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ABSTRACT. We consider a second order nonlinear differential equation with
homogeneous Dirichlet boundary conditions. Using the root functions method we
prove a relation between the number of zeros of some variational solutions and
the number of solutions of our boundary value problem which follows into a lower
bound of the number of its solutions.
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0. Introduction

The problem of multiplicity of the nth order boundary value problem (BVP)
has been investigated in many papers. There are many ways to handle this
problem. One of them is the well-known Shooting Method. In this paper we will
try (at least partially) to solve a problem of a lower bound of the number of
solutions of second order BVP. Papers using the Shooting Method to bound the
number of solutions of BVP are usually based on the same principle, which we
call the root functions method . Roughly speaking we will try to show that the
number of zeros of some variational problem has a connection with the number
of solutions of BVP and this connection is made by root functions.
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PETER SOMORA

We will consider the following 2nd order BVP with Dirichlet boundary con-
ditions

x′′ = f(t, x, x′) , (1)
x(0) = 0 , x(π) = 0 , (2)

where f : [0, T ] × R
2 → R and T ∈ (π,∞] .1

In the first paragraph we will set up the definition of a shooting function as
a solution of some parameterized initial value problem (IVP). Then we define
the root functions, which have been already mentioned in [DS]. We actually
generalize this notion of root functions for our BVP with minimal requirements
on the function f . Further we show properties of a shooting function and root
functions, which will be useful in the next paragraphs.

In Paragraph 2 we will present a theorem, which under another assumptions
on f gives a lower bound of the number of solutions. Then we prove a corollary
of this theorem, which refines the lower bound of the number of solutions under
an additional assumption on f . To achieve our purpose we are using technique
similar to [GS]. We also show a non-trivial example where we use this theorem.

In the conclusion we will emphasize the importance of root functions be-
haviour analysis. A connection between the behaviour of ∂f

∂x (for f = f(x)) and
the behaviour of root functions will be outlined.

In this article we will use the following notations:

‖ · ‖ — norm in R
2 ;

‖x‖1 = sup
t∈[0,T ]

∥∥(
x(t), x′(t)

)∥∥ , where x ∈ C1
(
[0, T ]

)
(‖ · ‖1 is norm in C1 );

(a, b)0 = (a, b) \{0} .

1. Definition of root functions

For the definition of root function we will consider IVP (1) with the initial
conditions:

x(0) = 0, x′(0) = λ, λ ∈ (Λ1, Λ2) , (3)
−∞ � Λ1 < 0 < Λ2 � ∞ .

We will suppose the following assumptions on f which will be called the
standard assumptions:

(H1) f is continuous on its domain and the function x(t) ≡ 0 for t ∈ [0, T ] is
the unique solution of the initial value problem (1) with the conditions:
x(t̃ ) = 0, x′(t̃ ) = 0, for each t̃ ∈ [0, T ] (it implies that f(t, 0, 0) ≡ 0).

1If T = ∞ , then all intervals [ · , T ] have to be replaced by [ · ,∞).
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(H2) ∃Λ1 ∈ R
− ∪ {−∞} ∃Λ2 ∈ R

+ ∪ {∞} ∀λ ∈ (Λ1, Λ2) :
IVP (1), (3) has the unique solution defined on [0, T ] .

���������� ���� The initial value problem (1), (3) is called the shooting prob-
lem (SP) associated with (1) (or SP (1), (3)) when it fulfils the following assump-
tions:

(a) for all λ ∈ (Λ1, Λ2) there exists the unique classical solution of IVP (1),
(3) and it can be extended on the whole interval [0, T ] ;

(b) IVP (1), (3) has the property of continuous dependence on parameter λ
— it means: x ∈ C(

[0, T ] × (Λ1, Λ2)
)

and x′ ∈ C(
[0, T ] × (Λ1, Λ2)

)
.

Next we will define shooting function as a solution of SP (1), (3) with pa-
rameter λ and show its properties under standard assumptions.

���������� ��	� The shooting function of SP (1), (3) is a function S : [0, T ]×
(Λ1, Λ2) → R such that:

for each λ̃ ∈ (Λ1, Λ2) function Sλ̃(·) := S(·, λ̃) : [0, T ] → R is a solution
of SP (1), (3) with parameter λ = λ̃ — this function will be called the
shot with slope λ̃ (S′

λ̃
(0) = λ̃).


���� ���� Let f fulfil standard assumptions. Then there exists a shooting
function S of SP (1), (3) with the following properties:

(i) S ∈ C(
[0, T ] × (Λ1, Λ2)

)
, S′ ∈ C(

[0, T ] × (Λ1, Λ2)
)
, where S′ = ∂S

∂t ;
(ii) ∀λ ∈ (Λ1, Λ2) : S(·, λ) ∈ C1

(
[0, T ]

)
;

(iii) ∀λ ∈ (Λ1, Λ2)
0 : ‖S(·, λ)‖1 > 0 .

