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OSCILLATION AND STABILITY

OF NONLINEAR DISCRETE MODELS

EXHIBITING THE ALLEE EFFECT
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ABSTRACT. In this paper, we consider the discrete nonlinear delay population
model exhibiting the Allee effect

xn+1 = xn exp
“
a + bxp

n−τ − cxq
n−τ

”
, (∗)

where a, b and c are constants and p, q and τ are positive integers. First, we
study the local stability of the equilibrium points. Next, we establish some oscil-
lation results of nonlinear delay difference equations with positive and negative
coefficients and apply them to investigate the oscillatory character of all positive
solutions of equation (∗) about the positive steady state x∗ and prove that every

nonoscillatory solution tends to x∗.
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1. Introduction

The so-called Allee effect refers to a population which has a maximal per
capita growth rate at intermediate density. This occurs when the per capita
growth rate increases as density increases and decreases after the density passes
a certain value. This is certainly not the case in the delayed logistic equation,

N ′(t) = rN(t)
[
1 − N(t − τ)

K

]

where the per capita growth rate is a decreasing function of the density. For an
important case, aggregation and associated cooperative and social characteristics
among members of species had been extensively studied in animal population by
A l l e e [3], [4]. When the density of population becomes too large, the positive
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feedback effect of aggregation and cooperation may be dominated by density
dependent stabilizing negative feedback effect due to interspecific competition
due to excessive crowding and the ensuing shortage of resources. G o p a l s a m y
and L a d a s [6] studied the following delay Lotka-Volterra type single species
population growth model,

x′(t) = x(t)[a + bx(t − τ) − cx2(t − τ)] (1)

where

a, b, c, τ ∈ (0,∞) with c > b. (2)

When τ = 0, the per capita growth is g(x) = a + bx − cx2. Then ǵ(0) = b > 0
and g(x) achieves its maximum at x = b

2c , thus exhibiting the Allee effect.
When b < 0, g(x) is decreasing function and therefore there is no Allee effect.
E l a b b a s y , S a k e r and S a i f [9] proved that if (2) holds, and

(2ck2 − bk)τ >
1
e
,

then every positive solution of equation (1) oscillates about the unique positive
equilibrium point k = 1

2c [b +
√

b2 + 4ac ]. They also proved that every nonoscil-
latory solution of equation (1) tends to k when t tends to infinity. They extended
these results to the more general equation

x′(t) = x(t)[a + bxp(t − τ) − cxq(t − τ)], (3)

where

a, b, c, τ ∈ (0,∞) with c > b, q > p

and some additional conditions on p and q. For a given differential equation, a
difference equation approximation would be most acceptable if the solution of the
difference equation is the same as the differential equation at the discrete points.
But unless we can explicitly solve both equations, it is impossible to satisfy this
requirement. Most of the time, it is desirable that a difference equation, when
derived from a differential equation, preserves the dynamical features of the
corresponding continuous time model such as equilibria, oscillation, their local
and global stability characteristics and bifurcation behaviors. If such discrete
models can be derived from continuous models, then the discrete time models
can be used without loss of any functional similarity to the continuous-time
models and it will preserve the considered realities; such discrete time models
can be called “Dynamically consistent” with the continuous time models.
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There is no unique way of deriving discrete time version of dynamical sys-
tems corresponding to continuous time formulations. One of the ways of deriving
difference equations modeling the dynamic of populations with nonoverlapping
generations is based on appropriate modifications of models with overlapping
generations. In this approach, differential equations with piecewise constant ar-
guments have been useful, see for example the paper by L i u and G o p a l s a m y
[13]. Recently the method that has been established by L i u and G o p a l s a m y
has been used by some authors to find the discrete analogy of some mathemat-
ical models. Using the technique that has been used in [13], we will derive the
discrete analogy of equation (3). Thinking of differential equations with piece-
wise constant arguments, we can go on with the discrete analogy of equation (3).
Let us assume that the average growth rate in (3) changes at regular intervals
of time, then we can incorporate this aspect in (3) and obtain the following
modified equation

1
x(t)

x′(t) = a + bxp[t − τ ] − cxq[t − τ ],

where [t] denotes the integer part of t, t ∈ (0,∞). Equation of this type is
known as differential equation with piecewise with constant argument and this
equation occupy a position midway between differential and difference equation.
By a solution of this equation, we mean a function x(t) which is defined for
t ∈ (0,∞) and satisfy the properties:

(a) x is continuous on [0,∞).

