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ABSTRACT. In this paper we consider an enlargement of the notion of the
probabilistic normed space. For this new class of probabilistic normed spaces

we give some topological properties. By using properties of the probabilistic
norm we prove some differential and integral properties of functions with values
into probabilistic normed spaces. As special cases, results for deterministic and
random functions can be obtained.
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1. Introduction

In [16] A. N. S h e r s t n e v endowed a set having an algebraic structure of
linear space with a probabilistic norm. He used the K. M e n g e r ’s idea from
[12], where the probabilistic concept of distance was proposed. The number
d(p, q), the distance between two points p, q, was replaced by a probabilistic
distribution function Fp,q. These ideas led to a large development of probabilis-
tic analysis. Applications to systems having hysteresis, mixture processes, the
measuring error were also given. For an extensive view of this subject we refer
[3]–[4], [7]–[8] and [15].

In [1] C. A l s i n a , B. S c h w e i z e r and A. S k l a r gave a new defini-
tion of probabilistic normed spaces which is based on a characterization of
normed spaces by means of a betweenness relation and includes the definition
of A. N. S h e r s t n e v as a special case. Another results in relating with these
spaces were obtained in [5], [9]. In the second section of this paper we introduce
a new class of probabilistic normed spaces which also includes the probabilistic
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IOAN GOLEŢ

normed spaces defined by A. N. S h e r s t n e v as a special case. We have gen-
eralized the axiom which give a connection between the distribution functions
of a vector and its product by a real number.

The third section is devoted to the study of functions with values into such
a probabilistic normed space. By using the properties of the probabilistic norm
we analyze some differential and integral properties of such functions.

Let R denote the set of real numbers, R+ = {x ∈ R : x ≥ 0} and I = [0, 1],
the closed unit interval. A mapping F : R → I is called a distribution function if
it is non-decreasing, left continuous with inf F = 0 and sup F = 1. D+ denotes
the set of all distribution functions for which F (0) = 0. Let F , G be in D+,
then we write F ≤ G if F (t) ≤ G(t) for all t ∈ R . If a ∈ R+, then Ha will be
the element of D+ defined by Ha(t) = 0 if t ≤ a and Ha(t) = 1 if t > a. It is
obvious that H0 ≥ F , for all F ∈ D+. The set D+ will be endowed with the
natural topology defined by the modified Lévy metric dL ([15]).

A t-norm T is a two place function T : I×I → I which is associative, commu-
tative, non decreasing in each place and such that T (a, 1) = a, for all a ∈ [0, 1].

A triangle function τ is a binary operation on D+ which is commutative,
associative, non decreasing in each place and for which H0 is the identity, that
is, τ(F, H0) = F for every F ∈ D+. T-norms and triangle functions have been
very important in writing the appropriate probabilistic triangle inequality.

2. On probabilistic normed spaces

Let ϕ be a function defined on the real field R into itself, with the following
properties:

(a) ϕ(−t) = ϕ(t) for every t ∈ R;
(b) ϕ(1) = 1;
(c) ϕ is strictly increasing and continuous on [0,∞),

ϕ(0) = 0 and lim
α→∞

ϕ(α) = ∞.

Examples of such functions are: ϕ(α) = |α|; ϕ(α) = |α|p, p ∈ (0,∞);
ϕ(α) = 2α2n

|α|+1 , n ∈ N
+.

���������� 1� Let L be a linear space, τ a triangle function and let F be a
mapping from L into D+. If the following conditions are satisfied:

(1) Fx = H0, if and only if x = θ;
(2) Fαx(t) = Fx( t

ϕ(α) ) for every t > 0, α ∈ R and x ∈ L;

(3) Fx+y ≥ τ(Fx, Fy), whenever x, y ∈ L;
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then F is called a probabilistic ϕ-norm on L and the triple (L,F , τ) is called
a probabilistic ϕ-normed space (of Sherstnev type). The pair (L,F) is said to
be probabilistic ϕ-seminormed space if the mapping F : L → D+ satisfies the
conditions (1) and (2). We have made the conventions: Fx( t

0 ) = 1, for t > 0,
Fx(0

0 ) = 0 and F(x) is denoted by Fx.
If (1)–(2) are satisfied and the probabilistic triangle inequality (3) is formu-

lated under a t-norm T :

(4) Fx+y(t1 + t2) ≥ T (Fx(t1), Fy(t2)) for all x, y ∈ L and t1, t2 ∈ R+,

then (L,F , T ) is called a Menger ϕ-normed space.

