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Abstract

Mesenchymal Stromal Progenitor/Stem Cells (MSCs) are
a rare population of non-hematopoietic stromal cells,
present in the bone marrow and most connective tissues of
the body. They are capable of differentiation into
mesenchymal tissues such as bone, cartilage, adipose tissue
and muscle. In the absence of specific markers, MSCs have
been defined following isolation and culture expansion, by
their expression of various molecules including CD90,
CD105 and CD73 and absence of markers like CD34,
CD45, and CD14. MSCs have extensive proliferative ability
in culture in an uncommitted state while retaining their
multilineage differentiation potential, which make them
attractive candidates for biological cell-based tissue repair
approaches. However, their identity in their tissues of origin
is not clear and the niches in which they reside are not
defined. This review addresses the current state of MSC
research including the differentiation potency of culture
expanded MSCs, expression of chemokines and their
receptors in MSCs — both relevant issues for the advocated
use of MSCs for tissue repair and their systemic delivery
to the affected tissues. It also reviews current knowledge
of MSC niches in their native tissues, addressing the
relationship with pericytes. Finally, it provides a scientific
basis for the requirement of a thorough characterisation of
the endogenous MSC niches within their native tissues in
vivo. The knowledge of MSC niches will instruct
development of innovative therapeutic measures such as
producing pharmacological substances that target
endogenous MSCs and their niches in order to activate and
guide intrinsic repair and to improve disease outcomes.
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Mesenchymal Stromal Progenitor/Stem Cells

After placing whole bone marrow cells in plastic culture
dishes with medium supplemented with 10% foetal calf
serum, Friedenstein et al. (1970) demonstrated that bone
marrow contains hematopoietic non-adherent cells along
with a rare population of plastic-adherent cells
(approximately 1 in 10,000 nucleated cells in the bone
marrow). These cells were able to form colonies derived
from single cells. After a few days, these adherent cells,
of heterogeneous appearance, start to proliferate and can
differentiate into mature cells of mesenchymal lineages
such as osteoblasts (Friedenstein et al., 1970; Friedenstein
etal., 1976). The initial clones of adherent cells expanded
into round-shaped colonies composed of fibroblastoid
cells, thus the term of Colony Forming Unit — fibroblasts
(CFU-f). Friedenstein also found that some of the colonies
could differentiate into aggregates resembling small areas
of bone or cartilage. Other groups then extended these
initial observations, studying CFU-f proliferative abilities
and phenotypic characteristics (Castro-Malaspina et al.,
1980; Prockop, 1997; Caplan and Bruder, 2001), and it
was established that these cells were multipotential and
could differentiate into osteoblasts, chondrocytes,
adipocytes, and even myoblasts. Each bone marrow donor
shows a specific frequency of CFU-f, which is dependent
on the age and health of the donor. The current
categorization of these cells is either mesenchymal stem
cells (MSCs) as proposed by Caplan (1991), because of
their ability to differentiate into cells of the mesenchymal
lineages, or stromal cells because they belong to the stroma
that is believed to have a physical supporting role to the
hematopoietic stem cell (HSC) niche (Devine and
Hoffman, 2000; Wilson and Trumpp, 2006). Whether
these cells should be considered true stem cells at all or
as multipotent progenitors of mesenchymal lineages has
been the focus of intense debate. It has therefore been
proposed the term “multipotent mesenchymal stromal
cells” is adopted in place of “mesenchymal stem cells”
(Horwitz et al., 2005; reviewed in Bianco et al., 2008).

MSCs: Definition and Tissue Sources

The definition of MSCs relies solely on the analysis of in
vitro culture-expanded cell populations. Despite years of
intense investigation, the location and role of the native
MSCs within their tissue of origin in vivo are not known,
mainly because of the lack of specific markers allowing
their unambiguous identification (Bianco et al., 2008;
Jones and McGonagle, 2008; Morikawa et al., 2009). The
possibility exists that the MSC phenotype and abilities
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vary between in vivo and in vitro settings due to the removal
from their natural environment and the use of chemical
and physical growth conditions that might alter their
characteristics. MSCs are known to undergo phenotypic
rearrangements during ex vivo manipulations, losing
expression of some markers while also acquiring new ones
(Jones et al., 2002). Due to the growing interest in using
MSCs in cell-based therapy (Barry and Murphy, 2004; De
Bari and Dell’ Accio, 2008), the need to identify MSCs in
a definitive way is not only a scientific interest but also
derives from clinical and regulatory requirements
(Sensebé, 2008; Sensebé et al., 2010). As noted above, no
unique markers can unequivocally identify a MSC and
distinguish it from other cell types. In 2006, the
International Society for Cell Therapy proposed the
following criteria for the minimal identification of human
MSCs (Dominici et al., 2006): adherence to plastic in
standard culture conditions; CD73%, CD90*, CD105",
CD34, CD45-, HLA-DR", CD14 or CDI11b-, CD79a or
CD19 cell phenotype as assessed by FACS analysis; in
vitro differentiation into osteoblasts, adipocytes and
chondroblasts (demonstrated by staining of in vitro cell
culture). These criteria allow only a retrospective definition
of a cell population containing MSCs but do not allow
prospective purification of MSCs. In addition, these criteria
are not entirely valid across and intra species. In mouse
models, MSCs differ frequently not only from the human
MSCs, but also between strains in marker expression and
behaviour in culture (Peister et al., 2004; Sung et al., 2008),
the major differences being in the expression of CD34 and
CD105 (for CD105 and other markers see also Fiorina et
al., 2009). These criteria are overly dependent on culture
conditions for derivation and expansion of MSC
populations and, therefore, are unlikely to be extrapolated
to the native cells. Indeed, MSCs are expanded under
conditions that maintain the typical MSC differentiation
potency but do not preserve what is currently considered
to be the native MSC phenotype (Jo etal., 2007; Morikawa
etal., 2009).

