
Database Systems Journal vol IV, no. 2/2013 13

The Development of a Benchmark Tool for NoSQL Databases

Ion LUNGU, Bogdan George TUDORICA

University of Economic Studies, Bucharest, Romania
Petroleum-Gas University, Ploiesti, Romania

ion.lungu@ie.ase.ro, tudorica_bogdan@yahoo.com

The aim of this article is to describe a proposed benchmark methodology and software
application targeted at measuring the performance of both SQL and NoSQL databases. These
represent the results obtained during PhD research (being actually a part of a larger
application intended for NoSQL database management). A reason for aiming at this
particular subject is the complete lack of benchmarking tools for NoSQL databases, except
for YCBS [1] and a benchmark tool made specifically to compare Redis to RavenDB. While
there are several well-known benchmarking systems for classical relational databases
(starting with the canon TPC-C, TPC-E and TPC-H), on the other side of databases world
such tools are mostly missing and seriously needed.

Keywords: NoSQL database, testing, benchmark

Introduction
One of the tools needed by a database

administrator (and not only by this
category) is a benchmarking tool, a tool
which, if used well can give details on the
machine performance, on the DBMS
performance and (in some cases) on the
optimization level (or lack of) of the
queries made over that DBMS.
In the last several years we’ve seen the
advent of a new type of databases, the
NoSQL ones [2]. The NoSQL databases
are, in a certain point of view, the
children of the Web 2.0 era (although the
concept they are based on is a much older
one). To eliminate any confusions, during
this paper the term NoSQL is not used as
the opposite of the SQL relational
database but as a general label for any
BASE database system (Basic
Availability, Soft state, Eventual
consistency).
We should also remark that while in the
relational databases faction a certain
unification was achieved (while only on
the general terms and concepts), in the
NoSQL faction almost all solutions are

alien to each other, using different
structures, concepts and technologies (a
taxonomy given in [3] is containing five
categories only for the “core” NoSQL
systems). As such, any tool aimed at the
NoSQL systems faces the difficulty of
having to “speak” several “languages”. At
this moment the only commercial tool
capable (to a certain extent) of such a feat is
Toad for Cloud Databases (able to
interoperate with Amazon SimpleDB,
Microsoft Azure Table Services, Microsoft
SQL Azure, Apache Hbase, Apache
Cassandra, Apache Hadoop HIVE,
MongoDB and any ODBC-enabled
relational database). Even tools aimed at a
single NoSQL are scarce and usually far
from functional maturity. As such, not only
the benchmarking apps are not available but
any other kind of administrative ones are
lacking too.

2. Tools used for this project
This project started as and administration
software meant only for MongoDB. We
chose MongoDB for a multitude of reasons
exposed in [4]. Even before starting working

1

14 The Development of a Benchmark Tool for NoSQL Databases

on this administration application we
worked with MongoDB for some other
applications such as a web page parsing
tool written in PHP (see [5]). MongoDB
being the database of choice, there are
plenty of programming languages usable
for developing an application over
MongoDB (C, C++, C# & .NET,
ColdFusion, Erlang, Factor, Java,
Javascript, PHP, Python, Ruby, and Perl).
For this case, our selection was Visual
C#, for ease of use, nice interoperability
with the Microsoft Windows systems and
better application performance than say, a
PHP or Java software (for this particular
reason, C and maybe C++ were the best
possible choices but such a decision
would have negated the other
advantages). We used the 2008 version
of the Visual C# environment as that was
the most used at the moment we started
the research (2010). On the DBMS side,
at this moment we are using the 2.0.7-
rc0-pre version of MongoDB (although
there are some newer versions).
Besides the DBMS and the development
environment we are using the MongoDB
CSharp driver version 1.4.2.4500-109-
g8ac35a5 for connectivity between the
MongoDB and Visual C#. Later, during
the time we added benchmarking
functionality to the application, we used
MySQL Connector .Net, version 6.1.6 for
connectivity between MySQL and Visual
C#, MySQL Community version 5.6.12.1
as a second DBMS and finally MSChart
.Net 3.5 add-on and MSChart Visual
Studio 2008 add-on for charting.