P r o o f . The existence of a function S follows from the assumptions (H1)
and (H2), which imply (a), (b) of Definition 1.1, see [Ka, p. 59]. The property
(i) holds, since it is the same as (b) of Definition 1.1. The property (ii) is also
fulfilled since the function Sλ(·) = S(·, λ) (λ ∈ (Λ1, Λ2)) is a classical solution
of SP (1), (3).

Let the property (iii) do not hold, then there exists t̃ ∈ [0, T ] and λ̃ ∈
(Λ1, Λ2)

0 such that ‖Sλ̃(t̃ )‖
1

= 0. From (H1) it follows that the only solution
of (1), (3) with the property x(t̃ ) = 0, x′(t̃ ) = 0 is zero solution x(t) ≡ 0 for
t ∈ [0, T ] . This is a contradiction since Sλ̃(t) is also a solution of (1), (3) and
λ̃ 	= 0.

Let (t1, λ1) be the inner point of the set (0, T )×(Λ1, Λ2)
0 such that S(t1, λ1)

= 0. By Lemma 1.1 we have S′(t1, λ1) 	= 0, then from the Implicit Function
Theorem we get a continuous function tk : Oδ(λ1) → Oε(t1) (where Oδ(λ1) =
(λ1 − δ, λ1 + δ) ⊂ (Λ1, Λ2)

0
, Oε(t1) = (t1 − ε, t1 + ε) ⊂ (0, T ) and ε, δ > 0)

which fulfils: S
(
tk(λ), λ

)
= 0 for λ ∈ Oδ(λ1) .
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The following definition of root functions is crucial in estimation of number
of solutions.

���������� ��
� Let (t, λ) be an inner point of the set (0, T ) × (Λ1, Λ2)
0

such that S(t, λ) = 0, where S is the shooting function of SP (1), (3).
The root function of SP (1), (3) is a continuous function tR : O(λ) → (0, T ),

where O(λ) ⊂ (Λ1, Λ2)
0 is a maximal open interval such that S(tR(λ), λ) = 0

for λ ∈ O(λ) .
In the case that D(tR) ⊂ (0, Λ2) (resp. D(tR) ⊂ (Λ1, 0)) the root function

tR will be called the right (resp. left) root function and denoted as tr (resp. tl ).
The root function tR(λ) ≡ 0 for λ ∈ (Λ1, Λ2) will be called the trivial root

function.

������� ���� Let function f fulfil standard assumptions, then every root
function of SP (1), (3) has the following properties:

(P1) Through every point (t, λ) ∈ (0, T ) × (Λ1, Λ2)
0 there goes at most one

root function (i.e., root functions cannot intersect among themselves).
(P2) For every compact K ⊂ (Λ1, Λ2)

0 there holds:

∃ δ > 0 ∀ tR 	≡ 0 ∀λ ∈ K ∩ D(tR) : tR(λ) > δ.

(P3) Let tR 	≡ 0 and λ1 ∈ ∂D(tR) , then only one of the following possibilities
can arise:

(a) λ1 = 0 ;
(b) λ1 = Λ1 or λ1 = Λ2 ;
(c) λ1 ∈ (Λ1, Λ2)

0 and lim
λ→λ1

tR(λ) = T .

P r o o f . By Lemma 1.1 we have the shooting function S of SP (1), (3)
defined on [0, T ] × (Λ1, Λ2) with properties (i)–(iii) of Lemma 1.1 and we have
well-defined root functions (if there exists any).

Property (P1) follows directly from the Implicit Function Theorem.
(P2): Let the opposite hold, i.e., there exists a compact K ⊂ (0, Λ2) and a

sequence of tn := trn
(λn) such that lim

n→∞
tn = 0. Since Sλn

(tn) = 0 = Sλn
(0),

the Mean Value Theorem for every n gives t̃n ∈ (0, tn) such that S′
λn

(t̃n) = 0.
It is easy to see that lim

n→∞ t̃n = 0. Since K is a compact, there must be a point

of accumulation of λn denoted as λ̃ . It is obvious that λ̃ ∈ K ⊂ (0, Λ2) and
from the property (i) of the shooting function S and previous statements we
finally have: Sλ̃(0) = 0 = S′

λ̃
(0) . It is a contradiction since S′

λ̃
= λ̃ > 0. (The

statement for tl can be proved analogously.)
(P3): Let λ1 ∈ ∂D(tR) fulfil neither (a) nor (b). Hence λ1 ∈ (Λ1, Λ2)

0 . If
lim

λ→λ1
tR(λ) does not exists, then from the continuity of tR we get the discontinu-
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ity of shooting function S in points (t, λ1) where t ∈
(

lim
λ→λ1

tR(λ), lim
λ→λ1

tR(λ)
)

which is a contradiction. Let lim
λ→λ1

tR(λ) = t1 and t1 < T . From (P2) we can

see that t1 > 0. Hence (t1, λ1) is an inner point of (0, T ) × (Λ1, Λ2)
0 . Using

the Implicit Function Theorem we can extend the root function tR on a greater
connected set, which is a contradiction with maximality of D(tR) (see Defini-
tion 1.3). Hence lim

λ→λ1
tR(λ) = T and the theorem is proved.

