X'X) 7] (19 G))M(ga,) } vec(G1B; + Go).
574
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
Since M(1g9aG,) = 1 ® Mg, , we can write
Iy —1 / +
{M(I®G2)(I ® Gl) [2 ® (X X) } <I ® Gl)M(I®G2)}
— {2 ® [Mg,G1(X'X)'G/Mg, ]} = 7' ® [Me, G (X'X)"'G\Mg,] .

Thus

vee(B1) = veo(By) — <I ® {(x'X)—lc;'1 [MG2G1<X’X)—1G3MGQ]+}>
X VeC(G1§1 + Go)
= vec{§1 — (X'X)"'G) [MGZGl(X’X)*G’lMGZ} +(G1|§1 + GO)},
vee(By) = {l ® [(x’X)—lx’] } vee(Y) = vec[(X'X)1X"Y].

Analogously

-~
~

/ ~
vec(Bg) = —(I ® G/Q);L{(I®G1)[E®(X’X)*1](I®G’1)}} vec(G1B1 + Gg)
’ ~
= —{l ® |:(G/2);1[G1(X’X)*1G’1]:| }VGC(GlB1 + Go)
1\ — ! oY
= VeC{— [(GQ)m[Gl(X’X)*lGSJ (GlBl + GO)}:
= +
Var[vee(By)] = S ® {MG,l rie, (X' X)Mg MGQ} :

Varvee(B,)] = = @ ({c;’2 [Gl(x’xrlc1 n GQG’Q} 71G2}71 - |),

~
=~

covlvec(B1), vec(Bs)] = — £ ® [(x’xrlcg(cg);ml o J.

3. Estimation of parameters of X

The matrix ¥ can be either known, or known partially, or it is fully unknown.
Three typical situations occur. The matrix is of the form ¥ = 02V, where V is
m x m p.d. known matrix and o2 € (0, 00) is an unknown parameter. The other

P

formis ¥ = Y 9;V;, where V1, ..., V,, are given m x m symmetric matrices and
i=1

9 = (V1,...,7,)" is an unknown vector parameter, 9 € ¥ C RP (p-dimensional

Euclidean space), ¥ an open set. The last possibility is that 3 is fully unknown.
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LUBOMIR KUBACEK

Let the residual matrix ¥ — XB; be denoted as v 71- With respect to Corol-
lary 2.3

Vi = v+ X(X'X)7'G}[Mg, 61 (X'X) ' G Mc,]"(GiB; + Go),

where v = ¥ — XB; = ¥ — X(X'X)"'X'Y = MyY and B, is the BLUE in the
model vec(Y) ~pm [(1®@ X) vec(B1), X ® 1] without constraints.
Obviously

vec(Vrr) ~nm (0,2 ® (Mx + Px(x/x)-16/ M, )]
(the matrices v and By are uncorrelated).
LEMMA 3.1. Let n x m matriz U be normally distributed, i.e.
vec(U) ~ Ny (0,2 @ W),

where m x m matriz X is p.d.. Then UW~U ~ W, (r(W),X) (Wishart distri-
bution,).

Proof. Let W = JJ/, where J is n x r(W) matrix, r(J) = r(W). Let K be
n X r(W) matrix with the property r(K) = (W), K'J = I. Then

(1@ K') vec(U) ~ NT(Wm)(O, Yel),

i.e. the rows of the matrix K'U are independent and they have the common
covariance matrix 3. Therefore

U'KK'U = UWTU ~ W, (r(W), Z).

Since .#(U) C .# (W) with probability 1, U'W+U = U'W~U for any g-inverse
of the matrix W. O

COROLLARY 3.2. It is valid that
ViV~ Wa(n+q— (ki + ko), X).

Proof. Since Mx +Px(Xlx)—1G/1MG2 is an idempotent matrix, thus the identity
matrix is also its g-inverse and

r(Mx + Pxx/x)-16;Mq,) = Tr(Mx + Px(x/x)-16q M6, )
= TI“(M_)() + T(G&Mgz) =n—ki + q— ko.

