
PERFORMANCE EVALUATION OF REAL TIME DATABASE SYSTEMS

IN DISTRIBUTED ENVIRONMENT
Shetan Ram Choudhary

1
, C.K. Jha

2
, Ph.D

Department of Computer Science, Banasthali University, P.O. Banasthali Vidyapith-304022,

 Rajasthan, India
1
srchoudhary.1972@gmail.com,

2ckjha1@gmail.com

Abstract
Transaction scheduling plays an important role in

deciding the performance of a real time database

system (RTDBS) in distributed environment. It has

been demonstrated that the priority based scheduling

enhances the performance of a RTDBS in distributed

environment. The performance is primarily measured

by the number of transactions completed within a unit

time. In real-time applications, timing and criticality

characteristics of transactions must be taken into

account. In this paper, we examine the performance of

real time database systems in distributed environment.

The deadline guarantee ratio and average response

times are the primary performance measures. There

have been performance studies on real-time database
systems, but most of them were performed using

simulation. This work demonstrates the feasibility of

developing real time database systems in distributed

with an acceptable performance.

Keywords: Real Time Database System, Transaction

Scheduling, Distributed Environment.

1. INTRODUCTION
An integrated and shared base of persisted data used by

different kinds of users in a variety of programs is said

to be database. The management software that handles

all requests from users for access to database is called

database management system (DBMS). DBMS is also

responsible for maintenance of the central base of data.

A database buffer had to be maintained for purpose of

interfacing main memory and disk. Distributed

database management system (DDBMS) consists of

collection of sites connected together via some kind of

communication network in which –

 Each site is a database system site in it’s own right.

 The sites have agreed to work together so that a user

at any site can access data anywhere in the network
exactly as if the data were all stored at the user’s

own site.

There is a mounting need for real time data services in

distributed environment. Modern electronics services

and electronic commerce communication applications

characterized by high volume of transactions, can’t

survive without an online support of computer system

and updated database technology [57].

Many applications such as factory automation, military

tracking, aircraft control, shipboard control, stock

arbitrage system, networking management, sensory

system, banking system, railway reservation system

and traffic control, transaction should be processed

within their deadlines using the fresh data in real time

environment.

Any system where a timely response by the computer

to external stimuli is vital in a real time system

(RTS).The presence of multiple sites in distributed

environment raise issue that is not present in

centralized system. Typically RTS are associated with

critical application in human lives or expensive

machineries may be at stake. Hence in such system an

action performed too late or too early or a computation

which uses temporal invalid data may be useless and

same time harmful. This type of action or computation

is functionally correct. RTS continue to evolve their

application, become more and more complex and often
required timely access and predictable processing of

massive amount of real time data with the need of the

changing electronic communication system scenario.

Several of these application providing real time data

services in distributed environment are essential. The

issues involved in providing predictable real time data

services in centralized data base system have

researched as distributed real time database system

(DRTDBS). The DRTDBS are collection of multiple,

logically interrelated database distributed over a

computer networks where transaction have explicit

timing constraints usually in the form of deadline. In

such a system data items must be controlled in order to

maintain databases logically, consistency and

satisfying timing constraints of various real time

activities. The distributed system has few difficulties

due to the distributed nature of the transaction which
required database consistency.

The Real-time transaction deadlines fall into three

categories: hard, firm and soft, which is based on the

effect of missing their deadlines [41].

 Hard Real Time Transaction: It must meet its

deadline strictly. A missed deadline may result in a

catastrophe.

 Firm Real Time Transaction: It does not result in a

catastrophe, if the deadline is missed. However, the

results have no value after the expiry of deadline.

 Soft Real Time Transaction: In this system nothing

catastrophic happens if some deadlines are missed

but the performance will be degraded below

acceptable level still substantial fraction of design

efforts in these systems goes into making sure that

task deadlines are met.

There are basically two types of distributed transaction
execution models; viz., sequential and parallel [4, 41].

In sequential execution model, there can be at most

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

785

ISSN:2229-6093

mailto:1srchoudhary.1972@gmail.com

one cohort of a transaction at each execution site, and

only one cohort can be active at a time. After

successful completion of one operation, next operation

in the sequence is executed by the appropriate cohort.

At the end of execution of the last operation, the

transaction can be committed. In parallel execution

model, the coordinator of the transaction spawns all

cohorts together and sends them for execution at

respective sites [7]. All cohorts then execute in
parallel. The assumption here is that the operations

performed by one cohort during its execution at one

site are independent of the results of the operations

performed by some other cohort at some other site. In

other words, the sibling cohorts do not share any

information among themselves [54].

The implementation of Distributed Real Time

Database Systems (DRTDBS) is difficult due the

conflicting requirements of maintaining data

consistency and meeting transactions deadline. The

difficulty comes from the unpredictability of the

response time of the transactions. Each distributed

transaction processing a data item takes a variable

amount of time due to

 concurrency control

 I/O and communication delays.

