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UPPER INTEGRAL

AND ITS GEOMETRIC MEANING

Josef Bukac

(Communicated by Miloslav Duchoň )

ABSTRACT. The Hahn definition of the integral is recalled, the requirement
of measurability of the integrand omitted. Both the upper and lower integrals

comply with this definition and so does any measurable function between them.
The outer product measure of the hypograph of a nonnegative bounded non-

measurable function is equal to the upper integral which is equal to one of the Fan
integrals. The outer measure of the graph of a bounded nonmeasurable function
is equal to the difference between the upper and lower integrals.

A norm for not necessarily measurable functions is defined with the upper

integral. The linear space with this norm is complete. The convergence in this
space implies the convergence in outer measure. The distance as an outer measure
of the symmetric difference of two sets gives us a complete metric space of classes
of subsets.
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1. The Hahn definition of integral

Throughout the paper we use a complete nonnegative measure which means
that all subsets of a set of measure zero are measurable and have measure zero.
The reason is that it would be difficult to trace exactly where the level sets of
nonmeasurable functions would have measure zero or would be nonmeasurable
as subsets of a set of measure zero.

����������� Let S be a set. We say that (S, Σ, φ) is a measure space if Σ is
a σ-algebra of some subsets of S, S ∈ Σ, and φ is a σ-additive, nonnegative,
finite and complete set function defined on Σ. Such a set function is also called
a measure.
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We could find a dozen definitions or so of the Lebesgue integral in the litera-
ture. They define the same thing and differ only in details. We start with the
H a h n definition of the integral and find out what its relation to the upper and
lower integrals is.

Even though this paper is centered around the upper integral and its appli-
cations, we recall the Hahn definition first. The way the integral is presented in
[2, §12.1] requires measurability but the very definition may be given without it.

����������� Let a measure space (S, Σ, φ) be given and let a function f be
defined almost everywhere on S. If there is a σ-additive set function h defined
on Σ such that for any A ∈ Σ and arbitrary C1 and C2, for which C1 ≤ f(x) ≤ C2

for almost all x ∈ A it holds that C1φ(A) ≤ h(A) ≤ C2φ(A), then f is called
integrable on S, h is called an integral of the function f . When the function h
is uniquely determined, we write h(A) =

∫
A

f dφ.

The measurability of the integrand may be put off until the time when it is
required to prove the uniqueness of the integral.

�	��
�� 1� If f is measurable and integrable on S, then the function h is
determined uniquely.

P r o o f. [2, §12.1.2]. �

It is important that if f is measurable, the Hahn definition of the integral is
equivalent to the usual definitions of the Lebesgue integral as shown in [2, §13.1.1,
§13.1.2]. It means we feel free to take for granted theorems from real analysis
without any proof or reference. Only two examples are mentioned specifically
because the terminology has not been unified.

As a first example we present the theorem ([2, §12.1.8]) on monotone bounded
convergence and use it several times. It says that if (S, Σ, φ) is a measure space,
0 ≤ f1, f2, . . . is a sequence of measurable functions defined for almost all x ∈ S
and there is an M > 0 such that −M ≤ fN(x) ≤ fN+1(x) ≤ M for all N and
almost all x ∈ S, and

∫
S

fN dφ ≤ M < ∞, then not only is there an f such that

lim fN (x) = f(x) for almost all x ∈ S but also lim
∫
S

fN dφ =
∫
S

f dφ ≤ M .

Another example is the theorem ([4, 5-5 I]) on monotone convergence with
uniformly bounded integrals which says that if (S, Σ, φ) is a measure space,
f1, f2, . . . is a sequence of measurable functions defined for almost all x ∈ S
such that 0 ≤ fN (x) ≤ fN+1(x) for all N and almost all x ∈ S and there is an
M > 0 such that

∫
S

fN dφ ≤ M for all N , then fN(x) converges to some f(x) for

almost all x and lim
∫
S

fN (x) dφ =
∫
S

f(x) dφ ≤ M .
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The upper integral is defined in [2, §12.5]. We may use any equivalent defini-
tion of the integral we are used to for the definition of the upper integral.

����������� Let f be defined almost everywhere on A ∈ Σ. There exists
a measurable function which is greater than or equal to f almost everywhere
on A. We define the upper integral of f on A as

−∫
A

f dφ = inf
g≥f

∫
A

g dφ,

where the infimum is taken over all the measurable functions greater than or
equal to f .

�	��
�� 2� Let the function f be defined almost everywhere on A ∈ Σ. Among
the measurable functions that are greater than or equal to f there exists almost
everywhere a unique function f∗, for which

−∫
A

f dφ =
∫
A

f∗ dφ.

P r o o f. [2, §12.5.2]. �

�	��
�� 3� If
−∫
A

f dφ is finite, then there is a measurable function f∗ ≥ f such

that
−∫

E

f dφ =
∫
E

f∗ dφ

for all measurable E ⊂ A.

P r o o f. [2, §12.5.211]. �
�	��
�� 4� Let a measure space (S, Σ, φ) and a finite nonnegative function f
defined on S almost everywhere be given. The function f does not have to be

measurable. Then
−∫
A

f dφ satisfies the conditions in the Hahn definition of the

integral of f .

P r o o f. There is a measurable function f∗ ≥ f such that
−∫
E

f dφ =
∫
E

f∗ dφ for

any E ∈ Σ. For any measurable E ⊂ A and C1 such that C1 ≤ f(x) for x ∈ E
it holds that C1 ≤ f(x) ≤ f∗(x) for almost all x ∈ E. Therefore

C1φ(E) =
∫
E

C1 dφ ≤
∫
E

f∗ dφ.
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We assume that f(x) ≤ C2 for x ∈ E. Let B be the set of those x ∈ E for
which f∗(x) > C2. We will show that φ(B) = 0. Let φ(B) > 0. Then we define
f2(x) = C2 for x ∈ B and f2(x) = f∗(x) for x ∈ E − B. Therefore it holds
that f(x) ≤ f2(x) for x ∈ E and f2(x) < f∗(x) for x ∈ B and it follows that∫
E

f2 dφ <
∫
E

f∗ dφ, which is a contradiction. Thus φ({x ∈ E : f∗(x) > C2}) = 0

and we can write∫
E

f∗ dφ =
∫

E−B

f∗ dφ ≤
∫

E−B

C2 dφ = C2φ(E).

