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UNIFORM CONVERGENCE

ON SPACES OF MULTIFUNCTIONS

Dušan Holý

(Communicated by L’ubica Holá )

ABSTRACT. We study spaces of multifunctions with closed values, multifunc-
tions with closed graphs, USCO multifunctions, minimal USCO multifunctions

and the space of densely continuous forms as metric spaces, equipped with the
topology of uniform convergence. We give conditions under which these metric
spaces are complete.
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In what follows let X, Y be Hausdorff topological spaces. Let Z be a topolog-
ical space. The symbol Bc, B and int B will stand for the complement, closure
and interior of B ⊂ Z, respectively. We denote by 2Z the space of all closed
subsets of Z, by CL(Z) the space of all nonempty closed subsets of Z and by
K(Z) the space of all nonempty compact sets in Z.

Let (Z, d) be a metric space. The open d-ball with center z0 ∈ Z and radius
ε > 0 will be denoted by Sε[z0] and the ε parallel body

⋃
a∈A

Sε[a] for subset A
of Z will be denoted by Sε[A].

The distance between a point z and a nonempty set A will be denoted by
d(z, A), where

d(z, A) = inf
{
d(z, a) : a ∈ A

}
.

The diameter of a nonempty subset A of Z will be denoted by diam A, where

diam A = sup
{
d(z, y) : z ∈ A and y ∈ A

}
.

The Hausdorff metric Hd on 2Z is defined by

Hd(A, B) = max
{

sup
{
d(a, B) : a ∈ A

}
, sup

{
d(b, A) : b ∈ B

}}
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if A and B are nonempty. If A �= ∅ take Hd(A, ∅) = Hd(∅, A) = ∞. Hd defines
an (extended-valued) metric on 2Z . We will often use the following equality on
CL(Z):

Hd(A, B) = inf
{
ε > 0 : A ⊂ Sε[B] and B ⊂ Sε[A]

}
.

Now let X be a topological space and (Y, d) be a metric space.
Denote by F (X, 2Y ) the set of all multifunctions with closed values from X

to Y . Let � be the (extended-valued) metric on F (X, 2Y ) defined by

�(Φ, Ψ) = sup
{
Hd(Φ(x), Ψ(x)) : x ∈ X

}
for each Φ, Ψ ∈ F (X, 2Y ). The open sphere of radius ε around Φ with the centre
Φ looks like: {

Ψ ∈ F (X, 2Y ) : �(Φ, Ψ) < ε
}
.

It is known ([Be]) that if d is a complete metric on Y , then Hd is a complete
metric on 2Y . Then the following holds:

������� 1� Let X be a topological space and (Y, d) be a complete metric space.
Then (F (X, 2Y ), �) is a complete metric space.

By the active boundary of F at x0 (FracF (x0)) we mean

FracF (x0) =
⋂{

F (W ) \ F (x0) : W ∈ B(x0)
}

where B(x0) stands for a neighbourhood base at x0 and F (W ) =
⋃{

F (x) :
x ∈ W

}
, see [Do].

Denote by G(X, 2Y ) the set of all multifunctions with closed graphs i.e., if
Φ ∈ G(X, 2Y ) the set

{
(x, y) : y ∈ Φ(x)

}
is a closed set in X × Y .

Combining [Be, Lemma 6.1.15, 6.1.16] we obtain the following result.

�����	
�
�� 2� Let X and Y be Hausdorff topological spaces. A multifunction
F from X to Y has closed graph if and only if F (x) is a closed set and F (x)
contains FracF (x) for all x ∈ X.

������� 3� If (Y, d) is a metric space, then the following are equivalent.

(a) Y is locally compact.
(b) For every space X, G(X, 2Y ) is a closed set in (F (X, 2Y ), �).

P r o o f.
(a) =⇒ (b) Let Φ ∈ F (X, 2Y ) be in the closure of G(X, 2Y ) in (F (X, 2Y ), �).

Let
{
Φn : n ∈ Z+

}
(Z+ = {1, 2, 3, . . .}) be a sequence in G(X, 2Y ) convergent

to Φ in (F (X, 2Y ), �). By Proposition 2 it is sufficient to prove that FracΦ(x) ⊂
Φ(x) for all x ∈ X.
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Suppose that this is not true. Then there exists x0 ∈ X, y0 ∈ Y such that
y0 ∈ FracΦ(x0) and y0 /∈ Φ(x0). Let ε > 0 be such that

Sε[Φ(x0)] ∩ Sε[y0] = ∅ and Sε[y0] is compact.