3. Working methodology
For the benchmarking operations we
imagined the following three scenarios
(inspired by [6], [7], [8] and [9]):

1. The tested databases are used for
OLTP operations. This case presumes the
following conditions: the number of read
operations is of the same magnitude with

the number of write operations; the data
from each atomic transaction / row operation
has a size in the range of tens of kilobytes.
To be more specific, for our application we
chosen the following conditions: number of
reads = number of writes; each row
operations reads or writes a standard record
having the following content: three 32-bit
integer fields (acting as an id and two other
integer fields), 3 float fields, 3 text fields of
100 chars each and 1 small blob field
(corresponding to a small document or
image file stored in the database). For the
blob field we chose to make it of 32,438
bytes. The later size was chosen to make for
a total size of the record of 32,768 bytes,
permitting fast (even when done mentally)
computations of the total transaction data
size for various numbers of operations. As a
consequence, 32 records mean 1 MB of
data, 160 records mean 5 MB of data, 320
records mean 10 MB of data, 1600 records
mean 50 MB of data, 3200 records mean
100 MB of data, 16000 records mean 500
MB of data and so on.

2. The tested databases are used for
Web 2.0 operations. This case presumes the
following conditions: the number of read
operations is two to three orders of
magnitude higher than the number of write
operations (e.g. for YouTube, as per the
latest statistics, the read to write size ratio is
somewhere around 1389:1); the data from
each atomic transaction / row operation has
a size in the range of Megabytes (e.g. for
YouTube is quite large, the average atomic
transaction size is, depending on resolution
and quality, of 20-150 Megabytes, but not
all Web 2.0 services are data intensive). For
our application we chosen the following
conditions: number of reads = 500 * number
of writes; each row operations reads or
writes a standard record having the
following content: one 32-bit integer fields
(acting as an id), 5 text fields of 500 chars
each and 1 large blob field (corresponding to
media content stored in the database). For

Database Systems Journal vol IV, no. 2/2013 15

the blob field we gave it the size of
5,241,346 bytes. Again the blob size was
chosen to make for a round size of the
record (5,242,880 bytes = 5 MB),
permitting fast computations of the total
transaction data size for various numbers
of operations.

3. The tested databases are used for
OLAP operations. This case presumes the
following conditions: the number of read
operations is one to two orders of
magnitude higher than the number of
write operations; the data from each
atomic transaction / row operation has a
size in the range of fractions kilobytes.
For our application we chosen the
following conditions: number of reads =
100 * number of writes; each row
operations reads or writes a standard
record having the following content: ten
32-bit integer fields, ten float fields and 7
text fields of 132 chars each (again for
the sake of a round record size – 1024
bytes = 1 kilobyte, permitting fast
computations of the total transaction data
size for various numbers of operations).

3. Preparations before testing
As the operating system we worked our
application over is Microsoft Windows
XP, there are a few measures to take to
compensate for the multi-core, multi-
tasking, multi-threading, time-sharing
character of such a system.
First we took care to make the maximum
amount of computing resources available
for the application while preventing (as
much as possible) other applications to
interfere with the testing:

using System.Diagnostics;
using System.Threading;
…
Process.GetCurrentProcess().Proce
ssorAffinity = new IntPtr(2);
//make the process use the second
core or processor which is
usually less loaded than the
first

Process.GetCurrentProcess().Priority
Class = ProcessPriorityClass.High;
//raise the priority of the process
Thread.CurrentThread.Priority =
ThreadPriority.Highest;
//raise the priority of the thread

Second, before starting the test, we took care
to “warm up” the CPU cache and pipelines:

stopwatch.Reset();
stopwatch.Start();
while (stopwatch.ElapsedMilliseconds
< 1500)
//A period of 1500 ms for CPU cache
and pipelines stabilization with a
randomly chosen operation in it.