We can define the lower integral in a similar manner and show that it satisfies
the definition of integral. We can thus conclude that there are more than one
set functions satisfying the inequalities defining the integral. In the following,
if f is finite and nonnegative almost everywhere, we denote by f∗ a measurable
function satisfying f∗(x) ≥ f(x) for almost all x ∈ S and

∫
A

f∗ dφ = inf
g≥f

∫
A

g dφ.

f∗ will also be called an upper function corresponding to f .
By f∗ we denote the unique measurable function for which f∗(x) ≤ f(x) for

almost all x ∈ S and
∫
A

f∗ dφ = sup
g≤f

∫
A

g dφ. f∗ will be called a lower function
corresponding to f . �

����
� Let f1 and f2 be measurable and f1 < f2 almost everywhere on a
measurable set A of positive measure. Then there is an ε > 0 and a measurable
set A1 ⊂ A with a positive measure such that f1 + ε < f2 on A1.

P r o o f. Assume there is no such ε > 0. Then for every natural N > 0 the
set CN of those x ∈ A for which f1(x) + 1/N < f2(x) has measure zero. If
f1(x) < f2(x), then x ∈ CN for some N . The union

⋃
CN has measure zero,

therefore the set of those x for which f1(x) < f2(x) would have measure zero,
which is a contradiction. �

�	��
�� 5� Let a measure space (S, Σ, φ) be given. Assume that a bounded
function f is defined almost everywhere on S, f does not have to be measurable.
Then the set function

∫
A

fm dφ satisfies the conditions of the Hahn definition

of integral if and only if fm is measurable and f∗ ≤ fm ≤ f∗ holds almost
everywhere.

P r o o f. First we show that if f∗ ≤ fm ≤ f∗ holds almost everywhere for a
measurable fm, then

∫
A

fm dφ satisfies the conditions of the Hahn definition of

integral. Let C1 ≤ f(x) for all x ∈ E ∈ Σ. Let B be the set of x ∈ E for
which f∗(x) < C1. To show that φ(B) = 0, we assume φ(B) > 0. We define
f2(x) = C1 for x ∈ B and f2(x) = f∗(x) for x ∈ E − B. Thus f2(x) ≤ f(x) for

526

Unauthenticated
Download Date | 2/3/17 10:42 AM



UPPER INTEGRAL AND ITS GEOMETRIC MEANING

x ∈ E and f2(x) > f∗(x) for x ∈ B. It follows that
∫
E

f2 dφ >
∫
E

f∗ dφ, which is a

contradiction. Therefore we get φ
({x ∈ E : f∗(x) < C1}

)
= 0 and we can write∫

E

fm dφ ≥
∫
E

f∗ dφ =
∫

E−B

f∗ dφ ≥
∫

E−B

C1 dφ,

the last integral being equal to C1φ(E). If C2 ≥ f(x) for x ∈ E, the proof is
similar.

Now we want to show that if f∗ < fm holds on a set of positive measure, then∫
A

fm dφ does not satisfy the conditions of the Hahn definition of integral.

According to the lemma there is an ε > 0 such that A1 =
{
x : f∗(x) + ε

< fm(x)
}

has positive measure. Since f∗ is measurable and bounded, there is a
sequence of simple functions si ≥ f∗ converging uniformly to f∗. There is also a
sequence of simple functions ti ≤ fm converging uniformly to fm. We can thus
pick a j such that

f(x) ≤ f∗(x) ≤ sj(x) < f∗(x) + ε/2 ≤ fm(x) − ε/2 < tj(x) ≤ fm(x)

on a set of positive measure A1.
Since sj are simple functions, it is obvious that there is a measurable set

A2 ⊂ A1 of positive measure with sj constant on A2. In the same manner,
because tj is simple, we see that there is a measurable A3 of positive measure
such that A3 ⊂ A2 and tj is constant on A3. Let C = (sj(x) + tj(x))/2, where
x ∈ A3. Then for all x ∈ A3 it holds that

f(x) ≤ f∗(x) ≤ sj(x) < C < tj(x) ≤ fm(x).

Thus f(x) < C for x ∈ A3, but, since C < fm(x), the inequality Cφ(A3) <∫
A3

f1 dφ holds and we can conclude that
∫
S

fm dφ is not an integral of f .

The proof concerning the function f∗ would be just a mirror image of the way
we worked with f∗. �

2. The outer measure of the graph of a function

Let (S, Σ, φ) be a measure space, where S is a set, Σ is some σ algebra of its
subsets and φ a measure defined on Σ. A product C × A is called a rectangle
if C ∈ Σ and A ⊂ R is Lebesgue measurable, φ(C) < ∞, µ(A) < ∞, where µ
denotes the Lebesgue measure. We define a set function φµ on a rectangle as
φµ(C × A) = φ(C) × µ(A). When H ⊂ S × R, we define the outer measure as
(φµ)∗(H) = inf

∑
φµ(Ci × Ai), the infimum being taken over all the sequences

of rectangles {Ci × Ai} such that H ⊂ ∪(Ci × Ai).
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We assume that a nonnegative real valued function f is defined on S and
bounded by some B > f(x) and that the hypograph H of f , H =

{
(x, y) :

x ∈ S, 0 ≤ y ≤ f(x)
}

is covered by a countable collection of rectangles H ⊂⋃
RK . A rectangle RK is a cartesian product RK = CK×JK , where CK ∈ Σ and

JK = (aK , bK) is an open interval bounded by B. To build up some intuition,
we are going to discuss the way of defining a sequence of simple functions with
convenient properties.

It will be useful to define a projection PS of a subset V ⊂ S ×R as PS(V ) ={
x : x ∈ S, (x, y) ∈ V for some y

}
and the projection PR of a subset V ⊂ S×R

as PR(V ) =
{
y : y ∈ R, (x, y) ∈ V for some x

}
. Thus PR(C × (a, b)) = (a, b)

and PS(C × (a, b)) = C. It is clear that PR

( N⋃
K=1

RK

)
=

N⋃
K=1

PR(RK) and also

PS

( N⋃
K=1

RK

)
=

N⋃
K=1

PS(RK).

If a subset V ⊂ S×R and C ⊂ S is given, we can define an inverse projection
of C as

{
(x, y) : x ∈ C, (x, y) ∈ V

}
. But we are interested only in the inverse

projection of a one element set {x0} ⊂ S giving us
{
(x, y) : x = x0 and

(x, y) ∈ V
}
. We define a cross-section Vx0 ⊂ R at x0 as

Vx0 = PR

({(x, y) : x = x0 and (x, y) ∈ V }) =
{
y : x = x0 and (x, y) ∈ V

}
.

We can now see that, if V =
N⋃

K=1

RK , then Vx =
N⋃

K=1

(RK)x.

