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The need to process and analyze large data volumes, as well as to convey the information 

contained therein to decision makers naturally led to the development of OLAP systems. 

Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. 

Although there are several ways to optimize database systems, implementing a correct data 

indexing solution is the most effective and less costly.  

Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data 

stored in cubes. 

Today database systems implement derived indexing algorithms based on well-known Tree, 

Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best 

performance for any particular situation (type, structure, data volume, application). 

This paper presents a new n-dimensional cube indexing algorithm, derived from the well known 

B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-

dimensional nature and provides better performance in comparison to the already implemented 

Tree-like index types. 
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Introduction 

Data warehouses represented a natural 

solution towards increasing the availability 

of data and information, as well as their 

accessibility to decision makers. The 

warehouses store important data coming 

from different sources for later processing 

and are an integrant part of analytical 

processing systems (OLAP). 

Unlike OLTP systems, OLAP systems must 

execute complex interrogations and large 

data volume analyses. To optimize, 

analytical processing systems analyze data 

and store aggregated information in special 

analytic structures, called cubes. 

Similarly to OLTP systems, OLAP systems 

use indexing algorithms to optimize access 

to data stored in data warehouses, i.e. cubes. 

 

2. General information about cubes 

When stored in an OLAP system, the source 

data may be indexed to reduce the time 

necessary for their processing. To index 

source data, OLAP systems use indexing 

algorithms similar to OLTP (B-Tree, 

Bitmap, R-Tree etc.). 

Processed data are stored in n-dimensional 

structures called cubes. The elements of a 

cube are the dimensions, members, cells, 

hierarchies and properties [1] (fig. 1). 

 

 

1 



18                                                                                          Optimized Data Indexing Algorithms for OLAP Systems 

 

 

 
 

Fig. 1 - Structure of a tridimensional cube 

 

The dimensions contain descriptive 

information about the data that is to be 

summarized. They are essential for data 

analysis and represent an axis of the cube 

[2].  

Each dimension corresponds to a 

measure of the data source and uniquely 

contains each value stored in that position. 

During queries, the dimensions are used to 

reduce the search area and usually occur in 

the WHERE clause. 

Hierarchies describe the hierarchical 

relationships between two or more members 

of the same dimension. A dimension can be 

part of multiple hierarchies. For example, in 

addition to the hierarchy of dimensions 

Quarter-Month-Year, Time dimension can 

belong to the hierarchy Day-Month-Year. 

The cells of the cube contain 

summarized data based on dimensions 

values. Cells store summarized data based 

on the cube dimension number, dimensions 

values, method of analysis and is usually, 

the result returned by the queries. 

Properties describe common features of 

all members of the same dimension. 

Properties allow selecting data based on 

similar characteristics. For example, the size 

of product volume may have an attribute 

which allows a certain volume products. 

Analysis and data processing is based on 

the method chosen. The same data can be 

analyzed using different methods 

(clustering, neural nets, regression, 

Bayesian, Decision trees, etc.) accordingly 

to the user's needs. Although using different 

methods of analysis may result in different 

aggregate data and ordering different logic 

cells, the logical structure of the cube is the 

same. 

In order to optimize performance, 

OLAP systems implement cube indexing 

algorithms. The indexes created through this 

process use the data contained in a cube’s 

dimensions to quickly access the cells 

containing the data required by the user.  

Hence, cubes are indexed using a B-

Tree type of algorithm. 

 

3. The B-Tree Index in OLAP 

Systems 

As the values of the cube dimensions are 

unique and they are stored in the index 

blocks and used to locate the leaf blocks 

which contain references to the physical 

location of the cube cells, implementing a B-

Tree index represents an effective solution 

for indexing cubes. 

A B-Tree index used in OLAP systems 

contains sub-trees corresponding to each 

dimension.  

The sub-trees are connected in such a 

way that  each path to go through the tree 

from the root node to the final level index 

blocks (the ones storing the references to the 

cube’s cells)  is crossed by a sub-tree 

corresponding to each dimension.  