While maintaining the consistency of underlying
database, scheduling and management of the system

resources in DRTDBS should also take into account

the timing constraints. Access to CPU, main memory,

I/O devices and shared data should be managed to

make the best effort to satisfy the transaction

deadlines.

2. REVIEW OF LITERATURE
Transaction is a logical unit of work. It is also known

as logical unit of recovery/logical unit of integrity.

Each transaction should posses four important

properties also known as the ACID (atomicity,

consistency, isolation, durability) properties.

Atomicity: (All or none) Atomicity ensures that either

all of transactions actions complete successfully or all

of its effects are absent. Consistency: (Transaction

preserves database consistency) Consistency ensures

that a transaction when executed by itself without

interference from other transactions maps the database

from one consistent state to another. Isolation:

(Transactions are isolated from one another) Isolation

ensures that no transaction ever views partial effects of

some other transaction, even when actions of

transactions execute concurrently. Durability:
Durability ensures that once a transaction happens, its

updates survive, even if there are a subsequent system

crash.

Concurrency consists of the lost update problem, the

uncommitted dependency problem, the inconsistent

analysis problem. Pessimistic Methods are used as

locking and time stamping and locking for concurrency

control are as exclusive locks and shared locks.

2.1 REAL TIME DATABASES
Real time databases have two properties. First, data has

a finite life time after which it is aged out or becomes

invalid. Second transactions have a life time after

which their returned results are no longer useful and in

addition could be harmful or catastrophic to the system

if not returned within the specified lifetime called its

deadline. Real-time transaction deadlines fall into two

categories: hard and soft. A hard deadline is one

cannot be violated. A transaction with hard deadline

loses all values if not completed on time, possibly

resulting in some catastrophic events occurs, soft
deadline transactions will retain some of their value if

deadline is missed.

2.2 REAL TIME DATABASE SYSTEMS IN

DISTRIBUTED ENVIRONMENT
Real time systems are those for which correctness

depends not only on the logical properties of the

produced results, but also on the temporal properties of

these results [5]. The database systems which are

especially designed for the efficient processing of these

types of real time data are referred to as distributed

real-time database systems (DRTDBS).

Fig.1 Transaction model in Real Time DBMS.

Distributed real time database systems can not be

viewed as a combination of conventional DDBMS and

RTS [56] see Fig.1, it has to process distributed

transactions and guarantees their basic correctness

criteria [8]. DRTDBS are collection of multiple,

logically interrelated databases distributed over a

computer network where transactions have explicit

timing constraints usually in the form of deadlines.

2.3 REAL TIME TRANSACTION IN

DISTRIBUTED ENVIRONMENT
When users programs interact with database, partially

ordered sets of read and write operations are generated

[17]. This sequence of operations on the database is

called a transaction.

Hong-Ren Chen and Y.H. Chin was worked on the

framework of a distributed real time database
system.[58]

The distributed real time transaction processing is a

form of transaction processing that supports

transactions whose operations are distributed among

different computers or among different databases from

different vendors. So in a distributed real time

transactions, the operations are executed at the site

where the required data item resides and is associated

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

786

ISSN:2229-6093

with time constraints. Transfer of money from one

account to another, reservation of train tickets, filling

of tax returns, entering marks of a student’s grade

sheet, etc. are some of the examples of distributed real

time transactions. The transaction is an atomic unit of

work, which is either completed in its entirely or not at

all. Hence a distributed commit protocol is needed to

guarantee the uniform commitment of distributed

transaction execution [52]. The Commit operation
implies that the transaction is successful, and hence all

of its updates should be incorporated into the database

permanently. An abort operation indicates the

transaction has failed, and it requires the database

management system to cancel all of its effects in the

database system. In short, a transaction is an “all or

nothing” unit of execution.

2.4 PRIORITY ASSIGNMENT POLICY
A real time database system is a part of a large and

complex real time system. The tasks in real time

system and transactions in distributed real time

database systems are similar in the sense that both are

units of work as well as units of scheduling [30, 32, 33,

58]. However, tasks and transactions are different

computational concepts and their difference affect how

they should be scheduled and processed. Unlike
transactions, task in real time systems do not consider

consistency of the data items used. Though many real

time task scheduling techniques are still used for

scheduling real time transactions, the transaction

scheduling in the real database systems needs a

different approach than that of which is used in

scheduling tasks in the real time systems.