We recall that the notion of a cross-section Vx =
{
y : (x, y) ∈ V

}
is also used

for a different purpose in the proof of the Fubini theorem. A picture is helpful to

show that {x} ⊂ S is mapped to Vx =
N⋃

K=1

(RK)x as a union of a finite number

of open intervals in R or as an empty set.
If a countable set of rectangles is given, we assume that the rectangles may

be enumerated in some fixed way. The aim is to define a function fN (x) at a
fixed x ∈ S if a finite collection R1, R2, . . . , RN is given, where RK = CK × JK .

We use the projection Vx of V =
N⋃

K=1

RK

Vx =
N⋃

K=1

(RK)x =
L⋃

i=1

JKi
,

where the subscripts Ki are precisely those for which x ∈ CKi
= PS(RKi

). The
subscripts Ki correspond to a subcollection of L ≤ N rectangles RK1 , RK2 , . . .

. . . , RKL
for which x ∈

L⋂
i=1

PS(RKi
). If for any subcollection with x∈

L⋂
i=1

PS(RKi
)
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we have 0 /∈
L⋃

i=1
JKi

, we define fN (x) = 0. If 0 ∈ JKi
for some Ki, we want to

define fN (x) in a convenient way.

It might be wrong to be greedy. We could take fN (x) = sup
( L⋃

Ki

JKi

)
, but it

would not work, because we could pick a δ > 0 and consider R1 = S×(B−δ, B),
where B > f(x) for all x ∈ S. If the measure of S were finite, the product
measure of such a rectangle could be made arbitrarily small by picking small δ.
We could get fN (x) = B for all x ∈ S and such a definition would be useless.

If we want to stay on the safe side, we write
L⋃
Ki

JKi
as a disjoint union of

intervals, we pick the interval containing zero, and set fN (x) equal to the right
endpoint of this interval.

To discuss the definition of the function fN (x) further, we check all the subcol-
lections of R1, R2, . . . , RN and consider only those consisting of L ≤ N rectangles
for which

1) x ∈
L⋂

i=1

PS(RKi
),

2) 0 ∈ PR

( L⋃
i=1

RKi

)
,

3) PR

( L⋃
i=1

RKi

)
is an interval.

If these conditions are satisfied for the two projections, we call such a subcollec-
tion p-connected with (x, 0), where the letter p stands for projection.

Out of all such p-connected subcollections we pick the one with the largest

projection (a, b) = PR

( L⋃
i=1

RKi

)
. We then define fN(x) to be equal to b which

is the right endpoint of the interval (a, b).

�	��
�� 6� Let (S, Σ, φ) be a measure space. Assume that f(x) is a bounded
nonnegative real valued function defined on S. Let H =

{
(x, y) : x ∈ S,

0 ≤ y ≤ f(x)
}
. Then (φµ)∗(H) =

−∫
S

f(x) dφ.

P r o o f. It is obvious that (φµ)∗(H) ≤
−∫
S

f(x) dφ.

We want to show that the assumption

0 < ε =

−∫
S

f(x) dφ − (φµ)∗(H)

529

Unauthenticated
Download Date | 2/3/17 10:42 AM



JOSEF BUKAC

leads to a contradiction.
Assume that f(x) is bounded by some real B > sup f(x). There is a se-

quence of measurable rectangles {Ai × Bi} such that Ai ∈ Σ, Bi is Lebesgue
measurable and sup Bi < B, H ⊂ ⋃(Ai×Bi), and (φµ)∗(H) ≤∑φ(Ai)µ(Bi) <
(φµ)∗(H)+ε/4.

Define di as

di =

{
1 if φ(Ai) = 0,

1
4φ(Ai)2i if φ(Ai) > 0.

Since each Bi is Lebesgue measurable, there is a sequence of open intervals
{Iij} such that Bi ⊂

⋃
Iij , sup Iij ≤ B, and

µ(Bi) ≤
∑

j

µ(Iij) ≤ µ(Bi) + εdi.

Then, since we can discard the terms with φ(Ai) = 0, we have

(φµ)∗(H) ≤
∑

i

φ(Ai)µ(Bi) ≤
∑

i

φ(Ai)
(∑

j

µ(Iij)
)

≤
∑

i

φ(Ai)(µ(Bi) + εdi)

≤
∑

i

φ(Ai)µ(Bi) + ε
∑

i

φ(Ai)di ≤
∑

i

φ(Ai)µ(Bi) + ε
∑

i: φ(Ai)>0

φ(Ai)
4φ(Ai)2i

≤
∑

i

φ(Ai)µ(Bi) +
ε

4
≤ (φµ)∗(H) + ε/4 + ε/4 = (φµ)∗(H) + ε/2.

Since the collection of rectangles Ai × Iij is countable, the rectangles may
be numbered to form a sequence R1, R2, . . . with rectangles denoted as RK =
CK × JK , where CK ⊂ S is measurable, JK = (aK , bK), aK < bK .

We study a finite collection R1, R2, . . . , RN . As indicated above, its subcol-
lection RK1 , RK2 , . . . , RKL

is p-connected with (x, 0), where x ∈ S, that is, if

JK1 ∪JK2 ∪· · ·∪JKL
is an interval (a, b) containing zero and x ∈

L⋂
i=1

CKi
, then a

is called the left endpoint of the subcollection RK1 , RK2 , . . . , RKL
and b is called

the right endpoint.
For x ∈ S we define a function fN (x) as zero if there is no subcollection

p-connected with (x, 0) among the rectangles R1, R2, . . . , RN , that is, with the
left endpoint negative and right endpoint positive. If there is a subcollection
of R1, R2, . . . , RN , p-connected with (x, 0), we define the value of fN (x) as the
maximum of the right endpoints over all the subcollections p-connected with
(x, 0). This maximum is well defined since there is a finite number, 2N − 1, of
nonempty subcollections of N rectangles.

For each N , the function fN(x) is simple, because the number of rectangles
R1, R2, . . . , RN is finite and so is the number of values fN (x) may attain.
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From the definition of fN (x) it follows that fN+1(x) ≥ fN (x) for every x ∈ S,
for we have N + 1 rectangles instead of just N to consider. We define F (x) =
lim fN (x), where F (x) is measurable and bounded. We may now use the theorem
on monotone bounded convergence to get lim

∫
S

fN(x) dφ =
∫
S

F (x) dφ.

Since fN (x) is simple and nonnegative, there is a finite number M of real
numbers s1, s2, . . . , sM as the values the function fN takes on. We define Di ={
x ∈ S : fN (x) = si

}
. The integral∫

S

fN (x) dφ =
M∑
i=1

siφ(Di) =
M∑
i=1

φ(Di)(si − 0)

is the sum of product measures of rectangles Di × (0, si).

