|
|
Recent Issues |
Volume 17, 1 issue
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
This article is available for purchase or by subscription. See below.
Abstract
|
Let
be a flat principal bundle over a compact and oriented manifold
of dimension
. We construct
a map of Lie
algebras, where
is the even dimensional part of the equivariant homology of
, the free loop
space of ,
and
is the Maurer–Cartan moduli space of the graded differential Lie algebra
,
the differential forms with values in the associated adjoint bundle of
. For a
–dimensional
manifold ,
our Lie algebra map reduces to that constructed by Goldman [Invent
Math 85 (1986) 263–302]. We treat different Lie algebra structures on
depending on the choice of the linear reductive Lie group
in our
discussion. This paper provides a mathematician-friendly formulation and proof of the
main result of Cattaneo, Frohlich and Pedrini [Comm Math Phys 240 (2003) 397–421]
for
and
together with its natural generalization to other reductive Lie groups.
|
PDF Access Denied
Warning:
We have not been able to recognize your IP address 47.88.87.18
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
You may also contact us at
contact@msp.org or by using our contact form.
Or, you may purchase this single article for USD 29.95:
Keywords
free loop space, string bracket, flat connections,
Hamiltonian reduction, Chen iterated integrals, generalized
holonomy, Wilson loop
|
Mathematical Subject Classification 2000
Primary: 55P35
Secondary: 57R19, 58A10
|
Publication
Received: 15 January 2007
Accepted: 26 January 2007
Published: 29 March 2007
|
|