Thus, a three dimensional cube contains 

three levels. The first level represents a 

matrix of planes (bi-dimensional space), the 

second level represents a matrix of lines 

(one dimensional space), and the third level 

represents a matrix of points in space (0 

dimensional space) (fig. 2). 
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Fig. 2 - The structure of a B-Tree index for a three-dimensional cube [3] 

 

Thus, each cube size will correspond to 

one sub-tree of the B-Tree index and each 

sub-tree will have on child sub-tree for each 

child dimension. 

Summarized data are stored inside the 

cube, on pages separate from the cells. As 

summarized data creation and storage 

consumes CPU resources and storage space 

environment, the developer and/or system 

administrator can choose as they are 

available only at certain levels, depending 

on their usage, summarized data obtained 

from the upper levels being calculated by 

processing the data summarized in the lower 

levels. 

Looking at the structure of the B-Tree 

index, it is easily noticeable that the cost of 

locating one of the cube’s cells represents 

the sum of the costs associated with locating 

the last level index block of each sub-tree.  

The height of such an index is (f.1) [4]: 
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where h∈N, d is the number of stored values 

within an index block, r is the total number 

of values corresponding to the dimension. 

 

The number of index blocks of a sub-tree 

containing d elements is: 
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where d=(m-1) and h is the tree height. 

 

Considering that the number of items stored 

in index blocks at the top level of the sub-

tree is r, we can calculate the maximum 

height (h) of the index portion 

corresponding to a specific dimension, as 

follows: 
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where h�N. 
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The total cost of a search operation within a 

sub-tree is: 

 

ci=h+1     (f.4) 

 

Since to locate a cell of the cube is 

necessary to cross every sub-tree, 

corresponding to each dimension of the 

cube, we can calculate the total cost of a 

queries based on (f.4): 
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where n is the number of cube dimensions, 

cij is the cost of query sub-tree 

corresponding to the dimension j and d-1 is 

the total number of root nodes used as 

connecting elements of the leaf blocks of 

sub-trees that have several subordinated sub-

tree. 

Since OLAP systems incorporate very 

large data volumes, their performance is 

affected not only by the query operations 

cost but also by the index storage space. 

Indexes tend to occupy the storage space 

of the cube and sometimes their size can be 

larger than the data stored in the cube. If an 

index occupies a large memory space, it 

means that the structure is high (number of 

elements, elements that store too much data, 

etc.), which increases the index creation 

time and query execution times. 

Using formulas (f.2) and (f.3) it can be 

calculated the storage space (SS) for a sub-

tree indexed using a B-Tree index: 
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where d is the number of items stored in a 

block index, h is the index height and SS is 

the page size. 

 

Total storage space (St) needed to store 

a B-Tree index used for indexing cubes is 

equal to storage space for all its sub-trees. 

For a cube with three dimensions, the 

number of sub-trees of a B-Tree index is: 

 

Nsi=1+Ea+Eb+2EaEb  (f.7) 

 

where Nsi is the number of sub-trees of 

dimension i, Ea and Eb represents the 

elements number of dimension index leaf 

block corresponding to the other two 

dimensions. 

 

Based on the (f.2)-(f.7), whole B-Tree 

index size can be calculated as: 
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where j is the cube dimensions number, Ssi 

is a storage space needed to store the sub-

tree for the dimension i, the Nsi is the 

number of sub-trees coresponding to the 

dimension i and Srn is the size of all nodes 

connecting the sub-trees. 

The query cost of the B-Tree index is 

the sum of the cost of all sub-trees between 

the root node and the index leaf block which 

store the physical address of the cell. 

 

4. The n-Tree Indexing Algorithm 

Given the characteristics of cubes, as 

well as the structure of a B-Tree index, it 

becomes obvious that this indexing 

algorithm is not optimized for n-dimensional 

data structures. Thus, the number of sub-

trees within the index is directly 

proportional with the number of dimensions. 