Let function f of BVP (1), (2) fulfil the following assumption:
(H3) ∃K > 0 ∀ t ∈ [0, T ] ∀�x ∈ R

2 :
∣∣f(t, �x)

∣∣ � K‖�x‖ .

Remark 1.1. Assumption (H3) together with assumption (H1) imply the ex-
tensibility of every shot Sλ (λ ∈ (Λ1, Λ2)

0 ) on the whole interval [0, T ] .


���� ��	� Let standard assumptions and (H3) on the function f hold. Then
the shooting function of SP (1), (3) fulfils:

∃M > 1 ∀λ ∈ (Λ1, Λ2)
0 :

‖Sλ‖1

|λ| < M .

P r o o f . Let us denote u(t, λ) = S(t, λ) and v(t, λ) = S′(t, λ) for t ∈ [0, T ] ,
λ ∈ (Λ1, Λ2)

0 . It is easy to see that functions (u, v) fulfil the following system
of differential equations on interval [0, T ] for arbitrary λ ∈ (Λ1, Λ2)

0 :(
u′(t, λ)
v′(t, λ)

)
=

(
v(t, λ)

f(t, u(t, λ), v(t, λ))

)
;

[
u′ =

∂u

∂t
, v′ =

∂v

∂t

]
,

and they also fulfil initial conditions:
(
u(0, λ), v(0, λ)

)
= (0, λ) . Integrating last

equation and using standard norm in R
2 we have:

∥∥U (t, λ)
∥∥ � |λ| +

t∫
0

∥∥F (τ, u(τ, λ), v(τ, λ))
∥∥ dτ ,

where

U (t, λ) =
(

u(t, λ)
v(t, λ)

)
, F (t, u, v) =

(
v

f(t, u, v)

)
.

Using assumption (H3) it gives:

∥∥U (t, λ)
∥∥ � |λ| +

t∫
0

√∣∣v(τ, λ)
∣∣2 +

∣∣f(τ, u(τ, λ), v(τ, λ))
∣∣2 dτ

� |λ| +
t∫

0

√∣∣v(τ, λ)
∣∣2 + K2

(∣∣u(τ, λ)
∣∣2 +

∣∣v(τ, λ)
∣∣2) dτ
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� |λ| +
t∫

0

√
(1 + K2)

(∣∣u(τ, λ)
∣∣2 +

∣∣v(τ, λ)
∣∣2) dτ

� |λ| +
√

(1 + K2)

t∫
0

∥∥U (τ, λ)
∥∥ dτ .

By the well-known Gronwall’s Theorem we finally get:∥∥U (t, λ)
∥∥

|λ| � e

tR

0

√
(1+K2)dτ

� eT
√

(1+K2) =: M ,

which implies

∀λ ∈ (Λ1, Λ2)
0 :

‖Sλ‖1

|λ| � M .

This concludes the proof of the lemma.

2. Lower bound of the number of solutions

In this paragraph we will present additional conditions on function f in BVP
(1), (2), which together with assumptions (H1)–(H3) give a lower bound of the
number of its solutions. We will use the technique of variational solutions (see
Definitions 2.1, 2.2 later). To put it simply, we will show connection between the
number of zeros of variational solutions and the number of solutions of (1), (2).

In this section we take Λ1 = −∞ and Λ2 = ∞ . We will also suppose standard
assumptions ((H1), (H2)) on f and in addition:

(H4) There is g : [0, T ] × R
2 → R continuous on its domain locally Lipschitz

and positively homogeneous2 in �x := (x, y) which fulfils the following
property:

lim
‖�x‖→0

∣∣f(t, �x) − g(t, �x)
∣∣

‖ �x ‖ = 0 uniformly in t ∈ [0, T ] .

���������� 	��� A solution hr : [0, T ] → R (hl : [0, T ] → R) of variational
problem:

x′′ = g(t, x, x′) , (4)
x(0) = 0 , x′(0) = 1 , (5)

(x(0) = 0 , x′(0) = −1) , (5’)

where function g fulfils conditions of (H4), will be denoted as the right (left)
0 -variational solution of SP (1), (3).

2Positive homogeneity of g means: ∀λ > 0: g(t, λ�x) = λg(t, �x) for all (t, �x) ∈ [0, T ] × R
2 .
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Remark 2.1. If the function f(t, �x) = f(t, x, y) has continuous partial deriva-
tives by x and y in a neighborhood of point (t, 0, 0) for all t ∈ [0, T ] , then we
can use g(t, x, y) = ∂f

∂x (t, 0, 0)x + ∂f
∂y (t, 0, 0)y .