To show that
⋃

(Di × (0, si)) ⊂
N⋃

K=1

RK , where RK = CK × JK , let x ∈ S,

y > 0, (x, y) ∈ ∪(Di×(0, si)). Then (x, y) ∈ Di×(0, si) for some i, that is, x ∈ Di

and 0 < y < si, where 0 < si = fN (x). By definition of fN (x) at x ∈ S, there
are some rectangles RK1 , RK2 , . . . , RKL

such that JK1 ∪JK2 ∪· · ·∪JKL
= (a, b),

a < 0, and b = si. It implies that y ∈ Jj and x ∈ Cj for some j, 1 ≤ j ≤ N .
Now we can see that∫

S

fN (x) dφ = (φµ)
(⋃

(Di × (0, si))
)

≤ (φµ)

(
N⋃

K=1

RK

)

≤ (φµ)

( ∞⋃
K=1

RK

)
≤ (φµ)∗(H) +

ε

2

and when we pass to the limit∫
S

F (x) dφ = lim
N→∞

∫
S

fN(x) dφ ≤ (φµ)∗(H) +
ε

2
.

The last step is to show that F (x) ≥ f(x) for all x ∈ S. If we assumed
0 = F (x) = fN(x) for all N , we would get a contradiction because there is
an Ri = Ci × (ai, bi) with x ∈ Ci and 0 ∈ (ai, bi). We may assume that
0 < lim fN (x) = F (x) < f(x). Then there is a rectangle RK = CK × JK such
that JK = (aK , bK), F (x) ∈ (aK , bK), and x ∈ CK . Since fN(x) → F (x),
there is an i such that fi(x) > aK . By definition of fN(x), there are rectangles
p-connected with (x, 0) RK1 , RK2 , . . . , RKL

as a subcollection of R1, R2, . . . , Ri

such that fi(x) is the right endpoint of the interval JK1 ∪ JK2 ∪ · · · ∪ JKi
. If we

now add Ri to this collection of rectangles, we obtain RK1 , RK2 , . . . , RKi
, Ri, for

which JK1 ∪ JK2 ∪ · · · ∪ JKi
∪ Ji is an interval (a, b). Clearly b > F (x), which is

a contradiction. This finishes the proof. �
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In the following theorem we investigate the graph and its countable covering
G =

{
(x, f(x)) : x ∈ S

} ⊂ ⋃
RK , RK = CK × JK , CK is measurable, JK =

(aK , bK) is an open interval bounded by B. When a finite number of such
rectangles R1, R2, . . . , RN is given, we will again consider projections for V =

N⋃
K=1

RK

Vx =
N⋃

K=1

(RK)x =
L⋃

i=1

JKi

where Ki are the subscripts for which x ∈ CKi
. We will say that a subcollec-

tion RK1 , RK2 , . . . , RKL
is p-connected with (x, y) if x ∈

L⋂
i=1

PS(RKi
) ⊂ S and

PR

( L⋃
i=1

RKi

)
is an interval containing y. We will obviously be interested in the

subcollection that gives the largest interval containing y to be able to define
sequences of simple functions.

�	��
�� 7� Let (S, Σ, φ) be a measure space. Assume that f(x) is a bounded
nonnegative real valued function defined on S. Let G =

{
(x, f(x)) : x ∈ S

}
.

Then (φµ)∗(G) =
∫
S

f∗(x) dφ − ∫
S

f∗(x) dφ, where f∗ and f∗ are the upper and

lower functions corresponding to f .

P r o o f. It is obvious that (φµ)∗(G) ≤ ∫
S

f∗(x) dφ − ∫
S

f∗(x) dφ. We want to

show that the assumption

0 < ε =
∫
S

f∗(x) dφ −
∫
S

f∗(x) dφ − (φµ)∗(G)

leads to a contradiction.
Assume that f(x) is bounded by some real B > 0. There is a sequence

of rectangles {Ai × Bi} such that Ai ∈ Σ, Bi is Lebesgue measurable and
sup Bi < B, inf Bi > −1/2, G ⊂ ∪(Ai × Bi), and (φµ)∗(G) ≤∑φ(Ai)µ(Bi) <
(φµ)∗(G) + ε/4.

Define di as

di =

{
1 if φ(Ai) = 0,

1
4φ(Ai)2i if φ(Ai) > 0.

Since each Bi is Lebesgue measurable, there is a sequence of open intervals
{Iij} such that Bi ⊂

⋃
Iij , sup Iij ≤ B, inf Iij ≥ −1/2, and

µ(Bi) ≤
∑

j

µ(Iij) ≤ µ(Bi) + εdi.
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Then

(φµ)∗(G) ≤
∑

i

φ(Ai)
(∑

j

µ(Iij)
)

≤
∑

i

φ(Ai)(µ(Bi) + εdi)

≤
∑

i

φ(Ai)µ(Bi) + ε
∑

i: φ(Ai)>0

φ(Ai)
4φ(Ai)2i

≤
∑

i

φ(Ai)µ(Bi) +
ε

4

≤ (φµ)∗(G) + ε/4 + ε/4 = (φµ)∗(G) + ε/2.

We may number the rectangles and form a sequence. We have to use the nota-
tion R1, R2, . . . where RK = CK × JK , CK ⊂ S is measurable, JK = (aK , bK),
aK < bK . Let a finite collection R1, R2, . . . , RN be given. If a subcollection

RK1 , RK2 , . . . , RKL
is p-connected with (x, f(x)), that is, if x ∈

L⋂
i=1

CKi
⊂ S

and JK1 ∪ JK2 ∪ · · · ∪ JKL
is an interval (a, b) containing f(x), then a is called

the left endpoint of the subcollection RK1 , RK2 , . . . , RKL
and b is called the right

endpoint.
For x ∈ S we define a function fN (x) as −1 if there is no subcollection

p-connected with (x, f(x)) among the rectangles R1, R2, . . . , RN , that is, with
the left endpoint less than f(x) and right endpoint greater than f(x). If there is
a subcollection p-connected with (x, f(x)) among R1, R2, . . . , RN , we define the
value of fN (x) as the maximum of the right endpoints over all the subcollections
p-connected with (x, f(x)) of the collection R1, R2, . . . , RN .

We also define for x ∈ S a function gN (x) as B +1 if there is no subcollection
p-connected with (x, f(x)) among the rectangles R1, R2, . . . , RN . If there is a
subcollection p-connected with (x, f(x)) among R1, R2, . . . , RN , we define the
value of gN (x) as the minimum of the left endpoints over all the subcollections
p-connected with (x, f(x)) of the collection R1, R2, . . . , RN .