As a consequence, the cube is over-indexed 

resulting in an overconsumption of 

processing time and storage space. 

The proposed n-dimensional indexing 

algorithm pays attention to the n-

dimensional structure of the data. Instead of 

creating sub-trees corresponding to each 

dimension and subsequently linking them, it 

creates only one tree which indexes data 

simultaneously on all dimensions.  As a 

result, the n-dimensional space is gradually 

divided into ever smaller n-dimensional 

subdivisions, until the smallest sub-divisions 

represent the cells of the cube. 

The resulting index has the following 

characteristics: 
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- no NULL values are indexed; 

- the root node contains at least two 

subordinated index blocks if it does 

not coincide with the last level index 

block; 

- each index block contains: 

- values from each dimension of the 

cube; the combination of such values 

represents a reference point in the n-

dimensional space; 

The index maintains an ordered list 

containing unique values corresponding to 

each dimension of the cube. The values in 

each list represent a subgroup of the values 

of the respective dimension. Combining 

values from each list at a time, we can 

obtain the data needed to identify the 

reference points in the n-dimensional space 

simultaneously minimizing the space 

required to store them. 

Any value corresponding to a dimension 

from the subordinated index block is smaller 

than the value of the respective dimension 

corresponding to the reference point from 

the upper level index block. 

- references to the subordinated index 

blocks (rbs), corresponding to the 

reference points (f.9): 

 

∏
=

=
n

i

ibs ar
1

   (f.9) 

 

where a1..n represents the number of values 

from dimensions 1..n stored in the index 

block; 

- n references to the index blocks that 

contain larger values in a dimension 

than the reference point (one for each 

dimension). 

Thus, an index block contains a total of r 

references (f.10): 

 

r=rbs+n   

 (f.10) 

 

where n equals the number of the cube’s 

dimensions. 

- the last level index blocks do not 

contain any references to other index 

blocks; instead they store the 

reference to the physical location of 

the cube’s cells; 

- the physical size of an index block is 

approximately one page. 

Each index block stores an ordered list 

of unique values corresponding to each cube 

dimensions. Values from each list is a subset 

of these dimensions. Combining values from 

each list, one by one, points from the n-

dimensional space can be identified, 

minimizing the needed storage space. 

Any value from the dimensions, stored 

into an index block, is lower than the value 

belonging to the respective dimension from 

the reference point of the higher rank index 

block. 

 

 
 

Fig. 3 - The structure of an n-

dimensional index corresponding to a three 

dimensional cube 

 

Because the dimensions values of the 

reference point are uniquely stored, the n-

dimensional space is always a regular space. 

For a cube with three dimensions, this space 

is a rectangular parallelepiped, and ideally is 

a cube. 

If some cells do not contain data units 

(containing null values), they are not 

indexed, thus reducing the size of the index. 

The lack of aggregated values corresponding 

to a cell does not affect the form of the space 

described by the values stored into a index 

block. 

Every n-Tree index contains a sub-tree 

that indexes the summarized data which has 

the following characteristics: 

- it contains a sub-tree for each dimension 

of the cube; 
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- each sub-tree corresponding to a 

dimension has a structure similar to a B-

Tree index and indexes all the values 

pertaining to the respective dimension; 

- the index blocks of the sub-trees contain 

references to the lower level index 

blocks; 

- the index leaf blocks do not contain 

references to other indexing blocks; 

instead they are the sole elements 

containing references to the pages where 

the summarized data are stored; 

- each element of the index leaf blocks 

contains references to parts of the n-

dimensional space to which the 

respective value is assigned 

 

 
 

Fig. 4 - The structure of an n-Tree index for to a three dimensional cube 

 

Thus the number of referenced contained by 

each element of a leaf index block is: 

 

rs=n-1             (f.11) 

 

where n is equal to the number of the cube’s 

dimensions. 