�	�
������� 1� If T is a left continuous t-norm and τT is the triangle function
defined by τT (F, G)(t) = sup

t1+t2<t
T (F (t1), G(t2)), t > 0, then (L,F , τT ) is a

probabilistic ϕ-normed space if, and only if, (L,F , T ) is a Menger ϕ-normed
space.

If we define Fm(x, y) = Fx−y, then a probabilistic ϕ-normed space (L,F , τ)
becomes a probabilistic metric space (L,Fm, τ) under the same triangle func-
tion τ . In what follows we will consider probabilistic ϕ-normed spaces under a
continuous triangle function τ � τTm

, where Tm(a, b) = Max{a + b− 1, 0}. This
condition ensures the existence of a linear topology on L.

By a ϕ-normed space we mean a pair (L, ‖ · ‖), where L is a linear space,
‖ · ‖ is a real valued mapping defined on L such that the following conditions are
satisfied:

(5) ‖x‖ � 0 for all x ∈ L, ‖x‖ = 0 if and only if x = θ;

(6) ‖α · x‖ = ϕ(α)‖x‖, whenever x ∈ L, α ∈ R and ϕ is a function with the
above properties;

(7) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ L.

Remark 1� For ϕ(α) = |α|p, 0 < p < 1, one obtains a p-normed space
([11], [2]), for ϕ(α) = |α| one obtains an ordinary normed space.

Example 1. Let (L, ‖ · ‖) be a p-normed space. It is easy to check that it
can be, in a natural way, made a probabilistic ϕ-normed space (L,F , T ), by
setting Fx(t) = H0(t − ‖x‖) for every x ∈ L, t ∈ R+, ϕ(α) = |α|p and T = Min.
Moreover, we have Fαx(t) = Hϕ(α)‖x‖)(t) and (L,F , T ), is a probabilistic normed
space if, and only if, p = 1. This example shows us that probabilistic ϕ-normed
spaces include, in a natural way, ϕ-normed spaces (p-normed spaces). This fact
is not possible in the case of probabilistic normed spaces.
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Example 2. We will show that, by starting from a ϕ-normed space, for particular
dilatation or contraction functions ϕ and for different distribution functions G,
different probabilistic ϕ-normed spaces can be obtained. Let G ∈ D+ be different
from H0, let (L, ‖ · ‖) be a p-normed space. We define F : L → D+ by Fθ = H0

and if x �= θ by

Fx(t) = G
(

t
‖x‖

)
(t ∈ R+).

The triple (L,F , τT ) becomes a probabilistic ϕ-normed space under the t-norm
T = Min and ϕ(α) = |α|p, p ∈ (0,∞). This is called a simple probabilis-
tic ϕ-normed space generated by the distribution function G and the p-normed
space (L, ‖ · ‖). This example shows us that probabilistic ϕ-normed spaces have
a large statistical disposal. So, different processes of measurement for vectorial
amounts can be set in a statistical framework by using an appropriate proba-
bilistic ϕ-normed space.

Example 3. Now, we consider an example of probabilistic ϕ-normed space hav-
ing, as a base space, a set of random variables with values in a p-normed space,
p ∈ (0, 1].

Let (X, ‖ · ‖) be a p-normed space. We suppose that (Ω,K, P ) is a complete
probability measure space and (X,B) is the measurable space, where B is the
σ-algebra of Borel subsets of the p-normed space (X, ‖ · ‖). We denote by L a
linear subspace of random variables defined on (Ω,K, P ) with values in (X,B)
and we will identify the random variables which are equal with the probability
one. For all x ∈ L, t ∈ R, and t > 0 we define

Fx(t) = P ({ω ∈ Ω : ‖x(ω)‖ < t}).
The triple (L,F , Tm), where Fx(t) = Fx(t), is a probabilistic ϕ-normed space
with ϕ(α) = |α|p. We verify only the conditions (2) and (3) of the Definition 1,
the condition (1) is obviously satisfied. Fαx(t) = P

({ω ∈ Ω : ‖αx(ω)‖ < t}) =
P

({ω ∈ Ω : |α|p‖x(ω)‖ < t}) = P
({

ω ∈ Ω : ‖x(ω)‖ < t
|α|p

})
= Fx

(
t

|α|p
)
. For

x, y ∈ L, and t1, t2 ∈ R+ − {0} we define the sets:

A = {ω ∈ Ω : ‖x(ω)‖ < t1},
B = {ω ∈ Ω : ‖y(ω)‖ < t2},
C = {ω ∈ Ω : ‖[x(ω) + y(ω)]‖ < t1 + t2}.