Liu and Layland [40] have developed a rate monotonic

static assignment scheme to determine the

schedulability of a set of periodic tasks for centralized

RTS. The proposed priority assignment techniques can

be broadly classified into three categories: static,

dynamic and hybrid. A scheduling algorithm is said to

be static if priorities are assigned to tasks once and for

all. A scheduling algorithm is said to be dynamic if the

priority of a task changes from request to request. One

of the most used algorithms belonging to this class is
Earliest Deadline First (EDF), according to which

priorities assigned to tasks are inversely proportional to

the absolute deadlines of active jobs where deadline of

a job depends on the arrival time of its next

occurrence. A scheduling algorithm is said to be hybrid

if the priorities of some of the tasks are fixed and

priorities of the remaining tasks vary from request to

request. Though many real time task scheduling

techniques are still used for scheduling real time

transactions, the transaction scheduling in real time

database systems needs a different approach than that

used in scheduling tasks in real time systems.

The performance of different scheduling policies for

soft deadline based transactions was first addressed by

Abbot R. and Garcia-Monila H. [2]. They have

conducted study on the performance of three priority

assignment techniques: FCFS, EDF and LSF, with dif-

ferent concurrency control methods namely serial
execution (SE), high priority (HP), and conditional

restart (CR) through simulation. The pioneering work

in RTDBS performance evaluation of various

scheduling options for a real time database system with

disk and shared locks is reported again by Abbot R.

and Garcia-Monila H. [1]. The scheduling algorithms

used for this study are FCFS, EDF and LSF along with

the concurrency control algorithms such as wait, wait-

promote, high priority & conditional restart.

Pang et al. investigated the problem of “bias” against
longer transactions under “earliest-deadline-based”

scheduling policies in a centralized RTDBS [45, 46].

Their approach to solve the problem of bias assigns

virtual deadlines to all transactions. A transaction with

an earlier virtual deadline is served before one with a

later virtual deadline. The virtual deadline of a

transaction is adjusted dynamically as the transaction

progresses and is computed as a function of the size of

the transaction.

In a real-time database system, an application may

assign a value to a transaction to reflect the return it

expects to receive if the transaction commits before its

deadline [24 25]. Haritsa et al. [26] addressed the

problem of establishing a priority ordering among

transactions characterized by both values and deadlines

that results in maximizing the realized value. They

proposed the Adaptive Earliest Deadline (AED)
protocol for priority assignment as well as for load

control of the transactions. AED was later improved to

Adaptive Earliest Virtual Deadline (AEVD) policy

using virtual deadline based on both arrival time and

deadline. Datta et al. addressed some of the

weaknesses in AEVD, and proposed the Adaptive

Access Parameter (AAP) method for explicit

admission control [12].

Dogdu Erdogan and Ozsoyoglu Gultekin proposed

new priority assignment and load control policies for

repeating real-time transactions [15]. Based on the

execution histories of the transactions, they showed

that a widely used priority assignment technique EDF

is biased towards scheduling short transactions

favorably and proposed protocols that attempt to

eliminate the discriminatory behavior of EDF by

adjusting the priorities using the execution history
information of transactions. They introduced the notion

of “fair scheduling” of transactions in which the goal

was to have “similar” success ratios for all transaction

classes (short to long in size).

The problem of assigning deadlines to the parallel and

the serial subtasks of the complex distributed tasks is

addressed by Kao B. and Garcia-Monila H. [31]. They

studied the problem of automatically translating the

deadline of a real time activity to deadlines for all its

sequential and parallel sub tasks constituting the

activity.Lam et al. have conducted study on the effects

of different priority assignment heuristics using

optimistic concurrency control protocol and high

priority two phase locking [36, 39].

To reduce the miss percentage of transactions and the

wastage of time for remote transaction due to

communication delay, a new real time scheduler called

Flexible High Reward (FHR) is proposed by Chen
Hong-Ren et al. [10].

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

787

ISSN:2229-6093

2.5 COMMIT PROTOCOL
A distributed transaction is executed at more than one

site. In such an environment, the transaction may

decide to commit at some sites at some other sites it

could decides to abort resulting in a violation of

transaction atomicity [42, 48]. To overcome this

problem, distributed database systems use a distributed

commit protocol which ensures the uniform

commitment of the distributed transaction. i.e. all the
participating sites agree on the final outcome (commit/

abort) of the transaction [6, 38]. Commit protocol

ensures that either all the effects of the transaction

persist or none persist despite of the site or

communication link failures and loss of message.

 Two Phase Commit Protocol (2PC)

 Three Phase Commit Protocol (3PC)

2.6 REAL TIME COMMIT PROTOCOLS
Due to series of synchronous message and logging

cost, commit processing can result in a significant

increase in the transaction execution time. In a real

time environment, this is clearly undesirable. It may

also result in priority inversion, because, once a cohort

reaches the prepared state, it has to retain all its data

locks until it receives the global decision from the

coordinator. This retention is fundamentally necessary
to maintain atomicity. Therefore, if high priority

transaction requests access to a data item that is locked

by a “prepared cohort” of lower, it is not possible to

forcibly obtain access by pre-empting/ aborting the low

priority cohort. In this sense, the commit phase in

DRTDBS is inherently susceptible to priority

inversion. More importantly, the priority inversion

interval is not bounded since the time duration, that a

cohort is in the prepared state, can be arbitrarily long.