 

Summarized data relating to each value 

stored in the sub-tree corresponding to one 

dimension are equivalent to a 1 to (n-1) 

dimensional sub-space. The sub-spaces are 

distributed among the respective sub-trees, 

as to avoid storing multiple references to the 

same summarized data. The dimensions of 

the index are thus reduced. 

For a 3-dimensional cube, the index leaf 

blocks will contain the following references: 

- the elements of the index leaf block of the 

X dimension sub-tree contain: 

- references to data summarized 

representing the space corresponding to 

the value of the X dimension, all values 

of the Y dimension and the first value of 

the Z dimension (one dimensional 

space); 

- references to the data summarized 

representing the space corresponding to 

the value of the X dimension, all values 

of the Y dimensions and all values of the 

Z dimension (two dimensional space) 

- the elements of the index leaf blocks of 

the sub-tree corresponding to the Y 

dimension contain: 

- references to the data summarized 

representing the space corresponding to 

the value of the Y dimension, all values 

of the Z dimension and the first value of 

the X dimension (one dimensional 

space); 

- references to the data summarized 

representing the space corresponding to 

the value of the Y dimension, all values 

of the X dimension and all the values of 

Storage 

Dimension X Dimension Y Dimension Z 

Cell Root node References (pointers) 

References to the summarized data 
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Sub-tree which 
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the Z dimensions (two dimensional 

space); 

- the elements of the index leaf blocks of 

the sub-tree corresponding to the Z 

dimension contain: 

- references to the data summarized 

representing the space corresponding to 

the value of the Z dimension, all values 

of the X dimension and the first value of 

the Y dimension (one dimensional 

space); 

- references to data summarized 

representing the space corresponding to 

the value of the Z dimension, all values 

of the X dimensions and all values of the 

Y dimension (two dimensional space). 

 

5. Creating an n-Tree Index 

To create an n-dimensional index, all data in 

every index is read and n-dimensional points 

are created. For each of these points, the 

following operations are carried out: 

- an index block corresponding to an n-

dimensional sub-space whose reference 

point has only values larger than that of 

the processed point is identified; the 

index block must also have enough free 

space to store the values of the 

corresponding dimensions of the 

processed point plus a reference; 

If such an index block is identified, the 

values are added to the dimensions’ 

corresponding lists and the reference to the 

physical location of the cube’s cell is stored. 

Otherwise, a new index block is created by 

dividing one of the neighboring index 

blocks. 

- when a new index block is created, the 

values of the reference point, as well as 

the reference to the parent index block 

are added, together with references to the 

neighboring index blocks; 
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where Se is the element size, Svi is the data 

type size for the dimension i and Sref is the 

size of a reference. 

 

This process could propagate itself to 

the root node. Generally, OLAP systems 

contain historical data with a low frequency 

of updating operations but with a large 

volume of updates. Updating these data also 

triggers an updating of the cube, and thus, of 

its index.  

It should be noted that the space 

required for inserting a new element into a 

block index is not always the same. If some 

values of n-dimensional point corresponding 

to a specific dimension were previously 

inserted the necessary free space is smaller 

than the element size. 

 

6. The Performance of the n-Tree 

Index 

The performance of an index depends 

on its height.  A larger height means more 

physical read operations are needed to 

identify the cell containing the required data. 

The height of the index depends on the 

size of the index block, the size of the type 

of indexed data, the number of references to 

subordinated index blocks stored in each 

index block, and the number of cells. 

By analyzing the structure of an index 

block (fig. 4), we can compute the number 

of references it can store. 

 

 
 

Fig. 5 - Structure of an index block in an n-

Tree index 

 

The volume of the stored data in an index 

block may be written as (f.11): 

 

ref

n

i

iv

n

i id SnaSaS ⋅







++⋅= ∏∑

=
=

1
1

  (f.13) 

. 

. 

... D1
a 

 
D1 ... Dn

z

 
Dn... 