The triangle inequality of a p-normed space implies that A ∩ B ⊂ C. By the
properties of the probability measure P we have

P (C) ≥ P (A ∩ B) ≥ P (A) + P (B) − P (A ∩ B) ≥ P (A) + P (B) − 1.

Taking into account that P (A) = Fx(t1), P (B) = Fy(t1) and P (C) = Fx+y(t1 + t2),
it follows that the inequality (4) is satisfied for T = Tm. By the Proposition 1
the condition (4) is equivalent with (3).
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The following theorem give a topological structure of a probabilistic ϕ-normed
space.

�
��	�� 1� Let (L,F , T ) be a Menger ϕ-normed space under a continuous
t-norm T such that T ≥ Tm, then:

(a) V = {V (ε, λ) : ε > 0, λ ∈ (0, 1)}, V (ε, λ) = {x ∈ L : Fx(ε) > 1 − λ}
is a complete system of neighbourhoods of null vector for a linear topology
on L generated by the ϕ-norm F .

(b) The family of subsets of L: U = {U (ε, λ) : ε > 0, λ ∈ (0, 1)},
U (ε, λ) = {(x, y) ∈ L × L : Fx−y(ε) > 1 − λ}

is a complete system of neighbourhoods for a uniformity on L.

P r o o f. We will prove only the point (a), the proof of (b) is similar to that of
(a) and we will omit it.

Let V (εk, λk), k = 1, 2 be in V, consider ε = min{ε1, ε2} and λ = min{λ1, λ2},
then V (ε, λ) ⊂ V (ε1, λ1) ∩ V (ε2, λ2).

Let α ∈ R such that 0 ≤ |α| ≤ 1 and x ∈ αV (ε, λ), then x = αy, where
y ∈ V (ε, λ) and we have

Fx(ε) = Fαy(ε) = Fy

(
ε

ϕ(α)

) ≥ Fy(ε) > 1 − λ.

This shows us that x ∈ V (ε, λ), hence αV (ε, λ) ⊂ V (ε, λ).
Let us show that, for every V ⊂ V and x ∈ L there exists α ∈ R, α �= 0, such

that αx ∈ V . If V ∈ V, then there exist ε > 0, λ ∈ (0, 1) such that V = V (ε, λ).
Let x be arbitrarily fixed in L and α ∈ R, α �= 0, then Fαx(ε) = Fx

(
ε

ϕ(α)

)
.

Since, lim
α→0

Fx

(
ε

ϕ(α)

)
= 1 it follows that, there exists α ∈ R such that Fαx(ε) =

Fx

(
ε

ϕ(α)

)
> 1 − λ, hence αx ∈ V .

Let us prove that, for every V ∈ V there exists V0 ∈ V such that V0 +V0 ⊂ V .
If V = V (ε, λ) and x ∈ V (ε, λ), then there exists η > 0 such that Fx(ε) > 1−η >
1 − λ. If V0 = V ( ε

2 , η
2 ) and x, y ∈ V0, by the triangle inequality (4) we have

Fx+y(ε) ≥ T
(
Fx

(ε

2

)
, Fy

(ε

2

))
≥ Tm

(
1 − η

2
, 1 − η

2

)
> 1 − η > 1 − λ.

The above inequalities show us that V0 + V0 ⊂ V .
Now, we show that V ∈ V and α ∈ R, α �= 0, imply αV ∈ V. Let us

remark that αV = αV (ε, λ) =
{
αx : Fx(ε) > 1 − λ

}
and Fx(ε) > 1 − λ ⇐⇒

Fx

(
ϕ(α)ε
ϕ(α)

)
= Fαx,a(ϕ(α)ε) > 1 − λ. This shows us that αV = V (ϕ(α)ε, λ, A),

hence αV ∈ V.
The above statements show us that V is a base for a system of neighborhoods

of the null vector in the linear space L. It is easy to see that the uniformity
generated by U and the topology generated by V are compatible. �
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�	�
������� 2� Let {xn}n∈N be a sequence in L and let (L,F , T ) be a Menger
ϕ-normed space under a continuous t-norm T , then:

(a) {xn} converges to x in the topology generated by the probabilistic ϕ-norm
F on L if, and only if, Fxn−x(t), converges to H0(t) for every t > 0;

(b) {xn} is a Cauchy sequence in the uniformity generated by the probabilistic
ϕ-norm F on L if, and only if, Fxn−xm

(t) converges to H0(t) for all t > 0.