The last equality is implied by the relationship

G/ / /
r(@ ) == rEIMe,) 4 r(Ge) = r(GIMa,) +
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
LEMMA 3.3. If Y is normally distributed and X = o2V, i.e.
vec(vyr) ~ Nnm{a, o’ [V ® (Mx + PX(X’X)*lGiMcz)} }
then the estimator of o, which is unbiased and with the minimum variance, is

2
Xm(n+q—ki—ks)
m(n+q—ki — ko)

&?1 = Tr(!}llnv_l)/[m(” +q— k1 —k2)] ~ o’

Proof. Since V™! ® | is a g-inverse of the matrix
Ve (MX + PX(X’X)*lG'lMGZ)v

thus the expression in the statement is only a transcription of the well known
formula from the theory of linear univariate models

53 = [vec(v, )] (V7T @ 1) vec(vy ) /[m(n + g — ki — ks)].
J

If Y is not normally distributed, then 6% is still at least unbiased estimator
of o2.
P
THEOREM 3.4. Let 3 = ) O;V;, Vq,...,V,, known nxn symmetric matrices,
I=1
Y9 = (V1,...,9,) €9 (open set) and let 9y be an approzimate value of the vector
9. Then the 9o-MINQUE of an estimable function h'9,9 € 9, is

p
WO = X Te(vyv, 2 ViSgh)/(n+q—ki — k), Sy iA=h,

I=1
where
p
20 = Z’ﬁio)v“ {5261}m- :Tr(E(}lViEgle), Z,] = 1,...,p.
i=1

If the matriz SEO—I is reqular, then

1 Tr(z’nzzzEElVlflal)

9= ———S! :

n+q—k1—k2 E01 , ‘71 1

Tr(vy v 3y VX )
In the case of normality of the observation vector Y

2 -1

Vary, (9) = P S— Szgl'
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LUBOMIR KUBACEK

Proof. In the univariate regular linear model with constraints II, i.e. Y*

p
(X*B, 2 791“’1‘)7 g0 + GiB; + G5B, = 0, it is valid

i=1

~n

o = Z)\VH )TV i, S(arge

(Gt M D0 M +A=h.
1 G2

« )
(GI)IMG§

If the matrix S(MX*NI(GI)’MG* B Mot g )+ is regular, then
2 2

v (Z9)g 'V (295 g
pr— S 1 M

M XM +
ey aagy BN Mg )

v (Z%)g Vp(E9) v
In the multivariate model it means

WO =" Nilvee(v, )] (Zy" @ (Vi @ )(Zg" @ 1) vee(v;)
i=1

p

where
+
=M 0 ® M } .
[ (I®X)M(I®G’1)M(I®G2>( 0®1) (I®X)M(I®G’1)M(I®G2)
Since
M(I®X)M(I®G’1)1\/I(I®G2) = M(1®X)M(1®G’1>(I®MG2) = M(1®X)(I®MG’1MG2)
= M[I®(XMG’1MG2 N = @ MXMG’IMGQ

+
= [(l ® MXMG,IMGQ) (Zo@1) (l ® Mx gy, )}
-1
=X ®MXMG’1M Go =
{S*}i,j = Tr [(251 ® MXMG’IMGQ> (Vz X |) ( ® MXMG/ MG2) (Vj ® |>i|
= Tr(EglviE(lej) Tr (MXMGEMGQ) = |:77, =T (MGQMGQ)}
x Tr(E5 V5 V) = {n — [k — 7 (G1Mg,)]} Tr(Z5 ' ViS5 'V))
=[n+q— (ki + k) Te(S5 ' ViSg V) =
S.=[n+q— (ki +k2)Sg

Now it is obvious how to finish the proof.

More about MINQUE cf. [7].
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL

4. Confidence regions

The normality of the observation matrix Y is assumed in this section.

An estimator
CI)(B1, BQ) = TI‘(AlB1) + TI'(AQBQ)

(Aq is a given m X k; matrix and As is a given m X ko matrix) is also normally
distributed and

B:

Tr (Al,AQ) —_ ~
B,
v (1 (g1 )| verd A | 2 ,
2 B,
\% B, = ' Y
ar< Tr [ (A1, Ag) [ = =Tr |A; (Mg ag, X XMeing, ) AYE

B,
/ Iy\—17 711 -1 ’
FTr | A, {G1 [G1(X'X) "G} + G,GY] GQ} 1) Ax

2Ty {Al(X’X)*lG’l(G;);[Gl e }A’Qz}

(cf. Corollary 2.3).