Isolation of MSCs has been performed in several
species (Friedenstein, 1970) including humans (Castro-
Malaspina, 1980; Haynesworth, 1992; Bruno et al., 2009;
Yoo et al., 2009) and mice (Gindraux et al., 2007; Sung et
al., 2008), and from many tissues other than the bone
marrow, including peripheral blood (Zvaifler et al., 2000),
cord blood (Erices et al., 2000), cord Wharton’s jelly
(Sarugaser et al., 2005), adipose tissue (Zuk et al., 2002),
amniotic fluid (In’t Anker et al., 2003), compact bone (Guo
et al., 2006), periosteum (Nakahara et al., 1991; De Bari
et al., 2001a; De Bari et al., 2006a), synovial membrane
(De Bari et al., 2001b; De Bari et al., 2003) and synovial
fluid (Jones et al., 2004), articular cartilage (Dowthwaite
et al., 2004) and foetal tissues (Campagnoli et al., 2001;
Miao et al., 2006). Cells derived from different tissues
show phenotypic heterogeneity and different growth
abilities, but they also show similarities, with the potential
to differentiate into the classical mesenchymal lineages
and the expression of common surface markers (Baksh et
al., 2007). However, there is increasing evidence that
marked differences exist in the biology of MSCs that are
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dependent on the tissue of origin, which appears to be the
main source of variation in the biological properties of
MSCs (De Bari et al., 2008). Within each tissue source,
single-cell-derived clonal MSC populations are known to
be highly heterogeneous in their proliferative and
differentiation potential (De Bari et al., 2008; Phinney and
Prockop, 2007). The resulting variability limits
standardization of MSC-based bone repair strategies and
impedes the comparison of clinical study outcomes. There
is, therefore, an unmet clinical need for assays that allow
quantitative estimation of the differentiation potency of
MSC preparations. Such potency assays would allow
development of quality controls for efficacy of MSC
preparations (De Bari et al., 2006c; De Bari and
Dell’ Accio, 2007), a vital prerequisite for their routine use
in clinical practice.

Cells with properties of MSCs have also been isolated
from tissues in several pathological conditions, sometimes
with distinctive features. For instance, in the rheumatoid
arthritic joint, MSC-like cells appear to express bone
morphogenetic protein (BMP) receptors (Marinova-
Mutafchieva et al., 2000). In the peripheral blood of acute
burns patients, Mansilla et al. (2006) reported increase in
circulating MSC-like cells compared with healthy donors,
with greater numbers found among younger patients with
more extensive burns. It is postulated that MSCs are
mobilized into the bloodstream following acute burn
signals which have not yet been clucidated. In other
pathological conditions, such as obstructive apnoeas and
bone sarcomas, studies provide evidence of possible
mobilization of MSCs which increase in their circulating
numbers compared to healthy individuals (Carreras et al.,
2009; Bian et al., 2009); these reports are initial studies,
often imprecise in the definition of MSC phenotype, and
therefore they warrant further more accurate studies to
understand the mechanisms underlying MSC mobilization
in vivo, its biological significance and possible clinical
impact in terms of recruitment to tissue and wound healing.

Intense investigation on MSC isolation studies the use
of monoclonal antibodies in order to pre-select cells with
an MSC surface phenotype; the methods vary from
negative selection, where other cell types, such as
hematopoietic cells, are removed (Baddoo et al., 2003), to
positive selection, when MSCs are directly enriched from
apool of other cells in which they are known to be present
(Jones et al., 2002; Quirici et al., 2002; Deschaseaux et
al.,2003; Jones et al., 2006; Buhring et al., 2007; Gindraux
et al., 2007; Battula et al., 2009). This proves very
challenging in view of the lack of specific markers and
the phenotypic plasticity that MSCs demonstrate in vitro
(Jo et al., 2007). There are ongoing efforts to come up
with marker sets that would include positive and negative
selection, in order to obtain enrichment and, ideally,
purification from native tissues of MSC subsets with a
consistent and clinically desired potency, which is a
prerequisite for development of standardized, GMP-
compliant cell therapy in a clinical setting. Currently, the
intense investigation of prospective MSC isolation markers
has led to the identification of a variety of molecules that
could prove useful in the in vivo identification and
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purification of MSC-like cells (reviewed in Jones and
McGonagle, 2008); prominently among them are LNGFR
(CD271), a neural marker repeatedly found to be expressed
by MSCs (Jones et al., 2002; Quirici et al., 2002; Jones et
al., 2006; Buhring et al., 2007; Battula et al., 2009), and
CD49a (Deschaseaux et al., 2003; Jones et al., 2006),
together with the markers already indicated by the
International Society for Cell Therapy (Dominici et al.,
2006). Recently, PDGFRo+ Sca-1+ CD45- TER119- cells
have been isolated from murine BM with abilities and
characteristics consistent with conventional plastic-
adherent MSCs (Morikawa et al., 2009). It is anticipated
that the adoption of MSC purification procedures will allow
a one-stop therapeutic approach, involving rapid
production of uncultured MSCs for immediate
administration to patients.