3. Functions with values in probabilistic normed spaces

Let (Ω,K, P ) be a complete probability measure space, i.e., Ω is a nonempty
set, K is a σ-algebra on Ω and P is a complete probability measure on K. Let
(X,B) be a measurable space, where (X, ‖ · ‖) is a separable Banach space and
B is the σ-algebra of the Borel subsets of (X, ‖ · ‖).

A mapping x : Ω → X is said to be a random variable with values in X if
x−1(B) ∈ K for all B ∈ B ([2], [14]). Let X be the set of all random variables
(equal in probability) and let F be the probabilistic norm on X defined by

Fx(t) = P ({ω ∈ Ω : ‖x(ω)‖ < t}).
It is known that (X ,F , τTm

) is a complete probabilistic normed space of Sher-
stnev type. Furthermore, the (ε, λ)-topology on X induced by the probabilistic
norm F is equivalent to the topology of the convergence in probability on X .

A mapping f is said to be a random function defined on the subset A of real
line with values in a separable Banach space X if, for every t ∈ A the mapping
f(t, ·) : Ω → X is a X-valued random variable. Two X-valued random functions
f and g are said to be equivalent if f(t, ω) and g(t, ω) are equal almost surely
for every t ∈ A.

Random functions have had a special importance in the probability theory
as well as in its applications. Regarding time series as random functions their
predictability have increased and random functions have given important new
tools in solving economics and engineering problems. Now, let f be a X-valued
random function defined on A ⊂ R, then one can define the mapping f̃ on A

with values in the random normed space (X ,F , Tm) by A � t 
→ f̃(t), where
[f̃ (t)](ω) = f(t, ω). Conversely, for every function f̃ : A → (X ,F , Tm) one can
define the X-valued random function on A by f(t, ω) = [f̃ (t)](ω), for every t ∈ A

and ω ∈ Ω. Furthermore the correspondence f 
→ f̃ is one to one and onto. By
this correspondence results obtained for functions with values in a probabilistic
ϕ-normed space can be applied to the study of random functions with values in
a separable Banach space.
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These considerations have determined us to approach the study of functions
with values into a probabilistic ϕ-normed space.

�	�
������� 3� Let f be a function and let (fn)n∈N be a sequence of functions
defined on a non-empty subset A of real line with values in a Menger ϕ-normed
spaces (L,F , T ). Then we have:

(a) The function f is continuous in t0 ∈ A, if and only if, for every ε > 0 and
λ ∈ (0, 1) there is δ(ε, λ) > 0 such that for all t ∈ A with |t − t0| < δ(ε, λ)

Ff(t)−f(t0)(ε) > 1 − λ.

(b) The sequence {fn}n∈N converges on the set A to the function f if and only
if for every ε > 0, λ ∈ (0, 1) and t ∈ A there is an integer N(ε, λ, t) such
that, for all n > N(ε, λ, t) we have

Ffn(t)−f(t)(ε) > 1 − λ.

The above statements are valid because the family
{
Vx(ε, λ) : Vx(ε, λ) =

{y ∈ L : Fx−y(ε) > 1 − λ}, ε > 0, λ ∈ (0, 1)
}

is a complete system of
neighbourhoods for the point x in the topology generated by the Menger ϕ-norm
F of (L,F , T ).

���������� 2� A sequence {fn}n∈N of functions defined on a set A ⊂ R with
values in a Menger ϕ-normed space (L,F , T ) is called a Cauchy sequence if
for every ε > 0 and λ ∈ (0, 1) there is an integer N(ε, λ) > 0 such that
Ffn(t)−fm(t)(ε) > 1 − λ for all t ∈ A and n, m ≥ N(ε, λ).

�
��	�� 2� A sequence {fn}n∈N of functions defined on the set A ⊂ R with
values in a complete Menger ϕ-normed space (L,F , T ) is uniformly convergent
on A if and only if {fn}n∈N is a Chauchy sequence on A.

In what follows we will use the probabilistic ϕ-norm to introduce the funda-
mental concepts of differential and integral calculus for functions with values in
a probabilistic ϕ-normed space.

Some particular results show us that these concepts assure a natural frame
for the study of random functions.