If ¥ is given, the determination of the (1 — «)-confidence interval for ®(-,--)
is elementary.

If ¥ = 0%V, where V is a given p.d. m x m matrix and ¢? is an unknown
parameter, it is sufficient to take into account Lemma 3.3, i.e. the (1 — a)-con-
fidence interval is [d, u]

B, ay .

d = Tr (A17A2) 21 - tm(n—}—q—lﬁ —k2) (1 - E) or1 Qa
B,
B, ay .

u = Tr (A17 AQ) ;\\1 + tm(n+q—k1 —k2) (1 - E) or1 Q7
B

where tp,(n4-q—k; —ks) (1 — 5) is (1 = §)-quantile of the Student distribution with
m(n + q — k1 — ka) degrees of freedom, 6;; is given by Lemma 3.3 and
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+
Q="Tr [Al (MG,IMG2 x’XMG;M%) AQV} +
1 -1
Tr {Al ({G’1 [G1(X'X)"'G] + G2G}] Gg} - |) A’Qv]

2Ty [Al(x’xrlc;g(G;);[GI(X,X),lg,l]A;v} .

If the matrix X is a priori unknown, its estimator v, v;;/(n+ ¢ — k1 — k2)
from Corollary 3.2 is at our disposal only. Thus the problem arises whether this
estimator can be used instead of the actual matrix 3. The following statement
can help in a decision. For the sake of simplicity a procedure is demonstrated
on the function ®(B;) = Tr(AB;), where A is a given m X k; matrix, only. (For
more general situation cf. also [3].)

THEOREM 4.1. Let € > 0 be such small positive real number that decreasing the
confidence level 1 — o to 1 — o — & can be tolerated. Let

U = A(Mg; o, X' XM ) A,

If

t2 ) : , kTr(UX)
PRI — {2+ ¥ + diag(X)[diag(X2)]'} < TU?)

then the estimator of X, i.e.

w

)3 S
7’L+q—k’1—k‘2

=v Vi /(n+q— ki — k)
can be used for a determination of confidence region and the confidence level is
at least 1 — o — €, where 1 — « is a level under the known matriz 3.

Here k = 1 — x3(1 — a —¢)/x3(1 — ), * means the Hadamard product of
matrices, i.e. {K=xL};; = {K}; ;{L}i;, t is sufficiently large real number with
the property that

w.

i € { }] —t\/((fz',z‘(fj,j +0a2;)/f,

w

}’j + t\/(Ui,in,j +07;)/f

occurs with sufficiently large probability, f =n+q—ki — ko, w; j = {W}; ; and
< means such ordering matrices, that K < L means {K}; ; < {L};; for all i
and j. Symbol diag(X) means the vector of diagonal entries of the matriz 3.
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
Proof. Since W = vi,v;; ~ Wy, (f, %), f =n+q— ki — ko, it holds w; j; ~1

[fO'iyj, f(O'iyiO'j’j + 0'1427]-)]. Obviously {E * 0 + dlag(E)[dlag(E)]’}w = 04,i034,j5 +
O'i27 ;- 1f t is sufficiently large, then regarding the Chebyshev inequality

o U"O"'—l—O'-2~
o L R Oy i E I I G R R
/ f to

When X is given, the (1 — a)-confidence interval for the function Tr(AB;) is

[Tr(Aél) - \/)@(1 — ) Tr(UY), Tr(Aél) + \/x%(l — o) Tr(UY) | .

Small changes of the entries of the matrix 3 imply small changes of the bound-
aries of the interval. Let the matrix of changes 0% satisfy the inequality

xil-a-—¢)
xi(l—«a)

where € > 0 is a sufficiently small number chosen in advance. Then

| Tr(U6X)| < {1 } Tr(UX) = k Tr(UX), (4)

P{Tr(ABl) € {Tr(AEl) — \/X%(l —a)[Tr(UX) + | Tr(UsX)|];

Tr(Aél) + \/X%(l —a)[Tr(UX) + | Tr(UéE)H] }

> P{Tr(ABl) € {Tr(AEl) - \/)ﬁ(l —a)[Tr(UX) — | Tr(UdX)|];

