Volume 6, issue 4 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17, 1 issue

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
This article is available for purchase or by subscription. See below.
The $C$–polynomial of a knot

Stavros Garoufalidis and Xinyu Sun

Algebraic & Geometric Topology 6 (2006) 1623–1653

arXiv: math.GT/0504305

Abstract

In an earlier paper the first author defined a non-commutative A–polynomial for knots in 3–space, using the colored Jones function. The idea is that the colored Jones function of a knot satisfies a non-trivial linear q–difference equation. Said differently, the colored Jones function of a knot is annihilated by a non-zero ideal of the Weyl algebra which is generalted (after localization) by the non-commutative A–polynomial of a knot.

In that paper, it was conjectured that this polynomial (which has to do with representations of the quantum group Uq(sl2)) specializes at q = 1 to the better known A–polynomial of a knot, which has to do with genuine SL2() representations of the knot complement.

Computing the non-commutative A–polynomial of a knot is a difficult task which so far has been achieved for the two simplest knots. In the present paper, we introduce the C–polynomial of a knot, along with its non-commutative version, and give an explicit computation for all twist knots. In a forthcoming paper, we will use this information to compute the non-commutative A–polynomial of twist knots. Finally, we formulate a number of conjectures relating the A, the C–polynomial and the Alexander polynomial, all confirmed for the class of twist knots.

PDF Access Denied

Warning:  We have not been able to recognize your IP address 47.88.87.18 as that of a subscriber to this journal. Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.

Or, visit our subscription page for instructions on purchasing a subscription. You may also contact us at contact@msp.org or by using our contact form.

Or, you may purchase this single article for USD 29.95:

Keywords
WZ algorithm, creative telescoping, colored Jones function, Gosper's algorithm, cyclotomic function, holonomic functions, characteristic varieties, $A$-polynomial, $C$-polynomial
Mathematical Subject Classification 2000
Primary: 57N10
Secondary: 57M25
References
Forward citations
Publication
Received: 9 June 2005
Revised: 4 August 2006
Accepted: 29 August 2006
Published: 11 October 2006
Authors
Stavros Garoufalidis
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160
USA
http://www.math.gatech.edu/~stavros
Xinyu Sun
Department of Mathematics
Mailstop 3368
Texas A&M University
College Station, TX 77843-3368
USA
http://www.math.tamu.edu/~xsun/