|
|
Recent Issues |
Volume 17, 1 issue
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
This article is available for purchase or by subscription. See below.
Abstract
|
We study the maximal entropy per unit generator of point-push
mapping classes on the punctured disk. Our work is motivated by
fluid mixing by rods in a planar domain. If a single rod moves among
fixed obstacles,
the resulting fluid diffeomorphism is in the point-push mapping class associated with the
loop in
traversed by the single stirrer. The collection of motions where each stirrer goes around a
single obstacle generate the group of point-push mapping classes, and the entropy
efficiency with respect to these generators gives a topological measure of the mixing per
unit energy expenditure of the mapping class. We give lower and upper bounds for
, the maximal efficiency
in the presence of
obstacles, and prove that
as . For
the lower bound we compute the entropy efficiency of a specific point-push protocol,
, which we
conjecture achieves the maximum. The entropy computation uses the action on chains in a
–covering
space of the punctured disk which is designed for point-push protocols. For the upper
bound we estimate the exponential growth rate of the action of the point-push
mapping classes on the fundamental group of the punctured disk using a collection of
incidence matrices and then computing the generalized spectral radius of the
collection.
|
PDF Access Denied
Warning:
We have not been able to recognize your IP address 47.88.87.18
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
You may also contact us at
contact@msp.org or by using our contact form.
Or, you may purchase this single article for USD 29.95:
Keywords
pseudo-Anosov, fluid mixing
|
Mathematical Subject Classification 2010
Primary: 37E30
|
Publication
Received: 8 April 2011
Revised: 23 July 2011
Accepted: 25 July 2011
Published: 25 August 2011
|
|