(b) The derivative dx(t)
dt exists at each point t ∈ (0,∞) with the possible ex-

ception of the points t ∈ {0, 1, 2, . . .}, where left side derivative exists.
(c) The equation (3) is satisfied on each interval [n, n+1) with n = 0, 1, 2, . . . .

By integrating the last equation on any interval of the form [n, n + 1),
n = 0, 1, 2, . . . we obtain

x(t) = x(n) exp
(
[a + bxp(n − τ) − cxq(n − τ)] (t − n)

)
.

Letting t �→ n + 1, we obtain that

x(n + 1) = x(n) exp [a + bxp(n − τ) − cxq(n − τ)] (4)

where
a, b, c ∈ (0,∞) with c > b, and
p, q, τ are positive integers with q > p,

(5)

which is a discrete time analogy of (3). We note that the equilibrium points of
(4) are the same as of system (3). So the derived discrete analogy preserves on
the equilibria.
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In recent years, the investigation of the theory of difference equations has
assumed a greater importance as well deserved discipline. Many results in the
theory of difference equations have been obtained as more or less natural discrete
analogous of corresponding results of differential equations ([1], [2]). Neverthe-
less, the theory of difference equations is richer than the corresponding theory
of differential equations. For example, a simple difference equation resulting
from the first order differential equation exhibits the chaotic behavior which can
only happen in higher order differential equations. We remark that in recent
years oscillation and global attractivity of nonlinear delay discrete models have
become a very popular subject. In fact, different models have been studied in
[7], [11] and the references cited therein.

By a solution of equation (4), we mean a sequence {xn} which is defined for
n ≥ −τ and satisfies equation (4) for n ≥ 0. Association with equation (4), we
consider the initial condition

x(i) = ai > 0 for i = −τ, . . . , 0. (6)

The exponential form of equation (4) assures that the solution {xn} with respect
to any initial condition (6) remains positive.

Now we mention some definitions that will be useful in our investigation of
equation (4).

���������� 1.1� A solution {xn} of equation (4) is said to be oscillatory about
x∗ if the terms xn − x∗ of the sequence {xn − x∗} are neither all eventually
positive nor all eventually negative.

Consider the more general difference equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . . (7)

���������� 1.2� Let I be an interval of real positive numbers.
(i) The equilibrium point x of equation (7) is locally stable if for every ε > 0

there exists δ > 0 such that for all

x−k, x−k+1, . . . , x−1, x0 ∈ I,

with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < δ,

we have

|xn − x| < ε for all n ≥ −k.
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(ii) The equilibrium point x of equation (7) is locally asymptotically stable if
x is locally stable solution of equation (7) and there exists γ > 0, such that for
all

x−k, x−k+1, . . . , x−1, x0 ∈ I,

with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ,

we have

lim
n→∞ xn = x.

(iii) The equilibrium point x of equation (7) is global attractor if for all

x−k, x−k+1, . . . , x−1, x0 ∈ I,

we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of equation (7) is globally asymptotically stable
if x is locally stable, and x is also a global attractor of equation (7).

(v) The equilibrium point x of equation (7) is unstable if x is not locally
stable.

The linearized equation of equation (7) about the equilibrium x is the linear
difference equation

yn+1 =
k∑

i=0

∂F (x, x, . . . , x)
∂xn−i

yn−i. (8)

The following well known theorem, called the Linearized Stability Theorem, is
very useful in determining the local stability character of the equilibrium solution
x, of equation (7).

�	��
�� A� Assume that pi ∈ R and k ∈ {1, 2, . . .}. Then

k∑
i=1

|pi| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + · · · + pkxn = 0, n = 0, 1, . . . .

247

Unauthenticated
Download Date | 2/3/17 10:40 AM



E. M. ELABBASY — S. H. SAKER — H. EL-METWALLY

�	��
�� B� Assume p ∈ R and k ∈ N. Then all roots of the equation
mk+1 − mk + p = 0 lie inside the unit ball, |m| < 1, if and only if

0 < p < 2 cos
(

kπ

2k + 1

)
.

