|
|
Recent Issues |
Volume 17, 1 issue
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
This article is available for purchase or by subscription. See below.
Abstract
|
Let
denote the mapping space of continuous based functions between two based spaces
and
. If
is a fixed finite complex, Greg Arone has recently given an explicit
model for the Goodwillie tower of the functor sending a space
to the suspension
spectrum .
Applying a generalized homology theory
to this tower yields a spectral sequence, and this will converge strongly to
under suitable
conditions, eg if
is connective and
is at least
connected. Even when the convergence is more problematic, it
appears the spectral sequence can still shed considerable light on
.
Similar comments hold when a cohomology theory is applied.
In this paper we study how various important natural constructions on mapping
spaces induce extra structure on the towers. This leads to useful interesting additional
structure in the associated spectral sequences. For example, the diagonal on
induces a
‘diagonal’ on the associated tower. After applying any cohomology theory with products
, the resulting
spectral sequence is then a spectral sequence of differential graded algebras. The product on the
–term corresponds to the cup
product in in the usual way,
and the product on the –term
is described in terms of group theoretic transfers.
We use explicit equivariant S–duality maps to show that, when
is the
sphere ,
our constructions at the fiber level have descriptions in terms of the Boardman–Vogt little
–cubes
spaces. We are then able to identify, in a computationally useful way, the
Goodwillie tower of the functor from spectra to spectra sending a spectrum
to
.
|
PDF Access Denied
Warning:
We have not been able to recognize your IP address 47.88.87.18
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
You may also contact us at
contact@msp.org or by using our contact form.
Or, you may purchase this single article for USD 29.95:
Keywords
Goodwillie towers, function spaces, spectral sequences
|
Mathematical Subject Classification 2000
Primary: 55P35
Secondary: 55P42
|
Publication
Received: 29 January 2002
Accepted: 25 June 2002
Published: 25 July 2002
|
|