It is easy to see that fN (x) = −1 if and only if gN (x) = B +1. The functions
fN (x) and gN (x) are simple, because the number of rectangles R1, R2, . . . , RN

is finite and so is the number of values fN (x) or gN(x) may attain.
From the definition of fN (x) and gN (x) it follows that fN+1(x) ≥ fN (x) and

gN+1(x) ≤ gN (x) for every x ∈ S. Since fN and gN are bounded, we define
F (x) = lim fN (x) and G(x) = lim gN (x). We use the theorem on monotone
bounded convergence on fN (x)+1 to get

∫
S

F (x) dφ = lim
∫
S

fN (x) dφ. The same

theorem may be used on B + 1 − gN (x) to obtain
∫
S

G(x) dφ = lim
∫
S

gN(x) dφ.

We define EN =
{
x ∈ S : fN (x) = −1 or gN(x) = B + 1

}
. Since

fN (x) is simple and nonnegative, there is a finite number Ms of real numbers
s1, s2, . . . , sMs

as the values the function fN attains on S −EN . There is also a
finite number Mt of values t1, t2, . . . , tMt

the function gN (x) attains on S −EN .
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We define Di,j =
{
x ∈ S : fN (x) = si, gN(x) = tj

}
. We write∫

S

(fN − gN ) dφ =
∫

EN

(fN − gN) dφ +
∫

S−EN

(fN − gN) dφ.

The value of the first of the two integrals on the right hand side is∫
EN

(fN − gN ) dφ = −
∫

EN

(B + 2) dφ = −(B + 2)φ(EN).

We know that EN+1 ⊂ EN , and limEN =
⋂

EN . To show that
⋂

EN is
empty we assume that x ∈ ⋂EN . Then there is a subscript, say K, such that
(x, f(x)) ∈ RK = CK × JK , where CK ⊂ S, JK = (aK , bK), aK < f(x) < bK .
Therefore x /∈ EK . It follows that lim(B + 2)φ(EN ) = 0.

The second integral on the right hand side is∫
S−EN

(fN − gN) dφ =
Ms∑
i=1

Mt∑
j=1

φ(Di,j)(si − tj),

the sum of product measures of rectangles Di,j × (tj , si).

To show that
⋃

(Di,j×(tj , si)) ⊂
N⋃

K=1

RK , let x ∈ S, (x, y) ∈ ⋃(Di,j×(tj , si)).

Then (x, y) ∈ Di,j × (tj , si) for some i, j, that is, x ∈ Di,j and tj < y < si,
where si = fN (x) and B ≥ tj = gN (x). By definition of fN(x) and gN(x) at
x ∈ S, there are some rectangles RK1 , RK2 , . . . , RKL

, RK = CK × JK such that
JK1 ∪ JK2 ∪ · · · ∪ JKL

= (a, b), a = tj , and b = si. It implies that y ∈ Jj and
x ∈ Cj for some j, 1 ≤ j ≤ N .

We may now conclude that∫
S−EN

(fN − gN ) dφ =
Ms∑
i=1

Mt∑
j=1

φ(Di,j)(si − tj)

≤ (φµ)
( N⋃

K=1

RK

)
≤ (φµ)

( ∞⋃
K=1

RK

)
≤ (φµ)∗(G) +

ε

2

and it follows that∫
S

(F (x) − G(x)) dφ = lim
N→∞

∫
S

(fN − gN ) dφ ≤ (φµ)∗(G) +
ε

2
.

The last step is to prove that F (x) ≥ f(x) and G(x) ≤ f(x) for all x ∈ S.
First we assume that lim fN (x) = F (x) = −1. But there exists a rectangle
RK = CK × (aK , bK) such that x ∈ CK and f(x) ∈ (aK , bK) and it follows
that F (x) ≥ bK > 0, which is a contradiction. We may now assume that
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lim fN (x) = F (x) < f(x). There is a rectangle RK = CK × JK such that
x ∈ CK , JK = (aK , bK), and F (x) ∈ (aK , bK). Since fN (x) converges to F (x),
there is an i such that fi(x) > aK . By definition of fN(x), there are rectangles
RK1 , RK2 , . . . , RKL

as a subset of R1, R2, . . . , Ri such that fi(x) is the right
endpoint of JK1 ∪ JK2 ∪ · · · ∪ JKL

. If we now add RK to this collection of
rectangles, we obtain RK1 , RK2 , . . . , RKL

, RK , for which JK1∪JK2∪· · ·∪JKL
∪JK

is an interval (a, b). Clearly b > F (x), which is a contradiction.
The proof that G(x) ≤ f(x) would be based on the same idea. �

�	��
�� 8� Let (S, Σ, φ) be a measure space. Assume that f(x) is a bounded
nonnegative real valued function defined on S. Let H =

{
(x, y) : x ∈ S, 0 ≤ y

≤ f(x)
}

and P =
{
(x, y) : x ∈ S, 0 ≤ y < f(x)

}
. Then (φµ)∗(P ) = (φµ)∗(H).

P r o o f. Since P ⊂ H, we have (φµ)∗(P ) ≤ (φµ)∗(H).
Assume that ε > 0 is given. Since f(x) is bounded by some real B > sup f(x),

there is a sequence of measurable rectangles {Ai × Bi} such that Ai ∈ Σ, Bi

is Lebesgue measurable and sup Bi < B, P ⊂ ⋃
(Ai × Bi), and (φµ)∗(P ) ≤∑

φ(Ai)µ(Bi) < (φµ)∗(P ) + ε/4.
Define di as

di =

{
1 if φ(Ai) = 0,

1
4φ(Ai)2i if dφ(Ai) > 0.

Since each Bi is Lebesgue measurable, there is a sequence of open intervals
{Iij} such that Bi ⊂ ∪Iij , sup Iij ≤ B, and

µ(Bi) ≤
∑

j

µ(Iij) ≤ µ(Bi) + εdi.

Then

(φµ)∗(P ) ≤
∑

i

φ(Ai)
(∑

j

µ(Iij)
)

≤
∑

i

φ(Ai)(µ(Bi) + εdi)

≤
∑

i

φ(Ai)µ(Bi) + ε
∑

i: φ(Ai)>0

φ(Ai)
4φ(Ai)2i

≤
∑

i

φ(Ai)µ(Bi) +
ε

4

≤ (φµ)∗(P ) + ε/4 + ε/4 = (φµ)∗(P ) + ε/2.

We investigate an enumeration of all the rectangles Ai × Jij denoted as RK =
CK × (aK , bK), where CK ∈ Σ and aK < bK . We construct a new collection
of rectangles covering P consisting of rectangles CK × (aK + δ, bK + δ) and
S × (−δ, δ), where 0 < δ = ε/(4φ(S)).