���������� 3� Let f be a function defined on a set A ⊂ R with values in
a probabilistic ϕ-normed space (L,F , T ) and let t0 ∈ I ⊂ A, where I is an
open interval. The function f is said to be differentiable in the point t0 if there
exists an element x0 ∈ L such that, for every ε > 0 and λ ∈ (0, 1) there exists
δ(ε, λ) > 0 such that

F f(t)−f(t0)
t−t0

−x0
(ε) > 1 − λ

for all t ∈ I, t �= t0, with |t − t0| < δ(ε, λ). The element x0 ∈ L is called the
derivative of f in the point t0 and it is denoted by f ′(t0). If the function f is
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differentiable in each point t ∈ A, then the function f is said to be differentiable
on the set A.

�	�
������� 4� If the function f : A → (L,F , T ) is differentiable in t0 ∈ A,
then the derivative f ′(t0) is unique.

P r o o f. Let us consider ε > 0, λ ∈ (0, 1) and x0, y0 ∈ L such that f ′(t0) = x0

and f ′(t0) = y0. By Definition 3 it results that there exists δ(ε, λ) > 0 and
η ∈ (0, 1) such that

F f(t)−f(t0)
t−t0

−x0

(ε

2

)
> 1 − η

2
> 1 − λ

2
and

F f(t)−f(t0)
t−t0

−y0

(ε

2

)
> 1 − η

2
> 1 − λ

2
for every t ∈ A, t �= t0, and |t − t0| < δ(ε, λ). Then we have :

Fx0−y0(ε) ≥ T

(
F f(t)−f(t0)

t−t0
−x0

(ε

2

)
, F f(t)−f(t0)

t−t0
−y0

(ε

2

))
≥ Tm

(
1 − η

2
, 1 − η

2

)
≥ 1 − η > 1 − λ.

If λ → 0, it results that Fx0,y0(ε) = 1 for every ε > 0. Hence Fx0−y0 = H0 and
x0 = y0. �

�	�
������� 5� If the function f : A → (L,F , T ) is differentiable in t0 ∈ A,
then it is continuous in the point t0.

Now, let f be a function defined on a interval [a, b] and let ∆ be a division
of the interval [a, b] given by a = t0 < t1 < · · · < tn = b. Let us denote, by
ν(∆) = max

0≤i≤n−1
(ti+1 − ti), the norm of the division ∆ and let u = (ui)0≤i≤n−1,

ui ∈ [ti, ti+1].
Now, we define:

σ�(f, u) =
n−1∑
i=0

(ti+1 − ti)f(ui).

���������� 4� A function f : [a, b] → (L,F , T ) is said to be Riemann integrable
on [a, b] if there exist x0 ∈ L such that for every ε > 0 and λ ∈ (0, 1) there exists
δ(ε, λ) > 0 such that, if ν(∆) < δ(ε, λ), then we have

Fσ�(f,u)−x0(ε) > 1 − λ

for every u = (ui)0≤i≤n−1. The element x0 ∈ L is called the Riemann integral

of the function f on the interval [a, b] and it is denoted by x0 =
b∫
a

f(t) dt.

266

Unauthenticated
Download Date | 2/3/17 10:40 AM



ON FUNCTIONS WITH VALUES IN PROBABILISTIC NORMED SPACES

�	�
������� 6� If the function f : [a, b] → (L,F , T ) is integrable on [a, b], then
b∫

a

f(t) dt is unique.

The proof is similar to that of Proposition 4 and we omitted it. One can
similarly prove that the other known properties of integrals are valid.

The following theorem assures us that a large class of functions defined on
a interval [a, b] ⊂ R, with values in a Menger ϕ-normed space (L,F , T ) are
integrable.

We say that a continuous t-norm T is of Hadzić type if the family {Tn}n∈N,
where T 1(t) = t, T 2(t) = T (t, t) and Tn+1(t) = T (Tn(t), t), is equicontinuous at
t = 1.

�
��	�� 3� Let (L,F , T ) be a complete Menger ϕ-normed space under a con-
tinuous t-norm T of Hadzić type. If f is a continuous function defined on [a, b]
with values in (L,F , T ), then f is Riemann integrable on [a, b].

P r o o f. Let ∆′ : a = t′0 < t′1 < · · · < t′n = b and ∆′′ : a = t
′′
0 < t

′′
1 < . . .

· · · < t
′′
n = b be two divisions of [a, b]. We will show that, for every ε > 0 and

λ ∈ (0, 1) there exists δ(ε, λ) > 0 such that, if max{ν(∆′), ν(∆
′′
)} ≤ δ(ε, λ),

then

Fσ∆′ (f,u)−σ
∆′′ (f,u)(ε) > 1 − λ.