Tr(AB,) + \/Xfu — a)[Tr(UX) — Tr(UéE)H] } > P{Tr(ABl)

Tr(US) — (1 - %) Tr(US)

}

€ ;

Tr(AB,) - J (1 - a)

Tr(US) — (1 - X%(;_—O‘_)E)) Tr(UY)

Tr(A§1)+$X%(1—oa) T

- P{Tr(ABl) € [Tr(Aﬁl) —\/X3(1 - o) TH(UE); Tx(AB,)

/31— a) Tr(uz)} } —l-a-e
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LUBOMIR KUBACEK

Let ¢ > 0,63 = cU and at the same time |Tr(UoX)| < xTr(UX). Then
c=rTr(UX)/ Tr(U?). If

Tr(UX) Tr(UX) Tr(UX)

03| < ke =Ko =k )
192 < s gz I =m0l = n e

then | Tr(USE)| < [|62][||U]| < x Tr(US) (cf. (4)).

If ¢ is sufficiently large, then |6; ; — 0, ;| is smaller than t\/(aiyiajyj +o?)/f

and thus the condition (3) implies the validity of the statement. O

P
If ¥ = 5" 9;V,, then sometimes, under some condition, the confidence region
i=1
can be determined in a similar way as in Theorem 4.1.

p

THEOREM 4.2. Let ¥ = > 9;V;,uy = [Tr(UV,1U),..., Tr(UV,U)]" and the
i=1

other notations be the same as in Theorem 4.1. Then

9: V{i=1,... pHo—0; <

- {19: 9 =9y + 69, 39Sy 109 < L7 [H(UEOW}

’SluA
0

— P{Tr(ABl) € {Tr(AEl) — 30— a) Tr(US),

Tr(Aél) + \/X%(l —a) Tr(UfJ)] } >l—a—c.

Here & = Z J; iV, 9 is giwven by Theorem 3.4, v > 0 is sufficiently small number
=1
such that 1 — 7 can be considered as a practical certainty.

P

Proof. Analogously as in Theorem 4.1 let 6% = > V;d; satisfy the inequality
i=1

Tr(UéX)| = |uy 69| < kTr(UX). A sufficient condition for the validity of this

inequality is

/ f RIT(UD)

619 109 <
SE 2 ASEEI A
0
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL

If |u/y 69| < Kk Tr(UX), then

P{Tr(ABl) € {Tr(AEl) — \/)ﬁ(l —a) Tr[U(X + 03],

Tr(AEl) + \/)@(1 —a) Tr[U(Z + 52)@ } >1l—a—c.

With respect to the Bonferroni rule (cf. [1, p. 492]) and the Chebyshev inequality

{V{z—l L pHor - q9|<\f,/ fszl }Nl_

and thus the statement is proved. O

Remark 4.3. A verification of the inequality

2
P o iﬁ [Tr(UE)}
0% 2 uAS ,1uA

()

can serve as a basis for a preliminary decision, whether $ can be used instead
of the ¥ in a construction of the confidence interval for the function Tr(AB;).
It follows from the following consideration.

Even the set

p
{519 : 5519’5251519 < ;} (6)

is included into the set

{519: V{i=1,...,p}00 < \/g, /{%s;oll}m } (7)

also the set (6) covers the actual value 9 of the parameter 9 for sufficiently large
p/~ with practical certainty. Thus (5) implies the validity of |u/;69| < k Tr(UX)
with certainty.

In [4] the problem how large should be the value ¢ (= £) in some situations
is solved. It was found out that ¢ = 3 can be sufficiently large. Thus it seems
that the condition (5) can be sometimes too rigorous in practice.

Until now scalar functions of the parameter matrix ( 21 ) was considered.