Assume (x, y) ∈ H and 0 ≤ y < δ. Then clearly (x, y) ∈ S × (−δ, δ).
Assume (x, y) ∈ H and δ ≤ y. Then (x, y − δ) ∈ P and there is a K such that
(x, y − δ) ∈ CK × (aK , bK) and it follows that (x, y) ∈ CK × (aK + δ, bK + δ).
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We now calculate

(φµ)∗(H) ≤ φ(S)µ((−δ, δ)) +
∑

φ(CK)µ((aK + δ, bK + δ))

= 2δφ(S) +
∑

φ(CK)(bK − aK)

≤ 2δφ(S) + (φµ)∗(P ) + ε/2 ≤ (φµ)∗(P ) + ε.

Since this inequality holds for any ε > 0, we have (φµ)∗(H) ≤ (φµ)∗(P ). �

3. Ward theorem, the equivalence to the Fan integral

F a n [1] defined several types of integrals for nonmeasurable functions and
presented some of their properties.

����������� Let (S, Σ, φ) be a measure space. Let f be a real valued function
defined on S, not necessarily measurable, nonnegative, and bounded by some
B > 0. The Fan integral is defined as

B∫
0

φ∗({x ∈ S : f(x) > y})dy,

where φ∗ = inf
E⊂A∈Σ

φ(A) is the outer measure. Since
{
x ∈ S : f(x) > y2

} ⊂{
x ∈ S : f(x) > y1

}
for y1 < y2 means the integrand is nondecreasing thus the

Riemann integral exists.

Further properties of Fan integrals were derived in W a r d [5]. The most
important property, from our point of view, is the one that connects the Fan
integrals to the outer product measure of the hypograph of the integrand, not
necessarily measurable. Once we know how the definitions are connected, the
properties derived in [1] and [5] immediately apply.

We have to rephrase the theorem to comply with our notation. The idea of
the proof is due to [5].

�	��
�� 9 (Ward)� Let (S, Σ, φ) be a measure space, 0 < φ(S) < ∞. Let f be
a nonnegative and bounded function, 0 ≤ f(x) ≤ B for all x ∈ S, defined on S,
not necessarily measurable. Let H =

{
(x, y) : x ∈ S, 0 ≤ y ≤ f(x)

}
. Then

(φµ)∗(H) =

B∫
0

φ∗({x ∈ S : f(x) > y})dy,

536

Unauthenticated
Download Date | 2/3/17 10:42 AM



UPPER INTEGRAL AND ITS GEOMETRIC MEANING

where we define the outer measure as φ∗(C) = inf
{
φ(F ) : C ⊂ F, F ∈ Σ

}
.

The outer product measure (φµ)∗(H) is defined as

(φµ)∗(H) = inf
{∑

φ(CN )µ(BN )
}
,

where H ⊂ ⋃(CN × BN ), CN ∈ Σ, and BN is Lebesgue measurable.

P r o o f. Let
⋃

(CN ×BN ) be any covering of H, where CN are measurable and
BN Lebesgue measurable. For any ε > 0 each BN can be covered by a countable
number of open intervals IN,i in such a way that

∑
µ(IN,i) ≤ µ(BN ) + ε/2N . It

follows that we may consider only the coverings of H by
⋃

(CK ×JK) where JK

are open intervals.

Let χJK
(y) be the characteristic function of JK , that is, χJK

(y) = 1 if y ∈ JK

and χJK
(y) = 0 if y /∈ JK .

Let y0 be fixed. The set
{
x ∈ S : f(x) ≥ y0

}
is covered by the sets CK for

which y0 ∈ JK , that is, if χJK
(y0) = 1.

We may write

∑
φ(CK)χJK

(y0) ≥ φ∗({x ∈ S : f(x) ≥ y0}
) ≥ φ∗({x ∈ S : f(x) > y0}

)
.

If for some JK = (aK , bK) we have B < bK , we have µ(JK) >
B∫
0

χJK
(y) dy.

If aK < 0, we also have µ(JK) >
B∫
0

χJK
(y) dy. Thus for each K, we write

φ(CK)µ(JK) ≥ φ(CK)

B∫
0

χJK
(y) dy =

B∫
0

φ(CK)χJK
(y) dy.

Since
∑

φ(CK)µ(JK) is finite and the sequence of simple functions

fL(y) =
L∑

K=1

φ(CK)χJK
(y)
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is nondecreasing for each y, we may use the Lebesgue theorem on monotone
convergence.

∑
φ(CK)µ(JK) ≥

∑
φ(CK)

B∫
0

χJK
(y) dy

=
∑ B∫

0

φ(CK)χJK
(y) dy =

B∫
0

∑
φ(CK)χJK

(y) dy

≥
B∫

0

φ∗({x ∈ S : f(x) > y})dy.

Since
⋃

(CN×BN ) may be any covering of H we have the inequality
B∫
0

φ
({x ∈ S :

f(x) > y})dy ≤ (φµ)∗(H) + ε for ε > 0 arbitrarily small and we have
B∫
0

φ
({x ∈ S : f(x) > y})dy ≤ (φµ)∗(H).

If any ε > 0 is given, we form a partition of [0, B] by 0 = y0 < y1 < y2 <

· · · < yN = B, where N > 2B, such that

N−1∑
K=0

φ∗({x ∈ S : f(x) > yK})(yK+1 − yK) <

B∫
0

φ∗({x ∈ S : f(x) > y})dy +
ε

3
.

Let us write CK = {x ∈ S : f(x) > yK}. For ε/2 there are measurable sets
FK ∈ Σ such that CK ⊂ FK and φ(FK) ≤ φ∗(CK) + ε/(2N). Let

δ =
ε

3ε + 6
N−1∑
K=0

φ∗(CK)
.

We assign an open interval (aK , bK) to every FK such that aK = yK − δ and
bK = yK+1 + δ. Obviously H ⊂ ⋃(FK × (aK , bK)). We calculate
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N−1∑
K=0

φ(FK)(bK − aK)

≤
N−1∑
K=0

(
φ∗(CK) +

ε

2N

)
(bK − aK)

≤
N−1∑
K=0

φ∗(CK)(bK − aK) +
ε

2N

N−1∑
K=0

(bK − aK)

=
N−1∑
K=0

φ∗(CK)(yK+1 + δ − (yK − δ)) +
ε

2N

N−1∑
K=0

(yK+1 + δ − (yK − δ))

=
N−1∑
K=0

φ∗(CK)(yK+1 − yK) + δ

(
ε + 2

N−1∑
K=0

φ∗(CK)
)

+
Bε

2N

<

N−1∑
K=0

φ∗(CK)(yK+1 − yK) +
ε

3ε + 6
N−1∑
K=0

φ∗(CK)

(
ε + 2

N−1∑
K=0

φ∗(CK)
)

+
Bε

4B

<

N−1∑
K=0

φ∗(CK)(yK+1 − yK) +
ε

3
+

ε

4
<

B∫
0

φ∗({x ∈ S : f(x) > y})dy + ε.

