This article is available for purchase or by subscription. See below.
Abstract
|
C Croke and B Kleiner have constructed an example of a CAT(0) group with more
than one visual boundary. J Wilson has proven that this same group has uncountably
many distinct boundaries. In this article we prove that the knot group of any
connected sum of two non-trivial torus knots also has uncountably many distinct
CAT(0) boundaries.
|
PDF Access Denied
Warning:
We have not been able to recognize your IP address 47.88.87.18
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
You may also contact us at
contact@msp.org or by using our contact form.
Or, you may purchase this single article for USD 29.95:
Keywords
CAT(0) groups, CAT(0) boundaries, knot groups
|
Mathematical Subject Classification 2000
Primary: 57M07, 20F65
|
Publication
Received: 14 June 2007
Revised: 30 May 2008
Accepted: 31 July 2008
Published: 8 October 2008
|
|