2
A special vector function of the parameter By is ®(B1) = (b’'B1A’)’, where bis a
k- dimensional given vector and A is a given s x m matrix, where r(A) = s < m.
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THEOREM 4.4. The (1 — «)-confidence ellipsoid for the function ®(By) is

s

Ep(l—a) = {u . ue R ramthe) st AR pY

(AZ,HKUA,)71 2/
X B Mar 2. XXMy, 1, )+b(u —AB1b) < Fy jiig—(hy+h)—s+1(1 — @) ¢
1MGg 1Go

Proof. Since
(A® b')vee(By) ~ N, [(A ® b') vece(By), b (MG,IMGQ x’xMG,lMGQ)+ bAEA/] :
b (MG,I 2, XXM ar,) ) " bAV, v, A
~ W, [n fq—k— ko, b (MG/IMGZ X’XMG/IMGQ)JF bAzA’}
and the vector (A ® b’) vec(é’l) and the matrix

+
b’ (MG,I 2, X'XMg are,) ) bAV, v, A’

are stochastically independent, the Hotelling theorem (cf. [5]) can be used, i.e.

= +
[(A® b')vec(By) — (A® b') vee(B1))’ [b’ (MG/IMGZ x'XMG,lMGZ) b

—1 =~ 2
XAV v A (A B) vee(B)) — (A@ b)) vee(By)] ~ 25—,
Xn{l—kl—k2—3+1

where x2 and x3 tg—ki—ko—st1 are stochastically independent. The relationship

for the (1 — a)-confidence ellipsoid can be now easily obtained. (]

Another special vector function of By is AB1b, where A is a s X k; given
matrix of the rank r(A) = s < k; and b is a given m-dimensional given vector.

THEOREM 4.5. Let #(A') C M4 (Mg mg,) and 7(Ask) = s < ki, ie.
{A};.B1b, i = 1,...,s, are unbiasedly estimable functions with nonzero dis-

persions of their estimators. Then (1 — «)-confidence ellipsoid for the function
®(B;) = AB;1b is

2 + 11
Ep(l—a) = {u L weR (u— ABlb)’[A (MGEMGQ x’XMG,lMG2) A’}
x(u— Aﬁlb)/ <snig_7k—_,‘;> < Fympqetos—hy (1 — a)}.
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Proof. Since

AB.b ~ N, [ABlb, b'SbA(Mg; s, x’XMG,IMGQVA’} ,

2
T~ X’I’L —kl—kQ
b'>b— b’g’HgHb/[n 0= (ky + k)]~ BByttt q+q_ e

the random vector AB;b and the random variable b’'Sb are stochastically inde-
pendent and r [A(MGrlMG2 X'XMc: v, )+A’} = s, the statement is obvious. [

Let the (1 —«)-confidence region &g (1 —«) must be determined for the matrix
function ®(B1) = AB1D, where r(A,;,) =7 < k1,7(Dp,s) = s < m, #(A") C
A (Mg, MGz) and it is assumed that ¥ is known. The confidence region can be
obtained in a standard way as a set

In an analogous way as in the preceding part of this section, the expression for
&5 (1 — a) can be investigated when X is either unknown, or partially unknown.
The case ¥ is unknown will be investigated only.

LEMMA 4.6. Let
Q= (D'B/A' — D'B/A) [A(MGIIMGZ x’XMG,lMGZVA’} ' (AB,D — AB,D)
and
(%) = Tr{Q[D’(E + az)o]*l} — TY[Q(D'ED)"Y).
Then
n(6X) = — Tr[D(D'ED)'Q(D'ED) 'D’6X]
~ (—rTr[D(D’z:D)*D’az},27«Tr[(D’z:D)*lD’&ED(D’ED)*D’&:D]).

Proof. Since
ox

{aTr[Q(D/ED)l] } =T [Q(D’ED)lD’—D(D’ED)l}

ox aam
_ [ —2¢/D(D'ED)"'Q(D'ED)'D'e;, i# j,
—e/D(D’'SD)"'Q(D'SD) 'D'e;, =3,
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the random variable n(dX), for sufficiently small 63, can be expressed as

52 ZZ aTI' D ED)_l}éo‘i’j

Jdo;
=1 j=1 2%

:—ZTr (D’SD)"'Q(D'ED) 'D’e;el]do; ;