If the t-norm T is continuous and of Hadzić type, then for every λ ∈ (0, 1) there
exists η ∈ (0, 1) such that Tn(1− η) > 1− λ for all n ≥ 1. Since f is continuous
on [a, b], it results that, for every ε > 0 and η > 0 previously considered, there
exists δ1(ε, λ) > 0 and η1 ∈ (0, 1) such that

Ff(t′)−f(t′′)

(
ε

b − a

)
> 1 − η1 > 1 − η

for every t′, t′′ ∈ [a, b] with |t′− t′′| < δ1(ε, λ). Let us consider δ(ε, λ) = 1
4δ1(ε, λ)

and the division ∆ of [a, b] given by the union of the divisions ∆′ and ∆′′. We
assume that ∆ : a0 = t1 < t2 < · · · < tp = b, u′

i ∈ [t′i, t
′
i+1] for 0 ≤ i ≤ n− 1 and

u′′
i ∈ [t′′j , t′′j+1] for 0 ≤ j ≤ m − i. Let us denote uk = u′

i for [tk, tk+1] ⊂ [t′i, t
′
i+1]

and ũk = u′′
j for [tk, tk+1] ⊂ [t′′j , t′′j+1] for any 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1 and

0 ≤ k ≤ p − 1.
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Then we have

Fσ∆′ (t,u′)−σd′′ (f,u′′)(ε)

=Fn−1P

i=0
(t′i+1−t′i)f(u′

i)−
m−1P

j=0
(t′j+1−t′j )f(u′′

j )
(ε)

=Fp−1P

k=1
(tk+1−tk)(f(uk)−f(ũk))

[
ε

b − a
·

p−1∑
k=0

(tk+1 − tk)

]
≥ T

(
T

(
. . . T

(︸ ︷︷ ︸
(p−1)times

Ff(u0)−f(ũ0)

(
ε

b−a

)
, Ff(u1)−f(ũ1)

(
ε

b−a

)
, . . .

. . . , Ff(up−1)−f(ũp−1)

(
ε

b−a

))
. . .

) ≥ T p−1(1 − η1) > T p−1(1 − η) > 1 − λ

for every two divisions ∆′, ∆′′ of the interval [a, b] with max{ν(d′), ν(d′′)} ≤
δ(ε, λ) and for every choice of points ui ∈ [t′i, t

′
i+1] and u′′

j ∈ [t′′j , t′′j+1], where
0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1.

Now, let {∆n}n≥1 be a sequence of divisions of the interval [a, b] such that
lim

n→∞ ν(∆n) = 0. Then, for any δ1 > 0 there exists n0 ∈ N such that, for

n′, n′′ ≥ n0, max{ν(∆n
′ ), ν(∆′′

n)} < δ. If we choose this δ1 such that δ1 < δ(ε, λ),
then we have

Fσ∆
n
′ (f,u′

n)−σ∆n′′ (f,u′′
n)(ε) > 1 − λ.

This show us that the sequence {σ∆n
(f, u)}n∈N is a Cauchy sequence in the

RN-space (L,F , T ). This being complete, it results that there exists x0 =

lim
n→∞ σ∆n

(f, u) =
b∫
a

f(t) dt. This completes the proof of the theorem. �

Remark 2� We know that every continuous function defined on [0, 1] with values
in a complete metric linear space (L, d) is Riemann integrable if and only if (L, d)
is a locally convex topological linear space ([14]). We remark that, if the t-norm
T is not of Hadzić type, then there exists a Menger ϕ-normed spaces (L,F , T )
which, endowed with the (ε, λ)-topology generated by the Menger ϕ-norm F , is
not locally convex. These shows us that the above theorem offers the largest class
of Menger ϕ-normed spaces (L,F , T ) which have the property: every continuous
function f : [a, b] → (L,F , T ) is Riemann integrable.

Remark 3� The condition as the t-norm T to be of Hadzić type is also a
necessary condition of the Theorem 3 ([8], [14]).
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Remark 4� If (L,F , T ) is a random normed space under a t-norm T which
is not of Hadzić type, there are continuous functions which are not integrable.
So, an open problem is to find which classes of functions are integrable in which
classes of probabilistic normed spaces, especially, for Tm and product t-norm Tp,
which are not of Hadzić type.
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