We recall that positive homogeneity and continuity of g from (H4) imply:

∃A > 0 ∀ t ∈ [0, T ] ∀�x ∈ R
2 :

∣∣g(t, �x)
∣∣ � A‖ �x ‖ .

Let a solution hr of problem (4), (5) be defined on [0, T1) for T1 < T . Then for
arbitrary t1, t2 ∈ (0, T1) we have:

∣∣h′
r(t1) − h′

r(t2)
∣∣ �

t1∫
t2

∣∣g(
t, hr(t), h

′
r(t)

)∣∣ dt � A‖hr‖1
|t1 − t2|.

Using the same technique as in Lemma 1.2 we get:

∃N > 1 : ‖hr‖1 � N ∧ ∣∣h′
r(t1) − h′

r(t2)
∣∣ � AN |t1 − t2| .

Hence there exists lim
t→T1

h′
r(t) < ∞ and also lim

t→T1
hr(t) < ∞ . This implies the

extensibility of hr to point T1 . Since g is continuous and locally Lipschitz it can
be extended on the whole interval [0, T ] in a unique way. A similar conclusion
holds for hl . Hence functions hr and hl (from Definition 2.1) are well-defined.


���� 	��� Under (H3), (H4) and standard assumptions on the function f
the shooting function S fulfils the following properties:

(i) lim
λ→0+

∥∥Sλ

|λ| − hr

∥∥
1

= 0 ;

(ii) lim
λ→0−

∥∥Sλ

|λ| − hl

∥∥
1

= 0 .

P r o o f . We will prove only the case (i) where λ > 0. The case (ii) can be
proved analogously.

Let us denote vλ(t) = S(t,λ)
|λ| − hr(t) for t ∈ [0, T ] and λ ∈ (0,∞). We can

see that the function vλ(t) = Sλ(t)
|λ| − hr(t) fulfils the following equation for all

λ ∈ (0,∞) and t ∈ [0, T ] :

v′′λ =
f (t, Sλ, S′

λ)
|λ| − g (t, hr, h

′
r) .

Due to property (iii) of the shooting function S we can rewrite the previous
equation in a form:

v′′λ =
g(t, Sλ, S′

λ)
|λ| − g(t, hr, h

′
r) +

‖Sλ‖1

|λ|
f(t, Sλ, S′

λ) − g(t, Sλ, S′
λ)

‖Sλ‖1

.

Using positive homogeneity of function g we have:

v′′λ = g̃(t, vλ, v′λ) + Hλ(t) , (6)
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where
g̃(t, vλ, v′λ) = g(t, vλ + hr, v

′
λ + h′

r) − g(t, hr, h
′
r)

and

Hλ(t) =
‖Sλ‖1

|λ|
f(t, Sλ, S′

λ) − g(t, Sλ, S′
λ)

‖Sλ‖1

.

It is easy to see that function vλ fulfils the following initial properties for λ > 0:

vλ(0) = 0 , v′λ(0) =
λ

|λ| − h′
r(0) = 0 . (7)

One can see that (by (H4)) function g̃ is continuous on [0, T ] × R
2 and locally

Lipschitz in 2nd and 3rd variable. Hence v0
λ ≡ 0 is the unique solution of

IVP (6), (7) with perturbation Hλ(t) ≡ 0. If we show that lim
λ→0+

∣∣Hλ(t)
∣∣ = 0

uniformly in t ∈ [0, T ] , then by [BL, p. 119, Lemma 2.6.4] we get:

lim
λ→0+

‖vλ‖1 = 0.

By Lemma 1.2 we have such M ∈ (1,∞) that ‖Sλ‖1
|λ| � M for all λ ∈ (0,∞)

and from property (i) of the shooting function we also know that:

lim
λ→0+

‖Sλ‖1
= 0,

which together with a limit property of function g (in (H4)) finally gives:

lim
λ→0+

∣∣Hλ(t)
∣∣ = 0 uniformly in t ∈ [0, T ] .

Hence Lemma 2.1 is proved.

Let the function f fulfil the following assumption:
(H5) There is G : [0, T ] × R

2 → R continuous on [0, T ] × R
2 locally Lip-

schitz and positively homogeneous in �x := (x, y) ∈ R
2 which fulfils the

following property:

lim
‖�x‖→∞

∣∣f(t, �x) − G(t, �x)
∣∣

‖ �x ‖ = 0 uniformly in t ∈ [0, T ] .

���������� 	�	� A solution zr : [0, T ] → R (zl : [0, T ] → R) of the problem:

z′′ = G(t, z, z′) , (8)
z(0) = 0 , z′(0) = 1 , (9)

(z(0) = 0 , z′(0) = −1) , (9’)

where the function G fulfils conditions of (H5), will be denoted as the right (left)
∞-variational solution of SP (1), (3).
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Remark 2.2. Let us suppose f = f(t, x) and let there exist numbers
f∞, f−∞ ∈ R such that:

lim
x→∞

f(t, x)
x

= f∞ and lim
x→−∞

f(t, x)
x

= f−∞ uniformly in t ∈ [0, T ] .