Differentiation Potency of Culture-Expanded MSCs

General concepts
Among the criteria used to define MSCs is the ability to
differentiate in vitro into the three mesenchymal lineages,
i.e. bone, cartilage and fat. The classical osteogenic
differentiation of human MSCs (Jaiswal et al., 1997,
Pittenger et al., 1999) requires incubation of cell
monolayers with ascorbic acid, B-glycerophosphate, and
dexamethasone (added to medium containing FBS),
resulting in increase in alkaline phosphatase and calcium
deposition. The chondrogenic differentiation requires a
high cell-density pellet or micromass culture in conjunction
with the use of transforming growth factor-B in a
chemically defined serum-free medium; the histological
analysis reveals production of cartilage-specific highly
sulphated proteoglycans and type II collagen. The
adipogenic differentiation requires treatment with
dexamethasone, insulin, isobutyl methyl xanthine, and
indomethacin (added to medium containing FBS), and is
revealed by the appearance of lipid vacuoles detected with
oil red O staining. In Pittenger’s report, some of the clonal-
derived populations were able to differentiate into all three
lineages, but other clonal populations were lacking
differentiation into at least one lineage. Notably, all clonal
populations were able to undergo osteogenesis (Pittenger
etal., 1999). In following studies, many of the human MSC
populations were reported as readily differentiating into
the three lineages, and they were undergoing a sequential
loss of lineage potential with the osteogenic precursors as
residual cells (Muraglia et al., 2000), indicating the possible
existence of a hierarchical model of differentiation.
There is increasing evidence to indicate that MSC
populations are heterogeneous with coexisting subsets
having varying potency, and this applies to bone marrow
MSCs as well as those from other tissues. In this regard,
we recently reported that human synovium-derived clonal
MSCs were all capable of osteogenic and chondrogenic
differentiation though with varying potency, where only
30% of the clonal populations tested were able to
differentiate into adipocytes (Karystinou et al., 2009).
Under appropriate conditions, MSCs have been shown
to differentiate also into other mesenchymal lineages such
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as skeletal myocytes and tenocytes (Wakitani et al., 1995;
De Bari et al., 2003; Hoffmann et al., 2006). Notably, there
are reports indicating the capacity of MSCs to differentiate
into non-mesenchymal lineages such as neurons
(Woodbury et al., 2000). The clinical relevance of the
presumptive non-mesenchymal potency of MSCs is
however questioned since MSC-derived neuron-like cells
were unable to generate action potentials and therefore
function as neurons (Hofstetter et al., 2002).

MSC-derived cartilage and bone

Particular attention has been devoted to the chondrogenic
and osteogenic abilities of MSCs. This is because it is
hypothesized that MSCs with their natural mesenchymal
potency would primarily be used for the biological repair
of articular cartilage and bone. The osteogenic potential
of whole bone marrow population first (Friedenstein et
al., 1966; Luria et al., 1987) and of culture-expanded
MSCs later (Friedenstein, 1976; Ashton et al., 1985) has
been studied extensively in in vitro and in vivo experiments.
The first in vivo experiments were performed using
diffusion chambers loaded with whole bone marrow
(Friedenstein et al., 1966) or with culture-expanded cells
(Ashton et al., 1980). Later, the adoption of bioscaffolds,
such as hydroxyapatite (HA) implanted in
immunocompromised mice has proved useful to help
understanding the mechanisms of MSCs differentiation
in vivo (Ohgushi and Okumura, 1990). In studies in nude
mice, Muraglia et al. (1998) were able to develop donor-
derived bone by subcutaneous implantation of HA
scaffolds seeded with human MSCs. Later, it became
possible to repair large bone defects in vivo by using
autologous MSCs, in loaded conditions, both in large
animals (Kon et al., 2000) as well as in humans in a proof-
of-concept study (Quarto et al., 2001). In another set of in
Vivo human studies, Horwitz et al. (1999) reported that
bone marrow transplantation in three children affected by
osteogenesis imperfecta (OI) resulted in enhancement of
bone structure with differentiation of donor MSCs into
functional osteoblasts. In a subsequent study (Horwitz et
al., 2002), allogeneic bone marrow-derived MSCs were
safely administered to children with severe OI, and were
shown to engraft in genetically defective bone and
differentiate into osteoblasts.