{
 i = (i + 1) % 10;
 }
stopwatch.Stop();

4. Data generation
In the design stage we hypothesized that the
content of the transaction data may have
some influence over the transaction time so
we decided not to use any pre-stored data
but to generate it randomly instead at every
benchmark run, in quantities and structures
depending on the type and size of the run.
Two distinct random generation methods
were used for numbers and respectively for
strings.
For various format of numbers we used the
Random class. To make sure that no data
sequence is repeated between two runs, we
took care to seed the random number
generator with a different value (given by a
small trick – we used the Guid class as a
seed generator):

Random rndNum = new
Random(int.Parse(Guid.NewGuid().ToSt
ring().Substring(0, 8),
System.Globalization.NumberStyles.He
xNumber));

For integer field content we used
directly the Random generator such
us:

id = rndNum.Next(0, 4000000);

16 The Development of a Benchmark Tool for NoSQL Databases

For float field content we used divisions
of random values such us:

val3 = (float)rndNum.Next(-
2000000, 2000000) /
(float)rndNum.Next(0, 4000000);

For BLOB fields, we randomly generated
ASCII codes which were later converted
to chars / bytes. We also took the
precaution to only generate chars from a
small portion of the ASCII table to avoid
a possible later invalidation of the queries
containing the data caused by the
apparition of a special character:

for (j = 0; j < 32438; j++)

blob[j] =
char.ConvertFromUtf32

(rndNum.Next(97, 122))[0];

On the other hand, for strings we used a
different approach (again based on a
programming trick) which seemed to be a
bit faster that the char by char direct
generation:

Txt1 = "";
for (j = 0; j < 10; j++)

{
string piece =

Path.GetRandomFileName();
piece = piece.Substring(0,

10);
txt1 = txt1 + piece;
}

Finally, it is worth to be mentioned the
fact that the data generation is highly
time consuming (as we will see at the end
of the fifth section of this paper) and as
such, we took the measure to clock it
separately than the rest of the test.

5. The benchmarking
The benchmarking consists of cycles of
“record” write operations followed by
cycles of “record” read operations (the
concept of record has actually no
meaning in the NoSQL world; the closest
concepts are the ones of document or the

one of key-value pair; see [3], [4], [10] and
[11]). The number of cycles and the content
of the “records” depend on the type of the
intended benchmark (see section 3). The
connections to the DBMS are made in the
usual ways.
Note: at this moment the benchmark
application is capable of working only over
MongoDB and MySQL but we intend for
future developments to add Oracle database
and MS SQL capabilities on the relational
DBMS side and Redis and CouchDB on the
NoSQL side.
The basic write operations are looking like
the following:

• For MongoDB (repeated for every

“field”):

var element =
BsonElement.Create("id",
BsonString.Create(id.ToString()));
document.Add(element);

• For MySQL (one transaction for the
entire record):

string mysql_query = "INSERT INTO
oltpbenchmark_table (id, val1, val2,
val3, val4, val5, val6, den1, den2,
den3) VALUES(" + id.ToString() + ",
" + val1.ToString() + ", " +
val2.ToString() + ", " +
val3.ToString() + ", " +
val4.ToString() + ", " +
val5.ToString() + ", \"" + blob_s +
"\", \"" + txt1 + "\", \"" + txt2 +
"\", \"" + txt3 + "\")";
MySqlCommand mysql_cmd = new
MySqlCommand(mysql_query,
mysql_connection);
mysql_cmd.ExecuteNonQuery();

The basic read operations are looking like
the following:
• For MongoDB:

foreach (var document in cursor)