Then we can take G(x) := f∞x+ − f−∞x− which fulfils (H5).3

Positive homogeneity and continuity of G from (H5) implies:

∃B > 0 ∀ t ∈ [0, T ] ∀�x ∈ R
2 : |G(t, �x)| � B‖ �x ‖

which together with locally Lipschitz condition of G gives the extensibility of
the solution of IVP (8), (9) and (8), (9’) on the whole interval [0, T ] in a unique
way (see Remark 2.1). Hence functions zr and zl are well-defined.


���� 	�	� Under (H3), (H5) and standard assumptions on the function f
the shooting function S fulfils the following properties:

(i) lim
λ→∞

∥∥Sλ

|λ| − zr(t)
∥∥

1
= 0 ;

(ii) lim
λ→−∞

∥∥Sλ

|λ| − zl(t)
∥∥

1
= 0 .

P r o o f . The proof is the same as that of Lemma 2.1, but instead of (H4)
we use (H5) and instead of the fact that lim

λ→0
‖Sλ‖1 = 0 we use:

lim
|λ|→∞

‖Sλ‖1 = ∞,

which follows from [BL, p. 118, Lemma 2.6.3] or [Kr, p. 179, Lemma 15.1].

Further we define variational indices for estimation of number of solutions
for BVP (1), (2).

���������� 	�
� Let hr (hl ) be the right (left) 0-variational solution of SP
(1), (3). The index i0r ( i0l ) of problem (1), (2), (3) will denote the number of
zeros of hr (hl ) in interval (0, π).

Let zr (zl ) be the right (left) ∞ -variational solution of SP (1), (3). The
index i∞r ( i∞l ) of problem (1), (2), (3) will denote the number of zeros of zr

(zl ) in interval (0, π).
Next we define additional adjusting indices of problem (1), (2), (3):

δ0
l =

{
1, if hl(π) = 0 ,

0, if hl(π) 	= 0 ,
and δ0

r =
{

1, if hr(π) = 0 ,

0, if hr(π) 	= 0 ,

δ∞l =
{

1, if zl(π) = 0 ,

0, if zl(π) 	= 0 ,
and δ∞r =

{
1, if zr(π) = 0 ,

0, if zr(π) 	= 0 .

3Where x+ := max{x, 0} and x− := max{−x, 0} .
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Finally the left variational index Il and the right variational index Ir of problem
(1), (2), (3) are defined as follows:

Il =

⎧⎪⎨
⎪⎩

i0l − i∞l − δ∞l , if i0l > i∞l ,

i∞l − i0l − δ0
l , if i∞l > i0l ,

0 , if i∞l = i0l ,

and Ir =

⎧⎪⎨
⎪⎩

i0r − i∞r − δ∞r , if i0r > i∞r ,

i∞r − i0r − δ0
r , if i∞r > i0r ,

0 , if i∞r = i0r .

Note. On an example we will try to explain the meaning of variational indices
and its connection to root functions. Let the right 0-variational solution hr have
k ∈ N zeros in (0, π) and let hr(π) 	= 0. Further let the right ∞ -variational
solution zr have k − 1 zeros in (0, π) and let zr(π) 	= 0. Then we have defined
(see Lemma 2.1) k right root functions {tnr }k

1 smaller than π near λ = 0. If one
of them passes through line t = π in point λ1 > 0, then we have Sλ1

(
tr(λ1)

)
= 0

which means that shot Sλ1
is a non-trivial solution of BVP (1), (2). Let all

these right root functions stay below the line t = π . Then by Theorem 1.1 and
Lemma 2.2 there should exist:

lim
λ→∞

tnr (λ) = Tn ∈ [0, π] , n = 1, . . . , k,

where {Tn}k
1 and T0 = 0 are indeed zeros of zr in [0, π] (T0 is a limit of

the trivial root function). Since zr has only single zeros in [0, π] we know that
all {Tn}k

1 are different from each other and greater than T0 = 0 which is in
contradiction with our assumption on number of zeros of zr . Hence there is (at
least) one right root function (the greatest from tnr ) which must pass through
line t = π . Therefore BVP (1), (2) has at least Ir = k−(k−1)−0 = 1 non-trivial
solutions with x′(0) > 0.

In the case zr(π) = 0 there need not be any solution, because there could
be a root function denoted as t̃r which fulfil: lim

λ→∞
t̃r(λ) = π and t̃r(λ) < π for

λ ∈ (0,∞). Hence we may say that there are at least Ir = k − (k − 1) − 1 = 0
non-trivial solutions.

In the case when zr(π) 	= 0 and hr(π) = 0, we do not know whether there
are k right root functions below π in the close right neighbourhood of λ = 0 or
there are k+1 of them. Indeed, there could be t̃r which fulfil: lim

λ→0
t̃r(λ) = π and

t̃r(λ) > π for λ ∈ (0,∞). Hence this zero of hr need not give a next solution
and we may just say that there is at least Ir = k − (k − 1) − 0 = 1 solution.