The paper is organized as follows:
In Section 2, we study the local stability of the equilibrium points of equation (4).
In Section 3, we study the oscillation of nonlinear delay difference equations
with positive and negative coefficients, and apply our results to the equation (4)
to give a sufficient condition for oscillation of all positive solutions about the
positive steady state x∗. Also we prove that every nonoscillatory solution of
equation (4) tends to x∗.

2. Local stability of equation (4)

In this section we study the local asymptotic stability of the equilibrium points
of equation (4).

First we show that equation (4) has a unique positive equilibrium point.
Observe that the equilibrium points of equation (4) are the solutions of the
equation

x∗ = x∗ exp (a + bx∗p − cx∗q) .

So
x∗ = 0, or a + bx∗p − cx∗q = 0. (I)

Set
f(x) = a + bxp − cxq for x �= 0.

Now,
f(0) = a, lim

x→∞
f(x) = −∞

and
f ′(x) = bpxp−1 − qcxq−1.

It follows from (I) that

f ′(x∗) =
1
x∗ [−qa − bx∗p(q − p)] < 0.

This means that for every x∗ satisfying the relation (I), we have f ′(x∗) is always
negative, therefore equation (4) has exactly one positive solution x∗.
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�	��
�� 2.1� The following statements are true:

(i) The zero equilibrium of equation (4) is unstable.
(ii) The positive equilibrium point of equation (4) is locally stable if

ap + (q − p)cx∗q < 2 cos
(

kπ

2k + 1

)
.

P r o o f.
(i) The linearized equation of equation (4) about the zero equilibrium point

is
yn+1 − eayn = 0.

Then its characteristic root is ea > 1. Hence by Theorem A the zero equilib-
rium point of equation (4) is unstable.

(ii) The linearized equation of equation (4) about the positive equilibrium
point x∗ is

zn+1 − zn + [ap + (q − p)cx∗q] zn−τ = 0.

The result follows by Theorem B. �

3. Oscillation of nonlinear difference equations
with positive and negative coefficients

and application to equation (4)

In this section, we establish some new sufficient conditions for oscillation of
nonlinear delay difference equations with positive and negative coefficients.

Consider the nonlinear delay difference equation,

∆x(n) + P (n)H1(x(n − σ)) − Q(n)H2(x(n − τ)) = 0, n ≥ n0, (9)

where the following hypotheses are satisfied:

(h1) {P (n)}, {Q(n)} are real positive sequences, H1, H2 ∈ C[R, R],
τ and σ, are positive integers with σ ≥ τ .

(h2) uHi(u) > 0 for u �= 0, i = 1, 2, lim
u→0

H1(u)
u = 1, H1 ≥ H2 and

there exists a positive constant δ such that, either

H1(u) ≤ u for u ∈ [0, δ],

or
H1(u) ≥ u for u ∈ [−δ, 0].
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(h3) lim
n→∞ P (n) = p, Q(n) ≤ q, p > q,

P (n) − Q(n + τ − σ) ≥ ε > 0 for n ≥ n0 − τ + σ, and
n−τ−1∑

n−σ
Q(n + τ) ≤ 1 for n ≥ n0 + σ.

(h4) There exists a positive constant M such that
H2(u)

u ≤ M and 1 − Mq(σ − τ) > 0.

�	��
�� 3.1� Assume that (h1)–(h4) are satisfied. Then every nonoscillatory
solution of equation (9) tends to zero as n → ∞.

P r o o f. Let x(n) be a nonoscillatory solution of equation (9). We will assume
that x(n) is eventually positive (the case where x(n) is eventually negative is
similar and will be omitted). Assume that n1 ≥ n0 +σ is such that x(n) > 0 for
n ≥ n1 − σ. Set

z(n) = x(n) −
n−τ−1∑
s=n−σ

Q(s + τ)H2((x(s)), n ≥ n0 + σ − τ. (10)

First, we show that z(n) is nonincreasing. We see from equation (10) that

∆z(n) = ∆x(n) − Q(n)H2((x(n − τ)) + Q(n + τ − σ)H2(x(n − σ)). (11)

From equations (9) and (11) we get

∆z(n) = −P (n)H1((x(n − σ)) + Q(n + τ − σ)H2(x(n − σ)).

