Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17, 1 issue

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
This article is available for purchase or by subscription. See below.
$\mathrm{CAT}(0)$ spaces with boundary the join of two Cantor sets

Khek Lun Harold Chao

Algebraic & Geometric Topology 14 (2014) 1107–1122
Abstract

We will show that if a proper complete CAT(0) space X has a visual boundary homeomorphic to the join of two Cantor sets, and X admits a geometric group action by a group containing a subgroup isomorphic to 2, then its Tits boundary is the spherical join of two uncountable discrete sets. If X is geodesically complete, then X is a product, and the group has a finite index subgroup isomorphic to a lattice in the product of two isometry groups of bounded valence bushy trees.

PDF Access Denied

Warning:  We have not been able to recognize your IP address 47.88.87.18 as that of a subscriber to this journal. Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.

Or, visit our subscription page for instructions on purchasing a subscription. You may also contact us at contact@msp.org or by using our contact form.

Or, you may purchase this single article for USD 29.95:

Keywords
CAT(0) space, CAT(0) group, Cantor set, join, spherical join, Tits boundary, visual boundary
Mathematical Subject Classification 2010
Primary: 20F65
Secondary: 20F67, 51F99
References
Publication
Received: 12 September 2012
Revised: 22 April 2013
Accepted: 6 May 2013
Published: 21 March 2014
Authors
Khek Lun Harold Chao
Department of Mathematics
Indiana University
Bloomington, IN 47405
USA