In other words, zero of variational solution in a right boundary π can steal
one solution but need not give another one. Therefore the right (left) variational
index, which estimates a lower bound of the number of solutions of BVP (1), (2)
with x′(0) > 0 (x′(0) < 0), must be defined in such a way.

150

Unauthenticated
Download Date | 2/3/17 10:39 AM



THE NUMBER OF SOLUTIONS FOR THE SECOND ORDER NONLINEAR BVP

Remark 2.3. If we can choose G as in Remark 2.2, then indices i∞r , i∞l of
problem (1), (2), (3) can be computed via the position of (f∞, f−∞) with respect
to the F u č ı́ k spectrum of equation:

x′′ = f∞x+ − f−∞x−, x(0) = 0.

Hence if f∞, f−∞ � −1, we can express adjusted right and left ∞ -variational
indices in the following form:

i∞r + δ∞r = max

⎛
⎝2

⎡
⎣

√
|f∞||f−∞|

√|f∞| +
√
|f−∞|

⎤
⎦ , 2

⎡
⎣(

√|f∞| − 1)
√
|f−∞|

√|f∞| +
√
|f−∞|

⎤
⎦ + 1

⎞
⎠ ,

i∞l + δ∞l = max

⎛
⎝2

⎡
⎣

√
|f∞||f−∞|

√|f∞| +
√
|f−∞|

⎤
⎦ , 2

⎡
⎣(

√
|f−∞| − 1)

√|f∞|
√|f∞| +

√
|f−∞|

⎤
⎦ + 1

⎞
⎠ .

If f∞, f−∞ > −1 we have indices:

i∞r + δ∞r = 0 ,

i∞l + δ∞l = 0 .

Here [·] means the integer part of a number. (For more details see the proof of
[FK, p. 278, Lemma 35.4].)


���� 	�
� Indices Ir and Il are finite for every function g (resp. G) sat-
isfying conditions of (H4) (resp. (H5)).

P r o o f . Let there exist t1 ∈ (0, T ] — a point of accumulation of zeros of
function hr . It is easy to see that t1 is also a point of accumulation of zeros
of function h′

r . Then by Remark 2.1 this solution of (4), (5) can be smoothly
extended through t1 up to T . It means:

lim
t→t1

hr(t) = 0 and lim
t→t1

h′
r(t) = 0,

further from positive homogeneity and continuity of g it follows that lim
t→t1

h′′
r (t)

= 0. Hence by uniqueness of the solution of (4), (5) we know that function
hr(t) ≡ 0 for t ∈ [t1, T ] and hr is different from the solution x(t) ≡ 0 of (4)
with the same initial conditions x(t1) = 0, x′(t1) = 0. This is a contradiction,
since (H4) (continuity and the locally Lipschitz condition of g ) implies the global
uniqueness of such IVP on [0, T ] . Since t = 0 is an isolated zero of hr , there
can be only finite number of zeros of hr on compact [0, T ] .

Now we are able to present and prove the main theorem of this paragraph.
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������� 	��� Let assumptions (H1)–(H5) on the function f hold. Then BVP
(1), (2) has at least Ir non-trivial solutions with x′(0) > 0 and at least Il non-
trivial solutions with x′(0) < 0 .

P r o o f . We prove only the first part of this statement. The second part can
be proved analogously.

By Lemma 2.1 there exists such ε > 0 that shot Sε has at most i0r + δ0
r and

at least i0r zeros in (0, π] . It means there are exactly i0 ∈ {i0r, i0r +δ0
r} non-trivial

right root functions defined in the right neighbourhood of λ = ε and not greater
than t = π . By Lemma 2.2 there exists such Λ � 1 (Λ < ∞) that shot SΛ(·)
has at most i∞r + δ∞r and at least i∞r zeros in (0, π] and there are exactly i∞ ∈
{i∞r , i∞r +δ∞r } non-trivial right root functions defined in the left neighbourhood
of λ = Λ and not greater than t = π . Property (P3) (see Theorem 1.1) implies
that every right root function tr , taken in rectangle [ε, Λ]×[0, π] , is either defined
on the whole interval [ε, Λ] or there exists λ1 ∈ (ε, Λ) such that lim

λ→λ1
tr(λ) = π .

It means that shot Sλ1
is a solution of BVP (1), (2).

Root functions cannot intersect among themselves (see (P1)) and they are
greater than tR ≡ 0 on compact [ε, Λ] (see (P2)). Hence there are at most
min{i0, i∞} non-trivial right root functions smaller than π on interval [ε, Λ].
Anyway, there are at least Ir (� |i0 − i∞|) non-trivial right root functions
intersecting the line t = π (each one for different λ > 0) and giving new non-
trivial solutions of BVP (1), (2) with x′(0) > 0. It concludes the first part of
the proof of the theorem.