Since y0 ∈ FracΦ(x0), there is a net{
xW : W ∈ B(x0)

}
, where xW ∈ W

(where B(x0) stands for a neighbourhood base at x0), in X which converges to
x0 and a net{

yW : W ∈ B(x0)
}
, where yW ∈ S ε

2
[y0] ∩ (Φ(xW ) \ Φ(x0)), in Y.

Sequence
{
Φn : n ∈ Z+

}
converges to Φ in (F (X, 2Y ), �), then for ε

2 there exists
n0, such that Φn0 ∈ S ε

2
[Φ].

Then there exists a net
{
zW : W ∈ B(x0)

}
in Y such that

d(zW , yW ) <
ε

2
and zW ∈ Φn0(xW ) \ Φn0(x0).

The net
{
zW : W ∈ B(x0)

}
is a subset of compact set Sε[y0] and then has a

cluster point z0. Thus z0 ∈ FracΦn0(x0) and since

Φn0(x0) ⊂ S ε
2
[Φ(x0)],

we have that z0 /∈ Φn0(x0). Since Φn0 ∈ G(X, 2Y ), by Proposition 2 it is a
contradiction.

(b) =⇒ (a) follows from [HoMc, Theorem 8] �

������� 4� If (Y, d) is a metric space, then the following are equivalent.

(a) Y is locally countably compact.
(b) For every first countable space X, G(X, 2Y ) is a closed set in (F (X, 2Y ), �).

P r o o f.
(a) =⇒ (b) can be proved by modification of the proof of (a) =⇒ (b) of

the previous theorem.
(b) =⇒ (a) follows from [HoMc, Theorem 8′]. �

������� 5� Let X be a topological space and (Y, d) be a locally compact com-
plete metric space. Then (G(X, 2Y ), �) a is complete metric space.

P r o o f. By Theorem 1, (F (X, 2Y ), �) is a complete metric space and by Theo-
rem 3, (G(X, 2Y ), �) is a closed set in (F (X, 2Y ), �), so (G(X, 2Y ), �) is a com-
plete metric space. �
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A multifunction F : X → Y is said to be upper semicontinuous (USC) at x0

if for every open set O which contains F (x0) there exists a neighbourhood V of
x0 such that F (V ) ⊂ O.

Denote by U (X, Y ) the space of upper semicontinuous nonempty compact-
valued (USCO) multifunctions. It is known that every USCO multifunction has
a closed graph so U (X, Y ) ⊂ G(X, 2Y ), see [DL], [Ch].

������� 6� Let X be a topological space and (Y, d) be a complete metric space.
Then (U (X, Y ), �) is a complete metric space.

P r o o f. Since by Theorem 1, F (X, 2Y ) is a complete metric space, it is sufficient
to show that U (X, Y ) is a closed set in F (X, 2Y ). Let Φ ∈ F (X, 2Y ) be in the
closure of U (X, Y ) in (F (X, 2Y ), �). Let

{
Φn : n ∈ Z+

}
be a sequence in

U (X, Y ) convergent to Φ in (F (X, 2Y ), �). Since for a complete metric space
(Y, d) the set K(Y ) is a closed set in (2Y , Hd), see [Be], Φ(x) is a nonempty
compact set for every x ∈ X.

To prove that Φ ∈ U (X, Y ), it is sufficient to show that Φ is USC at each
x ∈ X. Suppose it is not true. Then for some x0 ∈ X there exists an open set
O which contains Φ(x0) and such that for every neighbourhood V of x0 there
exists xV ∈ V with Φ(xV ) ∩ Oc �= ∅.

Since Φ(x0) is a compact set, we have that Sε[Φ(x0)] ⊂ O for some ε > 0.
Consider S ε

4
[Φ]. There is n0 ∈ Z+ such that Φn ∈ S ε

4
[Φ] for every n ≥ n0.

Let n1 > n0. Since Φn1 is USC at x0, there exists W ∈ B(x0) such that
Φn1(W ) ⊂ S ε

4
[Φn1(x0)].

Since xW ∈ W we have

Φn1(xW ) ⊂ S ε
4
[Φn1(x0)]

and since Φn1 ∈ S ε
4
[Φ] we have

Φn1(x0) ⊂ S ε
4
[Φ(x0)],

then
Φn1(xW ) ⊂ S ε

4
[Φn1(x0)] ⊂ S ε

2
[Φ(x0)].