Hence from (h2) and (h3) we find

∆z(n) ≤ −(P (n) − Q(n + τ − σ))H1(x(n − σ)) ≤ 0. (12)

This yields that z(n) is nonincreasing. Next, we prove that z(n) is positive. If it
is not the case, then eventually z(n) < 0, and so there exist n2 > n1 and α > 0
such that z(n) ≤ −α < 0 for n ≥ n2, that is

x(n) ≤ −α +
n−1−τ∑
i=n−σ

Q(i + τ)H2(x(i)) ≤ 0, n ≥ n2. (13)
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We consider the following two possible cases.
(i) If {xn} is unbounded, that is lim sup

n→∞
x(n) = ∞, then there exists a

sequence of points {si}∞i=1 such that si ≥ n3 + σ, i = 1, 2, 3, . . . , si → ∞,
x(si) → ∞ as i → ∞, and x(si) = max{xn : n3 ≤ n ≤ si}. From (h2), (h3)
and (13), we find that

x(si) ≤ −α +
n−1−τ∑
i=n−σ

Q(i + τ)H2(x(i)) ≤ −α + x(si)

which is a contradiction.
(ii) if {x(n)} is bounded that is lim sup

n→∞
x(n) = a < ∞. Let {si}∞i=1 be a

sequence of points such that si → ∞, as i → ∞ and x(si) → a as i → ∞. Let
ξi be such that x(ξi) = max

{
x(s) : si − σ ≤ s ≤ si − τ

}
, si − σ ≤ ξi ≤ si − τ ,

i = 1, 2, . . . . Then ξi → ∞, as i → ∞. From (h2), (h3) and (13), we get

x(si) ≤ −α +
si−1−τ∑
s=si−σ

Q(s + τ)H2(x(s)) ≤ −α + x(ξi).

Taking the superior limit as i → ∞, we obtain

a ≤ −α + a,

which is also a contradiction. Combining (i) and (ii) we have z(n) is positive
and x(n) ≥ z(n) for n ≥ n2.

Now we show that x(n) is bounded. Otherwise there exists a sequence of
points {nl} such that, lim

l→∞
nl = ∞, lim

l→∞
x(nl) = ∞ and x(nl) = max

s≤nl

x(s).

From equation (10) we have

z(nl) = x(nl)−
nl−τ−1∑
s=nl−σ

Q(s+τ)H2(x(s)) = x(nl)−
nl−τ−1∑
s=nl−σ

Q(s+τ)
H2(x(s))

x(s)
x(s).

Then, from (h3) and (h4) we find that

z(nl) ≥ x(nl)[1 − qM (σ − τ)] → ∞ as l → ∞,

which contradicts (12). Then from (10) and (12) we see that z(n) is also bounded,
and lim

n→∞ z(n) = k ∈ R. By summing both sides of (12) from n2 to ∞ we obtain

k − z(n2) ≤ −
∞∑

i=n2

{(P (i) − Q(i + τ − σ))}H1(x(i − σ)). (14)
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We claim that lim inf
n→∞ x(n) = 0. Otherwise there exists a positive constant β and

n3 ≥ n2 such that x(n) ≥ β for n ≥ n3. Since x(n) > 0 and x(n) is bounded
from above, (h3) implies that H1(x(n − σ)) ≥ β′ for some constant β′. Also,
(h3) implies that

(P (n) − Q(n + τ − σ)) ≥ (P (n) − q) → p − q as n → ∞.

Then for n sufficiently large, (P (n) − Q(n + τ − σ))H1(x(n − σ)) is bounded
below by a positive constant. This contradicts (14). Hence lim inf

n→∞
x(n) = 0. We

prove that lim
n→∞

x(n) = 0. Otherwise, let lim sup
n→∞

x(n) = µ. From equation (10),

since z(nl) ≤ x(nl), we get
k ≤ 0.

Now from equation (10) and by using (h3) and (h4) we find that

z(nl) ≥ x(nl) − qM

nl−τ−1∑
s=nl−σ

x(s).

Choose ε0 > 0 and sufficiently small, we get from the last inequality that

z(nl) ≥ x(nl) − qM (σ − τ)(µ + ε0).

By taking the limit as n → ∞ we obtain

k ≥ µ − qM (σ − τ)(µ + ε0).

As ε0 is arbitrary, we conclude

0 ≥ k ≥ µ[1 − qM (σ − τ)] ≥ µ.