Note. We do not know if there is a shot Sε (ε ∈ (0, 1)) with the same num-
ber of zeros as hr in the interval (0, π] unless the strict equal monotonicity of
right root functions is fulfilled on the interval (0, 1) (similarly in case with SΛ ,
Λ � 1). Therefore generally we can say there are only at least Ir solutions (with
x′(0) > 0) and not | i0 − i∞| , which can be greater by 1 than Ir .

Actually in the case f(t, x, x′) = −x we have one tr ≡ π on R
+ and the

claim of Theorem 2.1 gives nothing, even though there are infinitely many so-
lutions of BVP (1), (2) in the form: x(t) = λ sin t for λ ∈ R . But when, e.g.,
f(t, x, x′) = −3

2x , the claim of Theorem 2.1 gives the “existence” of 0 non-trivial
solutions, which is true because there is no non-trivial solution of such BVP.

Remark 2.4. One can verify that continuity of f and assumptions (H4), (H5)
imply assumption (H3).

��������� 	��� Let assumptions of Theorem 2.1 hold and let there be
λ0 > 0 such that shot Sλ0

of SP (1), (3) fulfils:

∀ t ∈ (0, π] : Sλ0
(t) > 0.

Then BVP (1), (2) has at least i0r + i∞r non-trivial solutions with x′(0) > 0 .
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P r o o f . From Lemma 2.1 and Lemma 2.2 we have at least i0r ( i∞r ) non-
trivial right root functions smaller than π sufficiently close to point λ = 0
(λ = ∞). Due to the existence of solution (1), (3) — Sλ0

, which has no zero in
(0, π] , we can see that there is no non-trivial right root function defined on the
whole interval (0,∞) and smaller than π . Hence all i0r ( i∞r ) non-trivial right
root functions, which start (end) below line t = π , intersect it (each one for
different λ > 0) and give at least i0r + i∞r non-trivial solutions of BVP (1), (2)
with x′(0) > 0 (see proof of Theorem 1.1). So this corollary is proved.

Remark 2.5. A similar corollary can be formulated for λ0 < 0.

��������� 	�	� Let assumptions of Theorem 2.1 hold and function f in
BVP (1), (2) fulfil the following assumption:

∃x0 > 0 ∀ t ∈ [0, π] : f(t, x0, 0) = 0.

Then BVP (1), (2) has at least i0r + i∞r non-trivial solutions with x′(0) > 0 .

P r o o f . It is obvious that we use Corollary 2.1 to prove this one. Hence we
have to show the existence of λ0 > 0 which allows us to use it.

Let the opposite hold. It means:
∀λ > 0 ∃ tλ ∈ (0, π] ∀ t ∈ (0, tλ) : Sλ(t) > 0 ∧ Sλ(tλ) = 0 . (10)

Then for all λ > 0 there is t̃λ ∈ (0, tλ) — maximum of Sλ on the interval
(0, tλ) where S′

λ(t̃λ) = 0. From property (i) in Lemma 1.1 and the fact that
S0(t) = S(t, 0) ≡ 0 we know:

lim
λ→0+

∣∣Sλ(t̃λ)
∣∣ = 0.

By [BL, p. 118, Lemma 2.6.3] we have:

lim
λ→∞

√
Sλ(t̃λ)2 + S′

λ(t̃λ)2 = ∞.

Hence by property (i) in Lemma 1.1 of shooting function S the mapping
M (λ) := Sλ(t̃λ) is a continuous surjection from (0,∞) to (0,∞) and therefore
we have λ0 > 0 which fulfils:

Sλ0
(t̃λ0

) = x0 and S′
λ0

(t̃λ0
) = 0.

It implies f
(
t̃λ0

, Sλ0
(t̃λ0

), S′
λ0

(t̃λ0
)
)

= 0. One can see that function x̃(t) ≡ x0

for t ∈ (
t̃λ0

, π
]

is a solution of (1). If we also define x̃ = Sλ0
on interval

[
0, t̃λ0

]
we have a solution of (1), (3) on the interval [0, π] . From (H2) (uniqueness of
solutions of SP (1), (3)) it follows that Sλ0

(t) = x̃(t) for t ∈ [0, π] and so Sλ0

fulfils:
∀ t ∈ (0, π] : Sλ0

(t) > 0,

which is a contradiction with (10). Hence by Corollary 2.1, this one is also proved.

Now we present a simple example of nonlinear BVP which fulfils assumptions
of Theorem 2.1.
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Example 2.1. Let us have the following BVP:

x′′ = −m2 sin x − n2 2
π
|x| arctanx , m, n ∈ N,

x(0) = 0 , x(π) = 0.