Then from

Φ(xW ) ∩ (Sε[Φ(x0)])c �= ∅ and Φn1(xW ) ⊂ S ε
2
[Φ(x0)]

it follows that Hd(Φ(xW ), Φn1(xW )) > ε
4 , a contradiction since Φn1 ∈ S ε

4
[Φ]. �

A multifunction Φ ∈ U (X, Y ) is said to be minimal USCO ([DL]) if it is USCO
and does not contain properly any other USCO multifunction from U (X, Y ).

By an easy application of the Kuratowski-Zorn principle we can guarantee
that every USCO multifunction from X to Y contains a minimal USCO multi-
function from X to Y ([DL]).

Minimal multifunctions were also studied in [Ho1], [M1], [M2].
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Denote by M (X, Y ) the space of all minimal USCO multifunctions.

������� 7� Let X be a topological space and (Y, d) be a metric space. Then
M (X, Y ) is a closed set in (U (X, Y ), �).

P r o o f. Let Φ be in the closure of M (X, Y ) in (U (X, Y ), �). Let Ψ be a minimal
USCO multifunction contained in Φ. We claim that Φ = Ψ (Φ, Ψ are identified
with their graphs). Suppose that there is (x0, y0) ∈ Φ \ Ψ. Then there is an
open neighbourhood U of x0 and ε > 0 such that(

U × Sε[y0]
) ∩ Ψ = ∅.

Let
{
Φn : n ∈ Z+

}
be a sequence in M (X, Y ) convergent to Φ in (U (X, Y ), �).

Consider S ε
2
[Φ]. Then there exists n0 ∈ Z+ such that �(Φn0 , Φ) < ε

2 . Put

Ω = Φn0 \
(
U × S ε

2
[y0]

)
and Ω(x) =

{
y : (x, y) ∈ Ω

}
.

We claim that Ω(x) �= ∅ for all x ∈ X.
It is sufficient to show that

Ω(x) �= ∅ for all x ∈ U.

Let x ∈ U , since Ψ is contained in Φ and Φn0 ∈ S ε
2
[Φ], then there is y ∈ Ψ(x)

and z ∈ Φn0(x) such that d(y, z) < ε
2 . Then z /∈ S ε

2
[y0]. Thus we have that

Ω(x) �= ∅.
Consider Ω as a multifunction from X to Y . By [DL], graph of Φn0 is a closed

set, so graph of Ω is closed and then Ω is an USCO multifunction. Ω ⊂ Φn0 and
we claim that Ω �= Φn0 . Since Φn0 ∈ S ε

2
[Φ], there exists y ∈ Φn0(x0) such that

d(y0, y) < ε
2 so

Ω(x0) �= Φn0(x0).
Thus Φn0 is not a minimal USCO multifunction, a contradiction. �

By using Theorem 6 and Theorem 7 we obtain the following theorem:

������� 8� Let X be a topological space and (Y, d) be a complete metric space.
Then (M (X, Y ), �) is a complete metric space.

Now we define a densely continuous form from X to Y ([HM]).
Denote by DC(X, Y ) the set of functions from X to Y which are continuous

at all points of some dense subset of X.
Let f be a function from X to Y . Define

C(f) =
{
x ∈ X : f is continuous at x

}
.

Let
f � C(f) =

{
(x, y) ∈ X × Y : x ∈ C(f), y = f(x)

}
.

We define the set D(X, Y ) of densely continuous form by

D(X, Y ) =
{

f � C(f) : f ∈ DC(X, Y )
}
.
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The densely continuous forms from X to Y may be considered as multifunc-
tions (D(X, Y ) ⊂ F (X, 2Y )).

Let X be a topological space and (Y, d) be a metric space. If Φ ∈ D(X, Y )
and A ⊂ X, we say that Φ is bounded on A, provided that the set Φ(A) is a
bounded set of Y . Then we say that Φ is locally bounded if for all x ∈ X there
exists a neighbourhood U (x) of x such that Φ is bounded on U (x).

Now define D�(X, Y ) to be the set of members of D(X, Y ), that are locally
bounded.

Let (Y, d) be a metric space. A metric space (Y, d) is called b-compact, if
every bounded subset of Y has compact closure ([Ho2]).