This implies that k = µ = 0. Hence lim
n→∞x(n) = 0 and then lim

n→∞ z(n) = 0. The
proof is complete. �

�	��
�� 3.2� Assume that (h1)–(h4) hold. If every solution of the delay dif-
ference equation

∆z(n) + (P (n) − Q(n + τ − σ))(1 − ε)z(n− σ) = 0 (15)

oscillates, where ε > 0 is arbitrarily small, then every solution of equation (9)
oscillates.

P r o o f. Assume that (h2) holds, with

H1(u) ≤ u for 0 ≤ u ≤ δ.

The case where
H1(u) ≥ u for − δ ≤ u ≤ 0,

is similar and will be omitted. Now assume, for the sake of contradiction that
equation (9) has a nonoscillatory solution. We will assume that x(n) is eventually
positive solution of equation (9) (the case where x(n) is eventually negative is
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similar and will be omitted), i.e., there exists n1 sufficiently large such that
x(n) > 0, x(n − τ) > 0, and x(n − σ) > 0 for n ≥ n1. Set

z(n) = x(n) −
n−τ−1∑
s=n−σ

Q(s + τ)H2((x(s)), n ≥ n1.

Then as in the proof of Theorem 3.1 we have

∆z(n) + (P (n) − Q(n + τ − σ))H1(x(n − σ)) ≤ 0. (16)

Since lim
n→∞ x(n) = 0, it follows by Theorem 3.1 and (h2) that

lim
n→∞

H1(x(n − σ))
x(n − σ)

= 1.

Then there exist ε ∈ (0, 1) and nε such that for n ≥ nε, x(n − σ) > 0 and

H1(x(n − σ)) ≥ (1 − ε)x(n − σ).

We obtain from (16) that

∆z(n) + (P (n) − Q(n + τ − σ))(1 − ε)x(n − σ) ≤ 0.

It follows by Theorem 3.1, since x(n) ≥ z(n) for n ≥ n0 + σ − τ , that z(n) is
positive and satisfies

∆z(n) + (P (n) − Q(n + τ − σ))(1 − ε)z(n− σ) ≤ 0. (17)

Then by [16, Lemma 1], the delay difference equation (15) has an eventually
positive solution also, which contradicts the assumption that every solution of
equation (15) oscillates. Then every solution of equation (9) oscillates. The
proof is complete. �

The oscillation of the linear delay difference equation (15) has been studied
by many authors. By using the oscillation results in [5], [8], [10], [15], we get
the following results.

�	��
�� 3.3� Assume that one of the following statements is true:

(i)

lim sup
n→∞

σ∑
i=0

Θ(n − i) > 1, (18)

(ii)

lim inf
n→∞ Θ(n) >

σσ

(σ + 1)σ+1 , (19)
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(iii)

lim inf
n→∞

1
σ

σ∑
i=1

Θ(n − i) >
σσ

(σ + 1)σ+1 , (20)

where

Θ(n) = (P (n) − Q(n + τ − σ))(1 − ε).

Then every solution of equation (15) is oscillatory.

Remark 3.1� Clearly, if the strict inequalities hold in (18), (19) and (20) for
ε = 0, then the same result is also true for all sufficiently small ε > 0. Thus, we
can restate Theorem 3.3 as follows:

��
�

�
� 1� Assume that one of the following statements is true

(i)

lim sup
n→∞

σ∑
i=0

Λ(n − i) > 1, (21)

(ii)

lim inf
n→∞ Λ(n) >

σσ

(σ + 1)σ+1 , (22)

(iii)

lim inf
n→∞

1
σ

σ∑
i=1

Λ(n − i) >
σσ

(σ + 1)σ+1 , (23)

where

Λ(n) = P (n) − Q(n + τ − σ),

then every solution of equation (15) is oscillatory.

�	��
�� 3.4� Assume that (h1) − (h4) hold. If

lim inf
n→∞

σ∑
i=1

Θ(n − i) > L > 0,

and

lim sup
n→∞

Θ(n) > 1 − L2

4
, (24)

then every solution of equation (15) is oscillatory.
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�	��
�� 3.5� Assume that one of the following is true

(i)

0 ≤ α = lim inf
n→∞

σ∑
i=1

Θ(n − i) ≤ σσ+1

(σ + 1)σ+1 ,

and

lim sup
n→∞

σ∑
i=0

Θ(n − i) > 1 − α2

4
. (25)

Then every solution of equation (15) is oscillatory.