—Z Z Tr[D(D'SD)"'Q(D'SD)'D’(e;€] + e;€])]60;
=1 j=i+1

= - Tr[D(D'ED)"'Q(D’ED)'D/¢%)].
Let (D'ED)~'D’§ED(D’ED) ! = U. Then

E{—Tr[D(D’ED)*lQ(D’ED)*lD’(SE}} — —E[Tr(QU)]
__E <Tr{D’(81 _By)A’ [AMG; 11, XXM a1, ) A “'AB, - §1)DU}>
—E[[VeC(Bl _ Eg]’((ouo') © { A [AMG; r1, XXMG a1, ) A 1A}>
« vee(By — El)]
- TrK(DUD’) ® {A' [A(MG&MGQ x’me,lMczﬁA'} 1A}>

X |:E & (MGEMGQ X’X'\/l(;/lij2 )+}:|
— _ Tr(DUD'S) Tr{A’ [A(Mg; a1, X' XM a1, ) A
< A(Mgy arg, X’XMG/IMGQ)J’} = - Tr[D(D'ED)"'D'sED(D'ED) 'D'S]
X TI“{ [A(MG,IMGQ X/XMc;v/1]\4G2 )+A/] 71A(MG’1MG2 X/XMG,IMGQ )+A/}
= —rTr[(D'ED) 'D'§XD].
Further
—1

Var[Tr(UQ)] = Vaf{(Bl — B)'A'[A(Mg; nre, X XMay ai, ) TA]

xA(B; — §)DUD’} = Var[[vec(Bl - 61)}’<(DUD’) ® {A’ [A(My ar, X’
xXMg;arg, ) T A] _1A}> vec(By — §1)}
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= QTT{ {((DUD/) ® {A/ [A(Mg; 16, X' XM, ar, ) TA'] _1A})

2
x[2 @ (Mg arg, x’XMG,lMGZ)ﬂ] } = Tr(DUD’SDUD'Y)

x Tr{A’ [A(Mg; o, X' XMy are, )P AT A

% (M arg, X' XMz, ) A [A(May arg, X' XMy g, )P A
xA(Mc g, x’XMG,lMGZV} =2Tr[D(D’'ED) 'DfED(D’'ED) !
xD'ED(D'XD) 'D’§XD(D'ED) 'D'S] Tr(l,.,)
=2r Tr[(D'ED)"'D'§ED(D'ED) 'D'§ED].
O

THEOREM 4.7. Lett > 0 be a given sufficiently large number and let 6% satisfy
the inequality

—rTr[(D'ED)~'D'6XD] + t\/2r Tr[(D'ED)~'D'6XD(D'ED)~'D'§%D]
<Xl —a) = xi(1—a—¢) (8)
for a given € > 0. Then
P{ABlD € {U : Tr{(U - AﬁlD)’[A(MGSMGZ x’XMG,1MG2)+A’]‘1
x(U—AB;D)} < x2,(1— a)}} >1—a—c¢.

Proof. With respect to Lemma 4.6

Tr{(U — AB; D)’ [A(Mg; a1, X' XMay iz, )P A] ™

x(U — Aﬁlo)[D’(z +0%)D] '}
=2, — Tr[D(D'ED)'Q(D'ED) 'D'6X] = xZ, + n(X).

If 63 satisfy inequality (8), then n(dX) is with sufficiently high probability
smaller than x2,(1 —a) — x2,(1 — a —€) = §, what is implied by the Chebyshev
inequality. Thus

P2, +1(0%) < 21— )} & P{xZ, < 21— a) - 8}
= P{}, <x(l—a—g}=1-a—c

0
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Remark 4.8. For a first orientation let 3 = ¢X, ¢ > 0. Then

—rTr[(D'ED)"'D’6XD] +t\/2r Tr[(D’ED)~'D’6XD(D’'ED)~'D'§xD]
0
—rs +t\V/2rs’

what means that |00, ;| < c|o; ;| implies a smaller destroy of the confidence level
than € > 0. Since

. 1 2
i M\ T T T (04055 +075) )

we must have at our disposal the degrees of freedom n + ¢ — k1 — ko for the
Wishart matrix large enough that at least

=—rsc+tV2rsc2 <§ = c< |005 ;| < cloi

2
0ii05,5 T 055 clogl
n 4+ q — kl — kQ 3

In such a case the estimator ¥ = —2 v/ v,; can be used in a determina-
n+q—ki—ko—I1=

tion of the (1 — «v)-confidence region for the function ®(B;) = AB;D, instead of
the actual matrix 3.
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