This is especially more problematic in distributed

context. Therefore, in order to meet the transaction

deadlines, the choice of a better commit protocol is

very important for DRTDBS. For designing the

commit protocols for DRTDBS, we need to address

two questions.

(i) How do we adopt the standard commit protocols

into real time domain/
(ii) How can be decrease the number of missed

transactions in the system?

Researchers have proposed some real time commit

protocols in the literature to address this issue.

Soparkar et al. have proposed a protocol that allows

individual sites to unilaterally commit [53].

A centralized timed 2PC protocol guarantees that the

fate of a transaction (commit or abort) is known to all

the cohorts before the expiry of the deadline when

there are no processor, communication or clock faults

[13, 14].

According to study of Ramesh Gupta et al., the relative

performance of different commit protocols [18-23, 27].

Using a detailed simulation model for firm-deadline

DRTDBS, the authors have evaluated the deadline

miss performance of a variety of standard commit

protocols including 2PC, PA, PC and 3PC. Then they
have proposed and evaluated the performance of a new

commit protocol called OPT designed specifically for

the real-time environment [3,18,21].

Harista et al. proposed a new protocol Permits Reading

of Modified Prepared-Data for Timeliness (PROMPT)

that is also designed specifically for the real-time

environment and includes features such as controlled

optimistic access to uncommitted data, active abort,

silent kill and healthy lending [28,29,35].

Lam et al. proposed deadline-driven conflict resolution

(DDCR) protocol which integrates concurrency control
and transaction commitment protocol for firm real time

transactions [34, 37].

Pang Chung-leung and Lam K. Y. proposed an

enhancement in DDCR called the DDCR with

similarity (DDCR-S) to resolve the executing-

committing conflicts in DRTDBS with mixed

requirements of criticality and consistency in

transactions [44].

Based on PROMPT and DDCR protocols, B. Qin and

Y. Liu proposed double space commit (2SC) protocol

[47]. They analyzed and categorized all kind of de-

pendencies that may occur due to data access conflicts

between the transactions into two types commit

dependency and abort dependency.

Ramamritham et al. [50] have given three common

types of constraints for the execution history of

concurrent transactions. The paper [9] extends the
constraints and gives a fourth type of constraint. Then

the weak commit dependency and abort dependency

between transactions, because of data access conflicts,

are analyzed. Based on the analysis, an optimistic

commit protocol Two-Level Commit (2LC) is

proposed, which is specially designed for the

distributed real time domain. It allows transactions to

optimistically access the locked data in a controlled

manner, which reduces the data inaccessibility and

priority inversion inherent and undesirable in

DRTDBS.

2.7 MEMORY OPTIMIZATION
The important data base system resources are the data

items that can be viewed as logical resource, and CPU,

disks and the main memory which are physical

resources [16]. Though the cost of the main memory is
dropping rapidly and its size is increasing, the size of

database is also increasing rapidly. In real time

applications, where databases are of limited size or are

growing at a slower rate than the main memory

capacities are growing, they can be kept in the main

memory. However there are many real time

applications that handle large amount of data and

require support of an intensive transaction processing

[49]. The amount of data they store is too large to be

stored in the non volatile main memory. Examples

include telephone switching, satellite image data, radar

tracking, media servers, etc. In these cases, the

database cannot be accommodated in the main memory

easily. Hence many of these types of database systems

are disk resident. The buffer space in the main memory

is used to store the execution code, copies of files and

data pages and temporary objects produced. With the

new functionalities and features of the light weight
devices, there is a need of new policy/ protocols so that

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

788

ISSN:2229-6093

memory utilisation can be improved [51].

Ramamritham K. and Sen R. utilized a novel storage

model, ID based storage, which reduces storage costs

considerably. They present an exact algorithm for

allocating memory among the database operators.

Because of its high complexity, a heuristic solution

based on the benefit of an operator per unit memory

allocation has also been proposed.

2.8 REAL - TIME BUFFER MANAGEMENT
Data storage in a database management system is

organised into hierarchy, the lowest level of the

hierarchy being secondary storage (disk), followed by

primary memory and high speed cache. A DBMS must

optimize these storage areas organization and access

with constraint policies to facilitate increased data
manipulation throughput and to provide real time

support [55]. Primary memory is organised into a

limited number of physical pages which are shared

between active transactions, these pages and their

management form the critical link between the

databases high level functions (concurrency control,

transaction processing, recovery, etc.) and the physical

realization of data within the logical database as

viewed by these upper level functions. For each logical

page reference, the Buffer manager performs the

following tasks [43]

(i) The buffer is searched for requested page.

(ii) If the page is not currently in primary memory

buffers, the buffer manager must retrieve the page

from secondary memory.