{
id=document.GetElement(1).Valu

e.ToInt32();
…

Database Systems Journal vol IV, no. 2/2013 17

• For MySQL:

string mysql_query2 = "SELECT *
FROM oltpbenchmark_table";
MySqlCommand mysql_cmd2 = new
MySqlCommand(mysql_query2,
mysql_connection);
MySqlDataReader mysql_dataReader
= mysql_cmd2.ExecuteReader();
while (mysql_dataReader.Read())

{
 id =
mysql_dataReader.GetInt32(0);
 …

At the corresponding moments during the
operations, several Stopwatch class
objects are started, stopped and reset in

accordance with their purposes (clocking the
times for data generation, the write
operations for MongoDB, the write
operations for MySQL, the read operations
for MongoDB, the read operations for
MySQL). We chose to use the Stopwatch
class for clocking the operations because it
gives for a pretty accurate measurement of
time.
Finally the results (given in milliseconds)
are stored in a dataGridView and
represented on a Chart for ease of lecture
and interpretation.

The product of an OLTP benchmark run can
be seen in Fig.1.

Fig. 1. The results of an OLTP benchmark run based on a 500 MB data chunk, with clocking at 1 MB,

5 MB, 10 MB, 50 MB, 100 MB and 500 MB

18 The Development of a Benchmark Tool for NoSQL Databases

In the Fig.1, the timings are given for
data generation (first row of timings),
MongoDB write operations (the second
row), MySQL write operations (the third
row), MongoDB read operations (the
fourth row) and MySQL read operations
(the fifth row). The conclusions of a
single run of the test are the following:
• The MySQL write operations
require much higher times than all other
types of operations (going as far as 20
times bigger) because they are the only
ones which involve direct disk
operations. All the other operations are
more or less memory based (the data
generation is made in memory,
MongoDB is based on a RAM cache
technology, also the MySQL reads are
cached).
• Even when taking into
consideration only the read operations
timings, MongoDB performance is better
than the one of MySQL (which is to be
expected, given the fact that all major
NoSQL products are lighter, less
complex and, as a consequence, they are
supposed to be faster than their relational
counterparts; see [1] and [3]).
• The data generation consumes
actually 2 to 5 times more time than the
actual read or write operations (except for
the MySQL writes). At the present
moment we are considering this an issue
and searching for an alternative approach.
• The read operations are
consistently faster than the write
operations for both DBMS products,
which is again to be expected.

6. Conclusions
This paper presented an approach for a
obtaining a benchmarking tool aimed at
measuring the performance of various
DBMS, be they relational or NoSQL.
The used working methodology is far
from perfect as it doesn’t take into
account the expected statistical

fluctuations. From this point of view, a
complete approach would consist of a large
enough number of runs, with the extreme
results disregarded and the other results
taken into account on average.

References
[1] B. F. Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan, and R. Sears,
Benchmarking cloud serving systems
with YCSB, Proceedings of the 1st ACM
symposium on Cloud computing, ser.
SoCC ’10. New York, NY, USA: ACM,
2010, pp. 143–154. ISBN: 978-1-4503-
0036-0, doi: 10.1145/1807128.1807152

[2] Avrilia Floratou, Nikhil Teletia, David J.
DeWitt, Jignesh M. Patel, Donghui
Zhang, Can the elephants handle the
NoSQL onslaught?, Proceedings of the
VLDB Endowment, VLDB Endowment
Hompage archive, Volume 5 Issue 12,
August 2012, Pages 1712-1723

[3] Bogdan Tudorica, Bucur Cristian - A
comparison between several NoSQL
databases with comments and notes,
The proceedings of „2011 - Networking
in Education and Research” IEEE
International Conference, June 23, 2011
– June 25, 2011, Alexandru Ioan Cuza
University from Iasi.

[4] Bogdan Tudorica - Challenges for the
NoSQL systems: Directions for Further
Research and Development, The
International Journal of Sustainable
Economies Management (IJSEM),
Volume 2: Issue 1 (2013), DOI:
10.4018/IJSEM.2013010106, ISSN:
2160-9659, EISSN: 2160-9667.