Dn... D1 Dn... D1 ... Dn
z ... D1

Dn... D1 Dn... D1 ... Dn
z ... D1

Dn... D1
a 

 
Dn... D1

a 

 

... Dn
z ... D1

a 

 

Values 

Pointers to the 

lowest index 

blocks 

Dn
 

 

... D1
 

 

Pointers to the 

neighboring 

index blocks 



24                                                                                          Optimized Data Indexing Algorithms for OLAP Systems 

 

 

 

where Sd represents the volume of the stored 

data, Sv  represents the size of the indexed 

value, n is the number of dimensions and Sref  

the size of a reference. 

 

The blocks number of the n-Tree index 

which contains d elements is: 
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where h is the index height. 

 

Ideally, d is the maximum number of the 

elements which can be stored inside an n-

Tree index and its value is up to ∏
=

+
n

i

i na
1

. 

The query cost for the n-Tree index is: 

 

ci=h+1    (f.15) 

 

where ci is the query cost, h is the index 

height and 1 is for the index root block. 

 

Since the data in an OLAP system is rarely 

modified, the best performance is obtained 

when the index blocks contain a volume of 

data equal to their size. 

Therefore, we can approximate the value of 

Sd to be equal to that of a page. 

We assume that: 

- the size of an index block is of 8kB (this 

is the most common size in current 

database systems [5]); 

- the size of a reference is 6B (the most 

common size for a local index [6]); 

- the size of the data type is 8B (this is the 

size of the datetime type of data); 

- each dimension contains the same 

number of unique values. 

Using the formulas (f.3) and (f.15), we can 

compare the performance of a n-Tree index 

to that of a B-Tree index (fig 6-11). 

 

 
 

Fig. 6 - The cost of a search operation in a 

two-dimensional cube 

 

 
 

Fig. 7 - The cost of a search operation in a 

three dimensional cube 
 

Analyzing fig. 6 and fig 7, it can be seen that 

the n-Tree index query cost is lower the the 

B-Tree index query cost event for 1.000 

cells. The performance difference is event 

higher when the cells number or the 

dimensions number increase. 
 

 

 
 

Fig. 8 - The size [in MB] of an index 

corresponding to a two dimensional cube 
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Fig. 9 - The size [in MB] of an index 

corresponding to a three dimensional cube 

 

The same situation can be observed for the 

index size in fig. 8 and fig. 9.  

The n-Tree index is much smaller than the 

B-Tree index. The difference comes from 

the lower number of the index blocks and 

from the flexibility of creating the 

summarized data. 

When the data summarized data is to be 

query, the result depends on the location of 

the location of the summarized data. 

 

 
 

Fig. 10 - The summarized data query cost 

for a two-dimensional cube 

 

 
 

Fig. 11 - The summarized data query cost 

for a three-dimensional cube 

  

Anyway, in fig. 10 and fig. 11 it can be 

observed that the n-Tree index query cost is 

lower than the B-Tree index query cost in 

any situation, excepting when the cells 

number is very low. 

  

7. Conclusions 

Implementing a new indexing algorithm, 

with much wider scope and increased 

flexibility, could be the database systems 

optimization solution, especially when other 

indexing algorithms do not provide the 

desired results. 

The n-Tree index could be considered a 

more generalized B-tree index. If B-Tree 

index can index only uni-dimesional data, 

the n-Tree index is optimized for any n-

dimensional data. Moreover, the n-Tree 

index will be more suitable for indexing 

spatial data. 

As shown in figures 5-9, the n-Tree index 

outperforms the B-Tree index in locating the 

cells of the cube. Moreover, the difference 

in performance increases as the number of 

the cube’s cells rises.  In addition, the space 

occupied by the n-Tree index in much 

smaller than that needed for a B-Tree index. 

Again the superiority of the n-Tree index is 

all the more evident when the number of the 

cube’s cells increases. 
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