Aslan et al. (2006) purified CD105+ cells from human
bone marrow that were able to differentiate in vitro and in
Vivo toward the osteogenic lineage. Such an approach
highlights the clinically relevant possibility that function-
specific cell types could be purified and directly used for
tissue engineering/repair purposes, without the need for
time-consuming and costly cell culture expansions.
Although it cannot be ruled out that a relatively low number
of “true” stem cells may be sufficient to provide repair,
purification strategies appear unlikely to yield adequate
quantities of MSCs at least for repair of large defects,
especially in view of their known low frequency.

Another unresolved issue pertains to the MSC type to
use in clinical practice, given the plethora of tissue sources.
For instance, human periosteum is also known to contain
cells that upon enzymatic release and culture expansion
display MSC phenotype and capacity at the single cell
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level to differentiate into multiple skeletal lineages
including bone in vitro and in vivo (De Bari et al., 2006a).
Notably, in a proof-of-concept study we quantified the
bone-forming potency of matched human MSCs from
synovium and periosteum and analyzed the sources of
variability in osteogenic outcome. We identified the tissue
of origin of MSCs as the main source of variability, since
MSCs from periosteum had significantly greater
osteogenic potency than MSCs from synovium. A second
source of variability was related to the individual donor,
within each tissue. We measured the basal expression levels
of osteoblast-lineage genes in clonal MSCs prior to
osteogenic treatment, identified biomarkers that correlated
with osteogenic outcome and developed a mathematical
model that predicts bone-forming potency of clonal MSC
preparations, independent of donor and tissue source (De
Bari et al., 2008). The development of a biomarker-based
model that predicts the osteogenic potency of human MSC
preparations is of considerable clinical relevance. A similar
approach is likely to increase consistency of therapies that
employ MSCs for bone repair. It may also facilitate the
selection of individuals that qualify for MSC-based bone
repair and help identify the best source and preparation
protocol of human MSCs. It remains to be investigated
whether the same formula can be applied successfully to
MSC-based orthotopic bone repair in a preclinical model,
where it is easy to think that in addition to the properties
intrinsic to the cell preparation, other factors such as
inflammation and biomechanics will influence bone
formation.

While bone formation is relatively straightforward
when MSCs are loaded onto matrices and then implanted
subcutaneously in mice, the formation of stable cartilage
appears to be a very challenging task with MSCs. The
chondrogenic potential of MSCs is well known in vitro in
pellet cultures but the key question as to whether this is
stable cartilage or a transient cartilage template destined
to be replaced with bone in a process of endochondral
ossification remains to be addressed. Using a nude mouse
assay of ectopic cartilage formation validated with
intramuscular injection of adult human articular
chondrocytes (Dell’ Accio et al., 2001), we demonstrated
that the in vitro chondrogenic potential of synovial
membrane-derived MSCs is not sufficient to predict the
in vivo outcome at least in this nude mouse model, since
the synovial MSCs induced in vitro into a chondrocyte-
like phenotype failed to form stable cartilage when
implanted in vivo (De Bari et al., 2004). Of note, Pelttari
and colleagues reported that bone marrow MSC-derived
cartilage pellets transplanted into ectopic sites in SCID
mice underwent endochondral ossification, via premature
induction of chondrocyte-hypertrophy-related molecules
such as type X collagen (Pelttari et al., 2006). These studies,
however, do not rule out the possibility that, as opposed to
an ectopic site, the joint environment of a cartilage defect
may instead be sufficient either to induce a stable cartilage
phenotype or stabilize the chondrocyte-like phenotype of
in vitro pre-committed MSC populations. Uplift of the bone
front at the expense of the overlying articular cartilage
has been observed in osteochondral repair by bone marrow
cells (Qiu et al., 2003). This phenomenon has not been
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reported in patients treated with autologous chondrocyte
transplantation and therefore one may argue that the
phenotypic memory of articular chondrocytes could
possibly limit the advancement of the bone front, thus
preserving the normal thickness of the repaired cartilage
tissue (De Bari et al., 2006b).

Expression of Chemokines and Their Receptors in
MSCs

The knowledge of native MSC biology and interactions
with their nearby microenvironment, i.e. the stem cell
niche, in healthy versus damaged or diseased tissues will
provide guidance on future clinical applications employing
MSCs. A challenge that the biomedical community will
face in regenerative medicine is the re-establishment of a
functional niche similar to the physiological one when
regenerating or healing damaged tissues. The restoration
of a functional niche will indeed be essential to safeguard
durable repair and ensure continual replacement of mature
cells lost to physiological turnover or subsequent stress or
damage.

Stem cell niches have been described so far for a
number of tissue types such as the hair follicle, intestine
and the bone marrow (Fuchs et al., 2004; De Bari et al.,
2006c). The niche of hematopoietic stem cells (HSCs) in
bone marrow might serve as a good example for the
complexity of the niche functional concept. It is commonly
regarded that the HSC niche consists of at least two distinct
niches, the endosteal niche where hematopoietic stem cells
are in close contact with osteoblasts residing at the bone
surface of the trabeculae, and the perivascular niche where
the HSCs are found close to the sinusoids in the bone
marrow (Mitsiadis et al., 2007). In the endosteal niche
signalling events between osteoblasts and HSCs play a
crucial role in maintenance and activation of stem cells
(reviewed in Kiel and Morrison, 2009). Pathways like
Notch and Wnt signalling are known to be involved (Calvi
et al., 2003; Reya et al., 2003; Duncan et al., 2007), and
the SDF-1/CXCR4 system is part of the complex signalling
network.