(a) If free frames are available, the page is assigned

to a physical memory frame.
(b) If there are no free frames, a replacement page

must be selected and then moved to secondary

storage.

(iii) The requested page, once retrieved, is placed in

the buffer memory frame.

(iv) The page reference is recorded in the buffer

managers page table.

(v) The address of the corresponding buffer frame is

returned to the transaction manager to be used in

physically accessing data items held on that page.

3. PROPOSED WORK
The performance of the system depends on the factors

such as database system architectures, underlying

processors, disks speeds, various operating conditions

and workloads. The design and implementation of

DRTDBS introduce several other interesting problems.

Among these problems, predictability and consistency

are fundamental to real time transaction processing,

but sometimes these require conflicting actions. To

ensure consistency, we may have to block certain

transactions; however it may cause several

unpredictable transaction executions and lead to the
violation of timing constraints. There are number of

other sources of unpredictability such as

communication delays, site failure and transactions

interaction with the underlying operating system and

I/O subsystems. Other design issues of DRTDBS are

data access mechanism and invariance, new metrics for

database correctness and performance, maintain global

system information, security, fault tolerance, failure

recovery, etc.

Although a lot of research has been done on these

issues, there still exist many challenging and

unresolved issues. Many real-time applications need to

share data that are distributed among multiple site. In

different applications remote data access consist of
multi-hop network operation and take substantially

more time than the local data access. Another problem

is that due to long remote data access time, by the time

a transaction gets all the data it needs, some of the data

item may have already become stakes.

(i) The time expressed in the form of dead line is a

critical factor to be considered in distributed real

time transaction [11].

(ii) The completion of transaction on or before its

deadline is one of most important performance

objective of DRTDBS.

(iii) One of the most significant factors is the data

conflict among transactions. The data conflict

that occurs among executing conflict.

(iv) Scheduling of distributed transactions.

(v) Optimizing the use of memory.

(vi) Management of distributed transactions.
(vii) Deadline assignment strategies.

(viii) Possibilities of distributed deadlocks.

Embedding a DBMS and an operating system (OS)

environment, in which it is usually treated like a

normal application program, can result in aggregating

effects on buffer management. If DBMS runs in a

virtual address space, program code as well as the

DBMS buffer is paged by OS memory management,

unless they are made resident in main memory. While

replacement of buffer pages is done by the DBMS

according to the logical references, paging of main

memory frames is performed by independent OS

algorithms based on the addressing behavior within the

main memory frames. In such an environment, the

kinds of faults can occur as: Page faults, Buffer faults,

Double-page faults.

 Because the DBMS can keep several pages per
transaction in fix status, it is possible that a shortage of

buffer frames will occur (a resource deadlock); an

additional page is requested, yet no page in the buffer

can be replaced if all are flagged with FIX status. This

situation is especially threatening with small buffer

sizes.

Real time database systems and simulation are the

fields of special interest in distributed environment. As

we have seen that the development of commit

protocols for the traditional database system has been

an area of intensive research in the past decade.

However, in case of real time commit protocols in

distributed environment, very little amount of the work

has been reported in the literature.

4. METHODOLOGY
The present investigation entitled performance

evaluation of real time database system in distributed

environment will be developed and then simulation of

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

789

ISSN:2229-6093

strategies/algorithms analyzes the performance base

model. Further experiments will be constructed among

the base model with varying a few parameters at a time

An event driven based simulator is written in C

language, to evaluate the performances of protocols

[39]. The simulation can use different simulation

languages such as GPSS, C++SIM and DeNet. The

concurrency control scheme used is S2PL in

conjunction with temporary intermediate priority.
GPSS [59] is used in our simulation experiment. The

deadline of the transaction is determined by the

method given as below

Deadline (Di) =Ai+SF*Ri

Where Ai is the arrival time of transaction (Ti) at a site.

SF is the slack factor. Ri is the minimum transaction

response time.

Multiple database sites can be simulated in a single

physical program through establishment of virtual

sites. Simulation also allows one to expand the

research to study a very large database system

comprised of several database sites by setting certain

parameters in the simulator. The database system is

assumed to consist of several data nodes. The data are

logically arranged as pages of memory. The

performance metric of the experiments is Miss Percent

that is the percentage of input transaction that the
system is unable to complete before their deadline. If

the transaction action deadline expires either before

completion of its local processing, or before the master

has written the global decision log record, the

transaction is killed and discarded.

The results will be interpreted and comparative study

of policies for Distributed Real Time Database

Systems development or Simulation of these algorithm

will also be done.

5. EXPECTED OUTCOME
The proposed priority assignment scheme may be

capable to reduce miss percentage of transactions and

will be implemented in distributed real time simulator

for main memory resident database.