Since this inequality holds for any ε, we have

(φµ)∗(H) =

B∫
0

φ∗({x ∈ S : f(x) > y})dy.

�

�	��
�� 10� Let (S, Σ, φ) be a measure space, 0 < φ(S) < ∞. Let A ⊂ S

be nonmeasurable. Let χA denote the characteristic function of A and χ∗
A the

upper function corresponding to χA. Then
∫
S

χ∗
A dφ = φ∗(A) where φ∗ is the

outer measure corresponding to φ.

P r o o f. Let H =
{
(x, y) : x ∈ S, 0 ≤ y ≤ χA(x)

}
Then the previous theorems

give us

−∫
S

χA(x) dφ = (φµ)∗(H) =

1∫
0

φ∗({x ∈ S : χA(x) > y})dy.
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Since
{
x ∈ S : χA(x) > y

}
= A for y < 1, we have

1∫
0

φ∗({x ∈ S : χA(x) > y})dy =

1∫
0

φ∗(A) dy = φ∗(A).

�

4. Minkowski type inequality and completeness

Let (S, Σ, φ) be a measure space. Assume f is defined on S and measurable.
A seminorm is defined as

‖f‖p =

⎛
⎝∫

S

|f |p dφ

⎞
⎠

1/p

,

where 1 ≤ p < ∞. We will extend this definition to nonmeasurable functions.

����������� Let (S, Σ, φ) be a measure space. Let f be a function defined on S,
measurability of f is not required. We define the upper seminorm as

‖f‖∗p =

⎛
⎝∫

S

|f |∗p dφ

⎞
⎠

1/p

,

where |f |∗ stands for the upper function corresponding to |f |.
When the upper norm is defined in this way, it is nothing but ‖f‖∗p = ‖|f |∗‖p.

It means that ‖f‖∗p is the same as ‖f‖p for measurable f . To show that ‖f‖∗p is
also a seminorm, we prove the following theorem.

�	��
�� 11� Let (S, Σ, φ) be a measure space. Assume f and g, not necessarily
measurable, are defined on S. Then the Minkowski inequality holds for the upper
seminorm

‖f + g‖∗p ≤ ‖f‖∗p + ‖g‖∗p.
P r o o f. First we apply the elementary inequality to real numbers

|f(x) + g(x)| ≤ |f(x)| + |g(x)| ≤ |f(x)|∗ + |g(x)|∗,
where the second inequality holds for almost all x ∈ S, to see, by the definition
of the upper function, that

|f(x) + g(x)|∗ ≤ |f(x)|∗ + |g(x)|∗
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for almost all x. By integrating both sides, we get

‖|f + g|∗‖p ≤ ‖|f |∗ + |g|∗‖p

and applying the Minkowski inequality to the right hand side yields

‖|f + g|∗‖p ≤ ‖|f |∗‖p + ‖|g|∗‖p

which proves the theorem. �

The inequality we have just proved enables us to define a normed linear space
of classes of functions. We say that f and g are in the same equivalence class if
‖f −g‖∗p = 0. We know that ‖f‖∗p = 0 if and only if f = 0 almost everywhere. A
class of functions is in the L∗

p space if for its representative f the norm is finite,
‖f‖∗p < ∞. Further details may be obtained in the similar manner as in the case
of classes of measurable functions, [2, §15.1], [3, 6.1], or [4, 5-8].

�	��
�� 12� Let (S, Σ, φ) be a measure space. Let f1, f2, . . . be a sequence
of real valued functions on S, not necessarily measurable, such that fN (x) ≤
fN+1(x) for almost all x ∈ S. Let f denote the limit of f1, f2, . . . , that is,
f(x) = lim fN (x) for almost all x ∈ S. Let f∗

N be the upper function of fN and
f∗ the upper function of f . Then, for almost all x ∈ S, f∗

N(x) ≤ f∗
N+1(x) and

lim f∗
N(x) = f∗(x).

P r o o f. We denote the limit of fN (x) by f(x), which is defined for almost all
x ∈ S. Let f∗ denote the upper function of f . Then f∗(x) ≥ fN (x) for almost all
x. If f∗

N denotes the upper function of fN , then it is obvious that f∗
N (x) ≤ f∗(x)

for almost all x.

We also have f∗
N (x) ≤ f∗

N+1(x), for otherwise there would be a measurable
subset E ⊂ S with µ(E) > 0 for which f∗

N (x) > f∗
N+1(x). Then for the function

g(x) = min
(
f∗

N (x), f∗
N+1(x)

)
we have

∫
S

g dφ <
∫
S

f∗
N dφ while g(x) ≥ fN (x) for

almost all x.

The limit of f∗
N(x) is defined almost everywhere and we denote it by F . Since

f∗
N (x) ≤ f∗(x) almost everywhere, we have F (x) ≤ f∗(x) for almost all x. But

since F (x) ≥ f∗
N (x) ≥ fN (x) for all N and almost all x, we have F (x) ≥ f(x)

for such x and it follows that F (x) ≥ f∗(x) for almost all x. �
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�
��� Let (S, Σ, φ) be a measure space, g a function defined for almost all x ∈ S,
and 1 ≤ p ≤ ∞. Then (gp)∗ = (g∗)p.

P r o o f. Since (g∗)p is measurable, we have (g∗)p = ((g∗)p)∗. Thus g ≤ g∗

implies gp ≤ (g∗)p which means (gp)∗ ≤ ((g∗)p)∗ = (g∗)p.
If we assume there is an A ∈ Σ with φ(A) > 0 such that (gp)∗ < (g∗)p for

x ∈ A, then ((gp)∗)1/p < g∗ on A, which is a contradiction. �

A normed linear space is complete if and only if every absolutely summable
series is summable, see [3, 6.3].

�	��
�� 13� Let (S, Σ, φ) be a measure space. Let f1, f2, . . . be a sequence of

real valued functions on S, not necessarily measurable, such that
∞∑

N=1

‖fN‖∗p =

M < ∞, where 1 ≤ p < ∞. Then the sequence of partial sums is convergent,

that is, there is a real valued function s defined on S such that lim ‖s −
N∑

i=1

fi‖∗p
= 0.