Chemokines are small (8-10 kDa) proteins able to
chemically attract lymphocytes, neutrophils and other
immune cell types to the sites of inflammation. Several
families of chemokines and their receptors exist, each with
different characteristics and abilities. The chemokine SDF-
1 is expressed on osteoblasts and endothelial cells and the
interaction with CXCR4 is thought to regulate trafficking
of HSCs in the bone marrow (Semerad et al., 2005). In the
perivascular niche, sinusoidal reticular cells express high
levels of SDF-1 and were found to be in close contact
with HSCs (Sugiyama et al., 2006). Interestingly, these
SDF-1 expressing reticular cells were also located at the
endosteal niche. The fact that HSCs express the receptor
CXCR4 (Peled et al., 1999) suggests that the SDF-1/
CXCR4 system would be crucial for the modulation of
activation or quiescence of the HSC niche in bone marrow.

Similarly to HSCs, chemokines and their receptors
might be of importance for MSCs in their niche. MSCs
have been reported to express varying degrees of
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chemokines and chemokine receptors, with differences
being likely due to the isolation techniques and in vitro
culture conditions (Honczarenko et al., 2006; Djouad et
al., 2007). Sordi et al. (2005) reported that chemokine
receptors (namely CXCR4, CX3CR1, CXCR6, CCR1 and
CCR?7), expressed by a minority (2%-2.5%) of the MSCs,
were linked to the in vivo migratory abilities of MSCs
toward murine pancreatic islets.

Few data are available regarding the existence of a
MSC niche in vivo (reviewed in da Silva Meirelles et al.,
2008), and they suggest a perivascular location of the
MSCs (reviewed in Kuhn and Tuan, 2010), although this
notion is challenged by the retrieval of MSC-like cells in
avascular tissues such as articular cartilage (Barbero et
al.,2003; Dell’Accio et al., 2003; Dowthwaite et al., 2004).
Tissue-specific MSC niches are likely to exist, since tissue-
specific distinct MSC phenotypes and functions have been
reported (Hennig et al., 2007; Roubelakis et al., 2007,
Meijer et al., 2008; Zhu et al., 2008; Hwang et al., 2009;
Ivanova-Todorova et al., 2009), and also embryologically
MSC could derive from non-mesodermal progenitors, such
as neuro-epithelial cells (Takashima et al., 2007). The study
of the migratory abilities of MSCs in vivo will elucidate
the requirements for homing and engraftment of such cells
and therefore underpin common features of a generic MSC
niche.

Systemically infused MSCs have been retrieved in
multiple organs such as lung, liver, kidney, and spleen
(Barbash et al., 2003; Devine et al., 2003; Kraitchman et
al., 2005), but also in specific targets, such as sites of
inflammation, injury, tumors and tissues already known
to contain MSCs such as the bone marrow (Devine et al.,
2001; Belema-Bedada et al., 2008; Sackstein et al., 2008).
Cultured MSCs used as a therapeutic tool in vivo by means
of systemic infusion were retrieved in the site of action in
some experimental models (Zappia et al., 2005; Sasaki et
al., 2008), but not in other models (Augello et al., 2007).
Freshly isolated, uncultured MSCs have been reported to
migrate to bone marrow and spleen after systemic
transplantation in experimental animal models (Rombouts
and Ploemacher, 2003; Mahmud et al., 2004; Morikawa
et al., 2009). In contrast, culture-expanded MSCs appear
unable to migrate and home to the bone marrow (Rombouts
and Ploemacher, 2003; Karp and Leng Teo, 2009;
Morikawa et al., 2009). Recent reports show that following
clinical bone marrow transplantation human MSCs are of
host origin (Bartsch et al., 2009). A parabiosis study from
Maloney et al. (1985) demonstrated that in mice in
parabiotic equilibrium where one partner had been X-
irradiated, repopulation of the CFU-F compartments of
the bone marrow in the irradiated mouse resulted from
recovery of the local CFU-F and not from migration of
CFU-Fs from the parabiotic, non-irradiated partner. The
apparent discrepancy in findings on MSC homing and
engraftment may be explained by the differences in model
systems, the adoption of freshly isolated MSCs versus
culture-expanded MSCs and also the different culture
conditions, likely to affect MSC phenotype and hence their
migratory patterns. Nonetheless, it is believed that MSCs,
when infused intravenously, have potential to migrate to
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sites of injury, such as to adult brain (Ji et al., 2004),
embryonic brain (Munoz-Elias et al., 2004), infarcted
myocardium (Barbash et al., 2003; Schenk et al., 2007),
injured skeletal muscle (De Bari et al., 2003) and kidney
(Morigi et al., 2004). MSCs have repair and
immunomodulatory abilities also in mouse lungs, reducing
systemic response to endotoxin when infused
intravenously, but disappear from the site of injury after a
short time lapse (Xu et al., 2007).