The performances of developed simulation may be

improvement of the few order in transaction miss

percentage and will minimize intersite message traffic,

execute-commit conflicts and log writes with better

response time. It will be compared with commit

protocols for both main memory resident and disk

resident databases with and without communication

delay.

A new locking scheme will be developed for the
database model. The performance of developed model

will be compared with commit protocol and may be

marginally better with these commit protocols in term

of miss percentage of the transaction, but it will reduce

the memory requirement to a great extent. This will

make suitable for data intensive applications with high

transaction arrival rate.

6. REFERENCES

[1] Abbott Robert and Garcia-Molina, H.,

“Scheduling real-time transactions with disk

resident data,” in Proceedings of the 15th
International Conference on Very Large

Databases, Amsterdam, The Netherlands, pp.

385–395, 1989.

[2] Abbott Robert and Garcia-Monila, H.,

“Scheduling real-time transaction: a performance

evaluation,” in Proceedings of the 14th

International Conference on Very Large

Databases, pp. 1–12, August 1988.

[3] Agrawal D., Abbadi El, A., Jeffers R. and Lin,

L., “Ordered shared locks for real-time

databases” International Journals of Very Large

Data Bases (VLDB Journal) Vol. 4, Issue 1, pp.

87–126, January 1995.

[4] Agrawal D., Abbadi El A. and Jeffers R, “Using

delayed commitment in locking protocols for

real-time databases,” in Proceedings of the ACM

International Conference on Management of Data
(SIGMOD), San Diego, CA, pp. 104–113, 2-5

June 1992.

[5] Aldarmi Saud A., “Real Time Database Systems:

Concepts and Design,” Department of Computer

Science, University of York, April 1998.

[6] Al-Houmaily Yousef J. and Chrysanthis P.K.,

“Atomicity with incompatible presumptions,” in

Proceedings of the 18th ACM Symposium on

Principles of Database Systems (PODS),

Philadelphia, June 1999.

[7] Audsley N.C., Burns A., Richardson M.F. and

Wellings, A.J., “Data consistency in hard real-

time systems,” YCS 203, Department of

Computer Science, University of York, June

1993.

[8] Bestavros Azer, “Advances in Real Time

Database Systems Research,” ACM SIGMOD

Record, Vol. 24, No. 1, pp. 3-8, 1996.
[9] Biao Q., Yunsheng L. and Jin, C.Y., “A commit

strategy for distributed real-time transaction,”

Journal of Computer Science Technology, Vol.

18, Issue 5, pp. 626-631, 2003.

[10] Chen H.-R., Chin Y.H. and Tseng S.-M.,

“Scheduling value-based transactions in

distributed real-time database systems,” in

Proceedings of the 15
th

 International Parallel and

Distributed Processing Symposium, pp. 978-984,

23–27 April 2001.

[11] Datta Anindya, Son S. H. and Kumar Vijay, “Is a

Bird in the Hand Worth More Than Two in the

Bush? Limitations of priority Cognizance in

Conflict Resolution for Firm Real – Time

Database Systems,” IEEE transactions on

Computers, Vol. 49, No. 5, pp. 482-502, May

2000.
[12] Datta A., Mukhejee S., Konana F., Yiguler I.R.

and Bajaj, A., “Multiclass transaction scheduling

and overload management in firm real-time

database systems,” Information System, Vol 21,

Issue 1, 29–54, 1996.

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

790

ISSN:2229-6093

[13] Davidson S.B., Lee I. and Wolfe V., “A protocol

for timed atomic commitment,” in Proceedings of

the IEEE 9
th
 International Conference on

Distributed Computing Systems, pp. 199-206, 5-

9 June 1989.

[14] Davidson S.B., Lee I. and Wolfe V., “Timed

Atomic Commitment,” IEEE Transactions on

Computer, Vol 40, Issue 5, 573-583, 1991.

[15] Dogdu E. and Ozsoyoglu G, “Real-time
transactions with execution histories: priority

assignment and load control,” in Proceedings of

the 6
th

 International Conference on Information

and Knowledge Management, Las Vegas, NV,

pp. 301-308.

[16] Garcia-Molina H. and Salem K., “Main memory

database systems: an overview,” IEEE

Transactions on Knowledge Data Engineering,

Vol 4, Issue 6, pp. 509-516, 1992.

[17] Gehani N., Ramamritham K.,

Shanmugasundaram, J. and Shmueli, O.,

“Accessing extra database information:

concurrency control and correctness,”

Information System, Vol. 23, Issue 7, 439-462,

1996.

[18] Gupta R., Haritsa J.R., Ramamritham K. and

Seshadri S., “Commit processing in distributed
real-time database systems,” in Proceedings of

Real-time Systems Symposium, Washington DC,

IEEE Computer Society, San Francisco,

December 1996.

[19] Gupta R., Haritsa J.R., Ramamritham K. and

Seshadri S., “Commit processing in distributed

real-time database systems,” Technical Report

TR-96-01, Database System Lab, Supercomputer

Education and Research Centre, I.I.Sc.