Similar as in [Ho1] we show the following facts.
Let (Y, d) be a b-compact, then

D�(X, Y ) ⊂ M (X, Y ).

In fact, since (Y, d) is a b-compact, if Φ ∈ D�(X, Y ), then for all x ∈ X, Φ(x) is
a nonempty compact set. By a result of B e r g e [Ber, p. 112] any multifunction
with closed graph which has a compact range is upper semicontinuous. Then

D�(X, Y ) ⊂ U (X, Y ).

Now by [DL, Theorem 4.7], if Φ ∈ D�(X, Y ), then Φ is minimal USCO and

D�(X, Y ) ⊂ M (X, Y ).

If X is a Baire space and (Y, d) is a b-compact metric space, then

M (X, Y ) ⊂ D�(X, Y ).

In fact, if Φ is a USC multifunction with nonempty values, then by [Fo] there
is a dense subset E of X such that Φ is lower semicontinuous at each x ∈ E.
Then, if Φ ∈ M (X, Y ), from the minimality of Φ is easy to show that, for each
x ∈ E, Φ(x) must be single-valued. Then any selection of Φ is continuous in
each x ∈ X and by [DL], Φ ∈ D(X, Y ). It is easy to show that, if (Y, d) is a
b-compact, every USCO multifunction from X to Y is locally bounded.

As a result we have that if X is a Baire space and (Y, d) is a b-compact, then

M (X, Y ) = D�(X, Y ).

By using of Theorem 8, by above mentioned and from the fact, that every
b-compact is complete, we have the following result:

������� 9� Let X be a Baire space and (Y, d) be a b-compact space. Then
(D�(X, Y ), �) is a complete metric space.

�����	
�
�� 10� ([Ho1]) Let X, Y be topological spaces and Y be locally com-
pact. If Φ ∈ D(X, Y ), then there is an open dense set U in X such that Φ
is upper semicontinuous at every point in U and for every x ∈ U Φ(x) is a
nonempty compact set.
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������� 11� Let X be a Baire space and (Y, d) be a locally compact metric
space. Then D(X, Y ) is a closed set in (G(X, 2Y ), �).

P r o o f. The proof uses some of the ideas of the proof of [Ho1, Theorem 4.3].
Let Φ ∈ G(X, 2Y ) be in the closure of D(X, Y ) in (G(X, 2Y ), �).

Put for each n ∈ Z+

Bn =
{
x ∈ X : diam Φ(x) < 1

n

} ∪ {
x ∈ X : Φ(x) = ∅}.

We prove that int Bn is a dense set in X. Let
{
Φk : k ∈ Z+

}
be a sequence in

D(X, Y ) convergent to Φ in (G(X, 2Y ), �). Consider S 1
4n

[Φ]. Then there exists
kn ∈ Z+ such that

Hd(Φ(x), Φkn
(x)) <

1
4n

for all x ∈ X. (1)

Since Φkn
∈ D(X, Y ), there exists a dense set Akn

in X such that Φkn
(x) is a

singleton and Φkn
is USC at every x ∈ Akn

(see proof of [Ho1, Proposition 2.2]).
We have diamΦ(x) < 1

2n for every x ∈ Akn
. Thus Akn

⊂ Bn. Let x0 ∈ Akn
,

Φkn
is USC at x0, then there exists a neighbourhood V of x0 such that

Φkn
(V ) ⊂ S 1

4n
[Φkn

(x0)].

Let x ∈ V , then

Φ(x) ⊂ S 1
4n

[Φkn
(x)] ⊂ S 1

4n
[S 1

4n
[Φkn

(x0)]] ⊂ S 1
2n

[Φkn
(x0)].

Since Φkn
(x0) is a singleton, we have that diamΦ(x) < 1

n or Φ(x) = ∅ and then
V ⊂ Bn. Thus int Bn is a dense set in X.

By Proposition 10, for all Φk there exists an open dense set Uk in X such
that Φk is USC at every point in Uk and for every x ∈ Uk, Φk(x) is a nonempty
compact set. Because of (1) and the properties of Hd we have that Φ(x) is
nonempty for all x ∈ Ukn

. Put Dn = int Bn ∩ Ukn
. Then Dn is an open dense

set in X.
Put B =

⋂
n∈Z+

Dn. Then B is a dense set in X since X is a Baire space. For all

x ∈ B we have that Φ(x) is a singleton.
Let x ∈ X. If Φ(x) �= ∅, choose s(x) ∈ Φ(x). Let z be an arbitrary point

in Y . We define a function f : X → Y as follows:

f(x) =

{
s(x) if Φ(x) �= ∅,
z otherwise.