Several reports indicate that the SDF-1 (CXCL12)/
CXCR4 axis is present and functional in MSC populations
(Wynn et al., 2004; Dar et al., 2005). Recently, it has been
demonstrated that this pathway is crucial in the migration
of MSCs to injury sites such as bone fractures, with absence
of MSC recruitment if SDF-1 signalling was impaired
(Kitaori et al., 2009). Ma et al. (2005) investigated the
time course of myocardial SDF-1 expression and effects
of intravenously administered bone marrow-derived MSCs
in rats with experimental myocardial infarction (Ma et al.,
2005). Myocardial SDF-1 expression was increased only
in the early phase post-infarct, and as a result only MSCs
intravenously infused in temporal vicinity to the early phase
of MI were recruited to injured myocardium, enhancing
angiogenesis and improving cardiac function, while MSCs
injected when the cardiac SDF-1 expression had already
fallen did not home to the heart or have a positive effect
on the MI outcome. These findings raise the need for
identification of a temporal therapeutic window for
intervention with MSCs.

There is evidence that MSCs can respond to
chemotactic signalling molecules acting on pathways other
than the SDF-1/CXCR4 axis. One of those is the Monocyte
Chemotactic Protein-3 (MCP-3). Schenk et al. (2007)
showed that when systemically infused, MSCs migrated
transiently toward the infarcted myocardium in response
to MCP-3 signalling. The Authors then induced migration
of MSCs to the infracted area by previous implantation of
MCP-3-over-expressing cardiac fibroblasts in the infarct
border zone. Structural and functional improvements were
reported, mainly due to remodelling of the cardiac collagen
matrix, in the absence of angiogenesis and without
cardiomyocyte regeneration.

Migrating MSCs may therefore represent a source of
multipotent cells that could be available for the repair of
damaged tissues and organs. However, the mechanisms
that underlie homing of implanted cells are still unclear
and may be merely a stochastic event or explainable with
the vasodilatation and increased blood supply (and cells)
to the injured areas of the body. It is also postulated that
MSCs could have the ability to interact with immune cells
during inflammation; these interactions could have an
impact on the way MSCs contribute to the repair process
in recipients in vivo (Ohtaki et al., 2008; Constantin et al.,
2009). Understanding the underlying mechanisms of action
as part of the pharmacology of cell therapy is thus of
paramount importance in view of the increasing number
of clinical trials with MSCs, as this is anticipated to allow
forecasting the outcome of MSC-based treatments.
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MSCs and Pericytes: a Catch-22?

A major unresolved question relates to the identity of MSCs
within their native tissues. There is growing evidence that
pericytes may be the native cells of the ex vivo MSCs.
Pericytes, also known as mural cells or Rouget cells, are
described as branched cells located on the abluminal side
of small blood vessels (arterioles, capillaries and venules)
and are in close connection with the vessels’ endothelial
cells. The functions of pericytes include vessel
stabilization, synthesis of matrix proteins, macrophage-
like properties, activity in immunologic defence and,
possibly, mesenchymal potentiality (reviewed in Diaz-
Flores et al., 2009). Of special interest in this regard is the
perivascular MSC niche hypothesis. A stem cell niche is
defined as the microenvironment where the adult stem cell
resides and includes surrounding cells and extracellular
matrix, both thought to provide signals that keep the stem
cells quiescent or instead modulate their activation. In the
case of activation, stem cells undergo either symmetric
division or asymmetric division, i.e. they give rise to
daughter cells that are both stem cells or they produce
progeny one of which is a stem cell while the other daughter
cell is already committed to its differentiation fate. The
proximity to vessels would allow pericytes quickly to enter
the bloodstream to replace cells lost due to physiological
turnover or repair of local lesions (da Silva Meirelles et
al., 2008). Brighton et al. (1992) demonstrated that
pericytes exhibit in vitro a phenotype similar to that of
bone marrow-derived bone cells (MSCs). Diaz-Flores and
colleagues provided evidence by Monastral Blue staining
that pericytes could be involved in generating cartilage
and bone (Diaz-Flores et al., 1991; Diaz-Flores et al.,
1992). Furthermore, pericytes from various adult and foetal
tissues have been shown to express MSC markers such as
CD44,CD73,CD90 and CD105. Freshly isolated pericytes
from the placenta were shown to be myogenic when
injected into SCID-mdx-mice (Crisan et al., 2008).
However, despite growing circumstantial evidence that
pericytes might be the in vivo native cells of the ex vivo
MSCs, there has been no direct evidence up to now that
pericytes have key features of stem cells including
proliferation and differentiation into mature cell
phenotypes in vivo following injury by prospective cell
lineage tracking experiments, a requirement that should
apply as well to other putative MSC populations. In their
recent study, Crisan and colleagues indeed concluded that
pericytes might not be the only source of MSCs (Crisan et
al., 2008). The question therefore remains open as to
whether the MSC is a unique cell type, distinct from the
pericyte, with the specific function to replace mature
mesenchymal cells lost to physiological turnover, injury
or disease, or if there are multiple subsets of MSCs or
progenitor cells, which might be functionally distinct. Cell-
lineage tracking experiments, now increasingly feasible
with modern technologies and detection systems, will shed
light on these unresolved issues related to the in vivo nature
of the native MSCs in the natural environment of their
intact tissues.
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Conclusion