Bangalore, India, 1996.

[20] Gupta R., Haritsa J.R. and Ramamritham K.,

“More optimism about real-time distributed

commit processing”, Technical Report TR-97-04,

Database System Lab, Supercomputer Education

and Research Centre, I.I. Sc. Bangalore, India,

1997.

[21] Gupta R., Haritsa J.R. and Ramamritham K.,
“Revisiting commit processing in distributed

database systems,” in Proceedings of the ACM

International Conference on Management of Data

(SIGMOD), Tucson, May 1997.

[22] Gupta R. and Haritsa J.R., “Commit processing

in distributed real-time database systems”, in

Proceedings of the National Conference on

Software for Real-Time Systems, Cochin, India,

pp. 195-204, January 1996.

[23] Gupta Ramesh, “Commit processing in

distributed on-line and real-time transaction

processing systems,” M.Sc (Engineering) thesis,

Supercomputer Education and Research Centre,

I.I.Sc. Bangalore, India, 2000.

[24] Haritsa J.R., Carey M.J. and Livny, M., “Data

access scheduling in firm real-time database

systems,” Journal of Real-Time Systems, Vol. 4,

Issue 3, 203-242, 1992.
[25] Haritsa J.R., Carey M.J. and Livny M., “Value-

based scheduling in real-time database systems”,

Technical Report TR-1204, CS Department,

University of Wisconsin, Madison, 1991.

[26] Haritsa, J.R., Livny M. and Carey M.J., “Earliest

deadline scheduling for real-time database

systems,” in Proceedings of 12
th

 IEEE Real-Time

Systems Symposium (RTSS), San Antonio, TX,

pp. 232–242, December 1991.

[27] Haritsa J.R., Ramamritham K. and Gupta, R.,
“Characterization and optimization of commit

processing performance in distributed database

systems,” Technical Report, University of

Massachusetts, March 1998.

[28] Haritsa J.R., Ramamritham K. and Gupta R.,

“Real-time commit processing,” Real-time

Database Systems: Architecture and Techniques,

Kluwer Academic Publishers, Dordrecht, Vol.

593, Kluwer International Series in Engineering

and Computer Science, eds. Tei – Wei Kuo, and

Kam –Yiu Lam, pp. 227–243, 2001.

[29] Haritsa J.R., Ramamritham K. and Gupta R.,

“The PROMPT real-time commit protocol,”

IEEE Transactions on Parallel and Distributed

Systems, Vol. 11, Issue 2, pp. 160–181, 2000.

[30] Hong D.-K., Johnson T. and Chakravarthy S.,

“Real-time transaction scheduling: a cost
conscious approach,” in Proceedings of the

SIGMOD Conference, pp. 197-206, 1993.

[31] Kao B. and Garcia-Molina H., “Subtask deadline

assignment for complex distributed soft real-time

tasks,” Technical Report 93-149, Stanford

University, 1993.

[32] Kim Y.-K. and Son S.H., “Predictability and

consistency in real-time database systems,” in

Son, S.H. (ed.), Advances in Real-Time Systems,

pp. 509-531, Prentice Hall, New York, 1995.

[33] Kim Y.-K., “Predictability and consistency in

real time transaction processing,” PhD thesis,

University of Virginia, May 1995.

[34] Lam K.-Y., Cao J., Pang C.-L. and Son S.H.,

“Resolving conflicts with committing

transactions in distributed real-time databases,”

in Proceedings of the Third IEEE International
Conference on Engineering of Complex

Computer Systems, Como, Italy, pp. 49–58, 8-12

September, 1997.

[35] Lam K.-Y. and Kuo T.-W., “Real-Time Database

Systems: Architecture and Techniques,” Kluwer

Academic, Dordrecht, 2001.

[36] Lam K.-Y., Lee V.C.S., Kao B., and Hung S.L.,

“Priority assignment in distributed real-time

databases using optimistic concurrency control,”

IEE Proceedings on Computer and Digital

Techniques, Vol. 144, No. 5, pp. 324-330, Sept.

1997.

[37] Lam K.-Y., Pang C., Son S.H. and Cao J.,

“Resolving executing-committing conflicts in

distributed real-time database systems,” Journal

of Computer, Vol. 42, No. 8, pp. 674-692, 1999.

[38] Lee I., Heon Y. and Park T., “A new approach
for distributed main memory database systems: a

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

791

ISSN:2229-6093

causal commit protocol,” IEICE Transactions on

Information System, Vol. E87-D, No.1, pp. 196-

204, 2004.

[39] Lee V.C.S., Lam K.-Y. and Kao B., “Priority

scheduling of transactions in distributed real-time

databases,” International Journal of Time-Critical

Computing Systems, Vol. 16, pp. 31-62, 1999.