Before we use Theorem 2.1, we have to verify assumptions (H1)–(H5) for λ ∈ R

and T > π .
It is easy to see that function f(x) = −m2 sin x − n2 2

π
|x| arctanx is con-

tinuous and locally Lipschitz on R , fulfils assumption f(0) = 0 and (H3) (for
K = m2 + n2 ), which imply (H1) and (H2) for λ ∈ R an T = ∞ . Because
f ∈ C1(R) , we can take g(x) := f ′(0)x = −m2x in (H4) (see Remark 2.1). If we
denote G(x) := −n2x+ − (−n2)x− = −n2x (see Remark 2.2), we have:

lim√
x2+y2→∞

∣∣n2x − m2 sin x − n2 2
π |x| arctanx

∣∣√
x2 + y2

= 0,

hence assumption (H5) holds, too.
Solving left and right (linear) variational problems from Definitions 2.1

and 2.2 (for our functions g , G) we get the following solutions:
(i) hr(t) = 1

m
sin mt — solution of (4), (5),

(ii) zr(t) = 1
n sin nt — solution of (8), (9),

(iii) hl(t) = − 1
m sin mt — solution of (4), (5’),

(iv) zl(t) = − 1
n sin nt — solution of (8), (9’).

Hence indices of our problem are: i0r = m−1, i0l = m−1, i∞r = n−1, i∞l = n−1
and δ0

l = 1, δ0
r = 1, δ∞l = 1 δ∞r = 1 (see Definition 2.3). Using Theorem 2.1 we

can say that our BVP has at least Ir = max{|m−n|−1, 0} non-trivial solutions
with x′(0) > 0 and at least Il = max{|m− n| − 1, 0} non-trivial solutions with
x′(0) < 0.

It is easy to verify that f(π) < 0 and f(4.5) > 0 when m = 2n . It implies
that there exists such x0 ∈ (π, 4.5) that f(x0) = 0. Hence by Corollary 2.2 there
exist at least 3n − 2 non-trivial solutions of our BVP with x′(0) > 0 in case
m = 2n . Function f is odd so that f(−x0) = −f(x0) = 0 and there exist also
at least 3n− 2 non-trivial solutions of our BVP with x′(0) < 0 in case m = 2n .

3. Conclusion

We showed a connection between the number of zeros of variational problems
and the number of solutions (Theorem 2.1) (i.e., the lower bound of the number
of solutions of BVP (1), (2) depends on the number of root functions taking
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values under right boundary π near points λ ∈ {−∞, 0,∞}). To get an upper
bound of number of solutions we have to put another assumptions on the func-
tion f . Actually for arbitrary finite k > 0 we are able to construct a function
f(x) : R → R fulfilling assumptions of Theorem 2.1 such that BVP (1), (2) has
k non-trivial solutions and its variational indices are Ir = 0 = Il . We outline a
procedure of such construction, because it shows us how the behaviour of root
functions depends on the derivative of function f .

It is easy to see that for f(x) := f0(x) = −1
2x there is no root function of

SP (1), (3) which takes some values under π . Now we break f0 in x = 1 such
a way that:

f1(x) :=
{

f0(x) , for |x| � 1 ,

−3
2x + sgn(x) , for |x| > 1 ,

and indices of problem (1), (2), (3) with f = f1 are:

i∞r = i∞l = 1 ; i0r = i0l = 0 ; δ∞r = δ∞l = δ0
r = δ0

l = 0.

One can see (Lemma 2.1 and 2.2) that there is one root function which takes
values under π , close to λ ∈ {−∞,∞} for SP (1), (3) with f = f1 and there is
not a root function with such property near λ = 0. Hence by Theorem 2.1 there
exists shot Sλ1

(λ1 > 0) which is a non-trivial solution of BVP (1), (2) where
f = f1 . (Note: S−λ1

= −Sλ1
is also a solution.)

Let us denote M := max
{

sup
t∈[0,π]

Sλ1
(t), 1

}
. Now we break f1 and get:

f2(x) =
{

f1(x) , for |x| � M ,

−1
2x − sgn(x)(M − 1) , for |x| > M .

It is obvious that shots Sλ1
and S−λ1

stay solutions of BVP (1), (2) where
f = f2 , which variational indices are Ir = 0 = Il . Using this procedure arbitrary
many times we can construct the function f with required number of solutions
but with indexes Ir = 0 = Il .

From this procedure of construction of appropriate f we see that the be-
haviour of root functions depends on the behaviour of f ′ = ∂f

∂x . Simply said if
f ′(x) < −n2 , n ∈ N , for |x| ∈ I ⊂ (0,∞) where I is a sufficiently large inter-
val, then there exists shot Sλ0

with n zeros in (0, π) (i.e., there are at least n
root functions smaller than π in λ = λ0 ). This consideration implies a question
about the number of solutions when lim

|x|→∞
f ′(x) = −∞ , which is answered by

[FK, p. 293, Theorem 37.2] giving infinitely many solutions of such BVP (1), (2).
At the end we would like to remind the possibility to formulate theorems

similar to Theorem 2.1 for Neumann’s condition. Another interesting problem
is a generalization of the root functions method for nth order BVP. Unfortu-
nately, there is one big barrier we have to deal with — multiple zeros of shooting
function.
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