P r o o f. Let f1, f2, . . . be a sequence of real valued functions on S with
∞∑

i=1

‖fi‖∗p

= M < ∞. We define functions gN by setting gN(x) =
N∑

i=1
|fi(x)|. From the

Minkowski inequality we have

‖gN‖∗p ≤
N∑

i=1

‖fi‖∗p ≤ M.

Hence ∫
S

(gp
N )∗ dφ =

∫
S

(g∗N )p dφ ≤ Mp.

For each x ∈ S, the sequence g1(x), g2(x), . . . is nondecreasing and must
converge to some finite g(x) or infinity. Since the sequence g1(x), g2(x), . . . is
nondecreasing we can use the theorem on monotone convergence with uniformly
bounded integrals to see that∫

S

(gp)∗ dφ =
∫
S

(g∗)p dφ ≤ Mp.

Thus g(x) is finite for almost all x.

For each x for which g(x) is finite the series of real numbers
∞∑

i=1

fi(x) converges

absolutely to a real number s(x). We set s(x) = 0 for those x for which g(x) is
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infinite. The partial sums are denoted as sN (x) =
N∑

i=1
fi(x). Then

|s(x) − sN (x)| =
∣∣∣∣

∞∑
i=N+1

fi(x)
∣∣∣∣ ≤

∞∑
i=N+1

|fi(x)|

for almost all x ∈ S.

To avoid confusion with the subscripts, we write QK(x) =
N+K∑
N+1

|fi(x)|. Thus

QK(x) is nondecreasing for almost all fixed x and converges to some Q(x) =
∞∑

i=N+1

|fi(x)| ≤ g(x) as K goes to infinity. By the previous theorem we must have

lim
K→∞

Q∗
K(x) = Q∗(x) ≤ g∗(x) for almost all x and it follows that lim

K→∞
‖QK‖∗p =

‖Q‖∗p for 1 ≤ p < ∞.

‖s − sN‖∗p ≤
∥∥∥∥

∞∑
i=N+1

|fi|
∥∥∥∥
∗

p

= ‖Q(x)‖∗p = lim
K→∞

‖QK(x)‖∗p

= lim
K→∞

∥∥∥∥
K∑

i=1

|fN+i|
∥∥∥∥
∗

p

≤ lim
K→∞

K∑
i=1

‖fN+i‖∗p =
∞∑

i=N+1

‖fi‖∗p.

The sum
∞∑

i=N+1

‖fi‖∗p converges to zero as N goes to infinity since it is a remain-

der of a convergent series. �

5. Chebyshev inequality, convergence in outer measure

We want to show that the Chebyshev inequality may be generalized for non-
measurable functions.

Assume that |f | does not have to be measurable. Then, if ε > 0 and E ={
x ∈ S : |f(x)|∗p > ε

}
,

∫
S

|f |∗p dφ ≥
∫
E

|f |∗p dφ ≥
∫
E

εp dφ = εpφ(E) ≥ εpφ∗({x ∈ S : |f(x)|p > ε}).

543

Unauthenticated
Download Date | 2/3/17 10:42 AM



JOSEF BUKAC

�	��
�� 14� Let (S, Σ, φ) be a measure space. Assume that the functions
f1, f2, . . . , not necessarily measurable, converge in L∗

p to f , where 1 < p < ∞,
then, for each fixed ε > 0, φ∗({x ∈ S :

∣∣fN (x)|p > ε}) converges to zero.

P r o o f. We use the Chebyshev inequality for |fN − f | for a fixed ε to see that∫
S

|fN − f |∗p dφ ≥ εpφ∗({x ∈ S : |fN (x) − f(x)|p > ε})

and that φ∗({x ∈ S : |fN (x) − f(x)|p > ε}) converges to zero if fN converges
to f in L∗p for 1 ≤ p < ∞. �

6. Application to a metric on sets

We assume that sets A, B ∈ Σ are given and consider φ∗(A∆B). If A′ is also
a set and φ∗(A∆A′) = 0, we also have φ(A∆B) = φ(A′∆B) and it follows that
it makes sense to define a metric on equivalence classes [A] of sets defined by
the equivalence relation A ∼ A′ if and only if φ∗(A∆A′) = 0. We introduce
a metric on such equivalence classes as d([A], [B]) = φ∗(A∆B) where A is a
representative of [A] and B is a representative of [B]. Such classes of sets are
well known.

Let A, B be any subsets of S and χA, χB their characteristic functions. Then
for the outer measure of the symmetric difference it holds that

φ∗(A∆B) =
∫
S

χ∗
A∆B dφ =

∫
S

|χA − χB)|∗ dφ.

If we replace χA and χB by functions fA and fB such that fA(x) = χA(x)
and fB(x) = χB(x) for almost all x ∈ S, we get φ∗(A, B) =

∫
S

|fA − fB|∗ dφ.

�	��
�� 15� The space of classes of sets, for which A ∼ A′ if and only if
φ∗(A∆A′) = 0, with the metric d([A], [B]) = φ∗(A∆B) where A, B are repre-
sentatives of [A], [B], is a complete metric space.

P r o o f. We assume that [A1], [A2], . . . is a Cauchy sequence. We use some
representatives A1, A2, . . . and the characteristic functions χA1 , χA2 , . . . as the
representatives of the corresponding classes of functions. Due to the complete-
ness of the L∗p-spaces we know that there is a function f such that

lim
i→∞

∫
S

|f − χAi
|∗ dφ = 0.
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Let f be a function and 0 < ε < 1. We define

Cε =
{
x ∈ S : |f(x) − 1| > ε, |f(x)| > ε

}
.

If we assume φ∗(Cε) > 0, then∫
S

|f(x) − χA(x)|∗ dφ ≥
∫
S

min(2, |f(x) − χA(x)|∗) dφ

=

2∫
0

φ∗
({

x ∈ S : min
(
2, |f(x)− χA(x)| > y

)})
dy

≥ εφ∗(Cε) > 0.

Since ε > 0 and because
∫
S

|f − χAi
|∗ dφ converges to zero, we have

φ∗(Cε) = 0.

We may assume that ε = 1/N and define C =
⋃

C1/N . Then φ∗(C) ≤∑
φ∗(C1/N ) = 0.

We may now conclude that, if
∫
S

|f −χAi
|∗ dφ converges to zero, the function

f is equal to 0 or 1 almost everywhere because if f(x) is not equal to one or zero,
there is an N such that |f(x) − 1| > 1/N and |f(x)| > 1/N thus x ∈ C1/N ⊂ C

and φ∗(C) = 0.

If we now define a characteristic function χA(x) = 1 for f(x) = 1 and
χA(x) = 0 otherwise, we have a characteristic function of a set A. This means
that the metric space of classes of sets with the metric d([A], [B]) = φ∗(A∆B)
is complete. �
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