[40] Liu C.L. and Layland, J.W., “Scheduling

algorithms for multiprogramming in a hard real-
time environment,” Journal of the ACM, Vol. 20,

No. 1, pp. 46–61, Jan. 1973.

[41] Mittal A. and Dandamudi S.P., “Dynamic versus

static locking in real-time parallel database

systems,” in Proceedings of the 18
th
 International

Parallel and Distributed Processing Symposium

(IPDPS’04), Santa Fe, New Mixco, 26–30 April

2004.

[42] NG Pui, “A commit protocol for checkpointing

transactions,” in Proceedings of the 7
th

Symposium on Reliable Distributed Systems,

Columbus, OH, USA, pp. 22–31, 10-12 October

1998.

[43] Ozsoyoglu Gultekin and Snodgrass Richard T.,

“Temporal and Real - Time Databases: A

survey,” IEEE Transactions on Knowledge and

Data Engineering, Vol. 7, No. 4, pp. 513-532,
August 1995.

[44] Pang C.-L. and Lam K.Y., “On using similarity

for resolving conflicts at commit in mixed

distributed real-time databases,” in Proceedings

of the 5
th

 International Conference on Real-Time

Computing Systems and Applications, 27-29

October 1998.

[45] Pang H.H., Carey M.J. and Livny, M.,

“Multiclass query scheduling in real-time

database systems,” IEEE Trans. Knowl. Data

Eng. Vol. 7, No. 4, pp. 533–551, 1995.

[46] Pang H.H, “Query processing in firm real-time

database systems,” PhD thesis, University of

Wisconsin, Madison, 1994.

[47] Qin B. and Liu Y., “High performance

distributed real-time commit protocol,” Journal

of Systems Software, Vol. 68, No. 2, pp. 145-
152, 2003.

[48] Ramakrishnan R. and Gehrke, J., “Database

Management System,” McGraw Hill, New York,

2003.

[49] Ramakrishnan R. and Ullaman J.D., “A survey of

research on deductive database systems,” www-

db. stanford.edu/~ullman/dscb/ch1.pdf.

[50] Ramamritham K. and Chrysanthis P.K. “A

taxonomy of correctness criteria in database

applications,” Journal of Very Large Data Bases,

Vol. 5, pp. 85–97, 1996.

[51] Ramamritham K. and Sen, R., “DELite: database

support for embedded lightweight devices,” in

EMSOFT, Pisa, Italy, pp. 3–4, September 27–29,

2004.

[52] Ramsay S., Nummenmaa J., Thanisch P., Pooley

R.J. and Gilmore S.T., “Interactive simulation of

distributed transaction processing commit
protocols,” in Luker, P. (ed.) Proceedings of

Third Conference of the United Kingdom

Simulation Society (UKSIM’97), Department of

Computer Science, University of Edinburgh, pp.

112-127, 1997.

[53] Soparkar N., Levy E., Korth H.F. and

Silberschatz A., “Adaptive commitment for real-

time distributed transaction,” Technical Report

TR-92-15, 1992, Dept. of Computer Science,

University of Texas, Austin and also in the
Proceedings of the 3rd International Conference

on Information and Knowledge Management,

Gaithersburg, MD, USA, pp. 187-194, 1994.

[54] Ulusoy, O., “A study of two transaction

processing architectures for distributed real-time

database systems,” Journal of Systems Software,

Vol. 31, No. 2, pp. 97-108, 1995.

[55] W. Effelsberg, T. Haerder, “Principles of

database buffer management,” ACM transactions

on Database Systems, Vol. 9, No. 4, pp. 560-595,

Dec. 1984.

[56] A. V. Zharkov. Distributed Real-Time Database

Management System Prototype for Transaction

Handling Methods Simulation. In Proceedings of

scientific and technical conference "Microsoft

Technologies in Programming Theory and

Practice". N. Novgorod, 2007.
[57] Susan B. Davidson and Aaron Watters, “Partial

Computation in Real-Time Database Systems”,

University of Pennsylvania, 1988.

[58] Hong-Ren Chen and Y.H. Chin, “Efficient

Priority Assignment Policies for Distributed real

time database systems”, Proceedings of the 2007

WSEAS International Conference on Computer

Engineering and Applications, Gold Coast,

Australia, January 17-19, 2007.

[59] Minutesmansoftware,GPSS, world North

Carolina ,USA,4E.[GPSS Book] (Student Version

4.3.5), 2001. http://www.minutmansoftware.com

Shetan Ram Choudhary et al, Int.J.Computer Technology & Applications,Vol 4 (5),785-792

IJCTA | Sept-Oct 2013
Available online@www.ijcta.com

792

ISSN:2229-6093

http://repository.upenn.edu/db_research/15
http://repository.upenn.edu/db_research/15
http://repository.upenn.edu/db_research/15
http://www.minutmansoftware.com/