The advancement of therapeutic approaches using MSCs
is currently somewhat constrained by the lack of data about
the in vivo properties of the native MSCs within their
tissues and niches. The proliferation and differentiation
data, as well as the marker definition, are all related to the
in vitro culture systems, which are likely to alter the natural
characteristics that these cells have in vivo. Another
problem arises from the fact that frequently the data
obtained through in vitro manipulation are not reproducible
when translating to in vivo applications even when using
the same batch of cells. Bianco and co-workers found that
even parallel cultures of cells extracted from the same batch
could not demonstrate true multipotency (Bianco et al.,
2008). So far, in most of the clinical skeletal tissue
engineering applications in which MSCs have been used
the investigators applied large numbers of cells in order to
physically fill the defects, and therefore a culture expansion
stage was unavoidable. However, no conclusive data have
been produced showing that a higher number of cells is
more adequate and efficacious to repair a large defect than
a smaller number of purified and potent stem cells.
Moreover, when applying the concepts of tissue repair to
some clinical settings such as small cartilage lesions, many
investigators have started to indicate that one possible way
to use MSCs therapeutically is through pharmacological
targeting of endogenous MSCs and related niches, without
the need to remove the cells from their environment, culture
expand them and then implant them back to patients, thus
avoiding culture-related modifications such as possible
malignant transformation of the cells and risks of adverse
immune reactions e.g. to components of the FBS used in
culture (reviewed in Tonti and Mannello, 2008).

The ex vivo expansion of mixed cell populations is
likely to lead to unsatisfactory tissue repair, e.g. because
of possible contamination of undesired cell types that could
even interfere with the repair process (Fig. 1A). This is
likely to make cell therapy inconsistent and unreliable.
There is therefore a clinical and regulatory requirement to
devise technologies for prospective purification of cells
with the desired potency in order to standardise cell-based
therapy, and ensure consistent and reproducible structural
and clinical outcome. Such purification could be either
from fresh tissue sources or from culture-expanded mixed
cell populations (Fig. 1B and C). In some clinical
applications, it may be possible to purify the cells of interest
with known and predictable potency directly from the
tissue sources (e.g., bone marrow) and implant the purified
cells intra-operatively using a one-step procedure (Fig.
1D). The purification of the desired cell type could be
coupled with the concurrent purification of other cell types,
such as endothelial cells, that could prove to be beneficial
in assuring a successful outcome of selected MSC-based
cellular therapies (Lasala et al., 2010). A valuable option
will also be the activation of intrinsic repair or regeneration
by targeting endogenous MSCs with bioactive molecules
(Fig. 1E). Understanding the in vivo MSC niches and their
molecular regulation in health and disease is therefore of
the utmost importance for the development of novel
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Fig. 1: Tissue repair strategies using MSCs. (A) MSCs of potentially different phenotypes are isolated from their
native tissue and culture expanded. Due to culture conditions phenotypes might change and the repair of the defect
could fail as a consequence of incorrect phenotypes of mature cells filling the defect. (B) MSCs are expanded in vitro
after isolation. Enrichment based on marker combinations specific for a defined MSC phenotype would lead to
differentiation into the required mature cell type. (C) MSCs are purified and culture expanded before implantation in
the defect. (D) MSCs are purified after tissue release by defined selection using combinations of MSC markers.
Repair of tissue defects will be of a consistent phenotype of mature cells. (E) MSCs of a defined phenotype suitable
for tissue defect repair will be stimulated in vivo to migrate into the defect and then differentiate into the desired

mature cell type.

pharmacological approaches to tissue repair by targeting
endogenous stem cells and niches and their regulatory
reparative signalling networks. The scientific community
needs to devote efforts towards an in-depth understanding
of the networking abilities of MSCs in vivo, in order to
unravel the physiological ways by which these cells exit
from the quiescent state and become activated to cope with
paraphysiological or pathological conditions. There is also
aneed to investigate the migratory abilities of MSCs, likely
to be a function of the adhesion molecules that MSCs
express on their surface. With these approaches, we
anticipate that one day we will be able to directly influence
and guide, using tissue- and cell-specific pharmacological
targets, the in vivo mechanisms that activate and direct
native MSCs towards the sites of inflammation and injury
in order to trigger and enhance tissue regeneration by
means of directed in vivo tissue engineering.
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Discussion with Reviewers

Reviewer I: What are the quantified data indicating that
MSCs home?

Authors: Several studies, cited throughout our review
article, have reported quantification of MSC homing and
engraftment in multiple tissues and organs. Chemotactic
mechanisms of MSC homing remain largely unknown and
the engraftment of MSCs in organs and tissues may be
simply stochastic or due to multiple factors including
increased blood supply secondary to injury. Hereafter, we
briefly report a few selected studies on quantitation of
homing and engraftment of MSCs. Results cannot be
compared due to differences in experimental systems and
detection methods.