�	��
�� 3.6� Assume that

(i)

0 ≤ α = lim inf
n→∞

σ∑
i=1

Θ(n − i) ≤ σσ+1

(σ + 1)σ+1 ,

(ii)

lim sup
n→∞

σ∑
i=0

Θ(n − i) > 1 − 1 − α −√
1 − 2α − α2

2
. (26)

Then every solution of equation (15) is oscillatory.

Remark 3.2� Theorem 3.2 shows that the oscillation of equation (9) is equiv-
alent to the oscillation of the delay difference equation (15). Now, by applying
the above results we have the following oscillation criteria for oscillation of the
nonlinear delay difference equation (9).

�	��
�� 3.7� Assume that (h1) − (h4) hold. Furthermore, assume that one
of the conditions (21), (22) or (23) holds. Then every solution of equation (9)
oscillates.

�	��
�� 3.8� Assume that (h1)–(h4) hold. Furthermore, assume that the as-
sumptions of Theorem 3.2 hold. Then every solution of equation (9) oscillates.

�	��
�� 3.9� Assume that (h1)–(h4) hold. Furthermore, assume that the as-
sumptions of Theorem 3.5 hold. Then every solution of equation (9) oscillates.

�	��
�� 3.10� Assume that (h1) − (h4) hold. Furthermore, assume that the
assumptions of Theorem 3.6 hold. Then every solution of equation (9) oscillates.

Remark 3.3� In the above results some of the conditions (h1)–(h4) may be
weakened. In particular, from the proofs of Theorems 3.1 and 3.2 it is clear that
if σ = τ , then condition (h4) in all the above results may be dropped.
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In the following theorem, we apply our oscillation results to establish the suf-
ficient condition for oscillation of all positive solutions of equation (4) about x∗.

�	��
�� 3.11� Assume that (5) holds and

qc(x∗)q − bp(x∗)p >
τ τ

(τ + 1)τ+1 . (27)

Then every positive solution of equation (4) oscillates about x∗.

P r o o f. Let x(n) be an arbitrary positive solution of equation (4) (we consider
the case where xn > x∗ since the case where xn < x∗ is similar and will be
omitted). Set

xn = x∗ exp{zn}. (28)

Clearly, z(n) is positive, and satisfies the nonlinear difference equation

∆zn + qc(x∗)qH1(z(n − τ)) − bp(x∗)pH2(z(n − τ)) = 0, (29)

with

H1(u) =
equ − 1

q
, and H2(u) =

epu − 1
p

.

Observe that

qc(x∗)q > bp(x∗)p.

Since σ = τ , in view of Remark 3.2 it is easy to see that all the hypotheses
(h1)–(h3) are satisfied for equation (29). Then by the condition (27) every solu-
tion of equation (29) oscillates about zero, and this implies that every solution
of equation (4) oscillates about x∗. The proof is complete. �

We note that

(qc(x∗)q − bp(x∗)p)(τ + 1) > 1/
(
1 + 1

τ

)τ → 1/e as τ → ∞.

Therefore one may think of the condition (27) of Theorem 3.11 as being the
discrete analogy of equation (4) with the delay τ + 1. So the derived discrete
analogy preserves the oscillation condition.

In the following we give an attractivity result of all nonoscillatory solutions
of equation (4).
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�	��
�� 3.12� Assume that (5) holds. Then every positive nonoscillatory
solution of equation (4) converges to the positive equilibrium point x∗.

P r o o f. Let x(n) be a positive solution of equation (4) which does not oscillate
about x∗. Without loss of generality we might assume that x(n) is eventually
grater than or equal to x∗ (the case where the solution is less than x∗ is similar
and is left to the reader). It is clear that

(x − x∗)f(x) < 0 for x from some neighborhood of x∗, (30)

where f(x) is defined as before by

f(x) = a + bxp − cxq.

Now let N be a nonnegative integer number and let

xn−τ ≥ x∗ for all n ≥ N > τ.

It follows from equation (4) and (30) that

xn+1 = xn exp(a + bxp
n−τ − cxq

n−τ ) ≤ xn for all n ≥ N.

Thus the sequence x(n) is non-increasing and bounded from below by x∗ and
since x∗ is the only equilibrium point of equation (4),

lim
n→∞x(n) = x∗.

This completes the proof of the theorem. �
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