[5] Bucur Cristian, Bogdan Tudorica - A
Research on Retrieving and Parsing of
Multiple Web Pages for Storing Them
in Large Databases, The Proceedings of
the 19th International Economic
Conference - IECS 2012, The
Persistence of the Economic Crises:
Causes, Implications, Solutions, 15
June, 2012, Sibiu, Romania.

Database Systems Journal vol IV, no. 2/2013 19

[6] Jim Gray, Benchmark Handbook: For
Database and Transaction
Processing Systems, Morgan
Kaufmann Publishers Inc. San
Francisco, CA, USA 1992,
ISBN:1558601597

[7] Plale, B., Jacobs, C., Jensen, S., Ying
Liu, Moad, C., Parab, R., Vaidya, P.,
Understanding Grid resource
information management through a
synthetic database benchmark /
workload, IEEE International
Symposium on Cluster Computing
and the Grid, 2004 (CCGrid 2004),
19-22 April 2004, Page(s): 277 –
284, Print ISBN: 0-7803-8430-X,
INSPEC Accession Number:
8198955, doi:
10.1109/CCGrid.2004.1336578

[8] Rim Moussa, TPC-H Benchmark
Analytics Scenarios and
Performances on Hadoop Data
Clouds, Networked Digital
Technologies Communications in
Computer and Information Science
Volume 293, 2012, pages 220-234

[9] Yingjie Shi, Xiaofeng Meng, Jing Zhao,
Xiangmei Hu, Bingbing Liu, Haiping
Wang, Benchmarking cloud-based data
management systems, CloudDB '10
Proceedings of the second international
workshop on Cloud data management,
pages 47-54, ACM New York, NY,
USA 2010, ISBN: 978-1-4503-0380-4,
doi: 10.1145/1871929.1871938

[10] Ashok Joshi, Sam Haradhvala, Charles
Lamb, Oracle NoSQL Database -
Scalable, Transactional Key-value
Store, IMMM 2012, The Second
International Conference on Advances
in Information Mining and
Management, pages: 75-78, IARIA,
2012, ISBN: 978-1-61208-227-1,
Venice, Italy, October 21, 2012 -
October 26, 2012

[11] Rick Cattell, Scalable SQL and NoSQL
data stores, ACM SIGMOD Record
archive, Volume 39 Issue 4, December
2010, Pages 12-27, ACM New York,
NY, USA, doi:
10.1145/1978915.1978919

Ion LUNGU is a Professor at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from the
Academy of Economic Studies of Bucharest. He has graduated the Faculty
of Economic Cybernetics in 1974, holds a PhD diploma in Economics from
1983 and, starting with 1999 is a PhD coordinator in the field of Economic
Informatics. He is the author of 22 books in the domain of economic
informatics, 57 published articles (among which 2 articles ISI indexed) and

39 scientific papers published in conferences proceedings (among which 5 papers ISI indexed
and 15 included in international databases). He participated (as director or as team member) in
more than 20 research projects that have been financed from national research programs. He
is a CNCSIS expert evaluator and member of the scientific board for the ISI indexed journal
Economic Computation and Economic Cybernetics Studies and Research. He is also a
member of INFOREC professional association and honorific member of Economic
Independence academic association. In 2005 he founded the master program Databases for
Business Support (classic and online), who’s manager he is. His fields of interest include:
Databases, Design of Economic Information Systems, Database Management Systems,
Decision Support Systems, Executive Information Systems.

20 The Development of a Benchmark Tool for NoSQL Databases

Bogdan George TUDORICA is a teaching assistant in the Modeling,
Economic Analysis and Statistics department from the Petroleum-Gas
University of Ploiesti, Romania. At this moment he is also a PhD student at
the Bucharest University of Economic Studies, Romania. His field of study
for the PhD thesis is the management of large data volumes.