Horwitz et al. (1999) (text reference) showed
engraftment of mesenchymal cells in two children with
Osteogenesis Imperfecta (OI) following transplantation of
bone marrow (BM) from HLA-identical or single-antigen-
mismatched siblings after ablative conditioning therapy.
To assess for the engraftment of donor-derived cells in the
recipient, osteoblasts were cultured from fresh bone biopsy
specimens. In one patient the donor cells were quantified
at a frequency of 1.5% by in situ hybridization for Y
chromosome, while in the other patient the frequency was
2% as determined by DNA polymorphism analysis.

Horwitz et al. (2002) (text reference) showed that in
five out of six Ol patients there were signs of engraftment
of retrovirally-infected cultured MSCs. Donor cells were
detected by PCR for a retroviral marker. Engraftment in
BM stroma and bone of donor cells did not exceed 1%.
Despite such low engraftment, clinical improvement
ranged from 60% to 94% compared with 0% to 40% over
the 6 months immediately preceding the infusions (Horwitz
etal., 2002).

In baboons, Devine et al. (2001) (text reference)
detected by PCR in the BM of recipients retrovirally
transduced BM-derived syngeneic or allogeneic MSCs for
over 1 year after their co-infusion with autologous HSCs.
The Authors also identified donor MSC-derived cells by
flow cytometry in the BM aspirate from one experimental
animal at day 33 post-infusion, in a percentage of 1%.

De Bari et al. (2003) (text reference) quantified by RT-
PCR using species-specific primers the numbers of “human
cell equivalents” engrafting in nude mouse skeletal muscles
after intramuscular injection of human synovial membrane-
derived MSCs. They also performed an intravenous
administration of 5 x 10 human MSCs into nude mice.
MSCs homed preferentially to the injured (cardiotoxin-
treated) tibialis anterior muscle as opposed to the
contralateral uninjured control muscle. At 3 weeks, about
2 x 10° human cells were detected in the injured muscles,
while they were undetectable in the uninjured control
muscles.

Rombouts and Ploemacher (2003) (text reference)
performed experiments of intravenous infusion of
uncultured (obtained from CD45—/low BM cells) or
cultured BM-MSCs in irradiated and control syngeneic
mice. The Authors, analyzing the ratio of donor vs. host
CFU-f from the organs of transplanted mice, assessed in a
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quantitative manner the homing, in vivo expansion and
tissue distribution of donor-derived MSCs in BM, spleen,
thymus and lymph nodes.

Belema-Bedada et al. (2008) (text reference) showed
that in mice overexpressing MCP-1 in the heart,
intravenously infused allogeneic ¢eGFP+ BM-MSCs
migrated preferentially toward the MCP-1 overexpressing
heart as compared with wild-type animals, in which
migration toward heart was negligible. Quantitation was
performed by counting eGFP+ cells on histological
sections and by real-time RT-PCR for eGFP on whole
hearts. In mice operated to induce cardiac ischemia-
reperfusion, there was a requirement for an intact CCR2/
FRONT signalling in the donor MSCs to migrate toward
the site of injury.

Sackstein et al. (2008) (text reference) injected human
MSCs expressing a variant of CD44, HCELL, which
permits selective MSC migration toward bone. While
human MSCs that did not express HCELL were not
retrieved in the BM of recipient mice, the HCELL+ cells
migrated to the murine bone marrow at an endosteal
location. Cells positive for human CD44 and for human
osteocalcin were quantified by microscopic analysis.

Morikawa et al. (2009) (text reference) studied
migration of murine uncultured EGFP+Scal+PDGFRo+
CD45.1-Ter119— MSCs in EGFP-CD45.1— mice when
cotransplanted with HSCs from EGFP—CD45.1+ mice. The
EGFP+CD45.1- MSCs were found in the recipient BM
up to 16 weeks after transplantation. By contrast, cultured
MSCs were not found to migrate into the recipient BM.
Flow cytometry was carried out to detect and quantify
donor EGFP+ MSCs homed into the host BM. The Authors
also cultured the host BM as single cells and were able to
produce EGFP+ fibroblastic clones, demonstrating
effective engraftment of MSCs in the host BM.

Reviewer I1: How do the results of Patt and Maloney using
mouse symbionts compare to more recent results on MSC
homing?

Authors: Maloney et al. (1985) (text reference)
demonstrated that in mice in parabiotic equilibrium where
one partner had been X-irradiated, repopulation of the
CFU-F compartments of the BM in the irradiated mouse
resulted from recovery of the local CFU-F and not from
migration of CFU-Fs from the parabiotic, non-irradiated
partner. Later studies, using different models and detection
systems, have demonstrated engraftment of donor MSCs
in the recipient BM (see above). Resident BM-MSCs are
known to be resistant to lethal irradiation and, due to their
quiescence and permanence in GO, they can survive despite
their inability to replicate, thus competing for the niche
with the donor MSCs (Morikawa et al., 2009). Independent
of the model system, the frequency of MSC engraftment
is low and difficult to detect, also in view of the lack of
MSC specific markers. It is therefore anticipated that the
combination of mouse genetics and sophisticated novel
detection systems will allow a more detailed analysis of
MSC homing and engraftment in vivo, as for instance in
the study by Morikawa. (Editor’s note: All references cited
in the Discussion with Reviewers are text references).
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