We claim that f is continuous at every x ∈ B. Let x0 ∈ B and let ε > 0. For ε
3

there exists n ∈ Z+ such that 1
4n < ε

3 . Φkn
is USC at x0, thus there is an open

neighbourhood U ⊂ Ukn
of x0 such that

∅ �= Φkn
(x) ⊂ S ε

3
[Φkn

(x0)] for every x ∈ U.
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Since Φkn
∈ S ε

3
[Φ] and Φkn

(x) �= ∅ for every x ∈ U , we have that Φ(x) �= ∅ for
every x ∈ U .
Let x ∈ U . We have

f(x) ∈ S ε
3
[Φkn

(x)] ⊂ S ε
3
[S ε

3
[Φkn

(x0)]] ⊂ S ε
3
[S ε

3
[S ε

3
[f(x0)]]] ⊂ Sε[f(x0)].

Now we prove that Φ = f � C(f). Suppose that it is not true. Then there is

(x0, y0) ∈ Φ \ f � C(f).

There is an open neighbourhood U of x0 and Sε[y0] for some ε > 0, such that

(U × Sε[y0]) ∩ f � C(f) = ∅.
There is k ∈ Z+ such that

Φk ∈ S ε
4
[Φ].

Then there exists z ∈ Φk(x0) with d(y0, z) < ε
4 .

Let gk ∈ DC(X, Y ) be such that Φk = gk � C(gk). There is x1 ∈ U ∩Uk such
that

d(gk(x1), y0) <
ε

4
.

Since Φk(x1) = gk(x1) and Φk is USC at x1, for ε
4 there exists an open neigh-

bourhood O of x1 such that for all x ∈ O

Φk(x) ⊂ S ε
4
[gk(x1)].

Let a ∈ U ∩ O ∩ B. We have f(a) = Φ(a) and

f(a) ∈ S ε
4
[Φk(a)] ⊂ S ε

2
[gk(x1)] ⊂ Sε[y0],

a contradiction. �

The following example shows that the condition of Bairness of the space X
in the above theorem is essential.

Example 1. Denote by Q the set of all rational numbers and by R the set of
all real numbers. Let X = Q, Y = R and consider both spaces with the usual
metric d. Let h be a bijection from Z+ to Q. For each n ∈ Z+ define the function
fn : X → Y as follows: If n = 1, then

f1(x) =

{
1
2 x ≥ h(1),
0 x < h(1).

Suppose we have defined f1, . . . , fn. We define fn+1 as follows: Let εn+1 > 0 be
such that |h(n + 1) − h(i)| > 2εn+1 for all i < n + 1. Then

fn+1(x) =

{
fn(x) + 1

2n+1 h(n + 1) ≤ x < h(n + 1) + εn+1,

fn(x) otherwise,
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It is easy to see that C(fn) is a dense set in X for every n ∈ Z+.
Put Fn = fn � C(fn) for every n ∈ Z+. Fn ∈ D(X, Y ) for every n ∈ Z+.

Now define the multifunction F from X to Y as follows: If x = h(1), then

F (x) =
{
0, 1

2

}
If x = h(n), where n > 1, then

F (x) =
{
fn−1(x), fn−1(x) + 1

2n

}
.

It is easy to see that the sequence
{
Fn : n ∈ Z+

}
converges to F pointwise.

Since for all x ∈ X

Hd(Fn(x), Fn+1(x)) ≤ 1
2n+1

,{
Fn : n ∈ Z+

}
is Cauchy. By Theorem 5 there exists a multifunction H ∈

G(X, 2Y ) such that
{
Fn : n ∈ Z+

}
converges to H in (G(X, 2Y ), �). Then

H(x) = F (x) for all x ∈ X. Since F (x) consist of two elements for all x ∈ X, we
have F /∈ D(X, Y ).

The proof of the next theorem follows from Theorem 5 and Theorem 12.

������� 12� Let X be a Baire space and (Y, d) be a locally compact complete
metric space. Then (D(X, Y ), �) is a complete metric space.
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[Ho1] HOLÁ, L’.: Spaces of densely continuous forms, USCO and minimal USCO maps,
Set-Valued Anal. 11 (2003), 133–151.
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