
Measurement of real time information using GPU

Pooja Sharma

M. Tech Scholar, Department of Electronics and Communication

AFSET, Faridabad, Haryana, India

E-mail:

poojachaturvedi1985@gmail.com

Rajni Billa

M. Tech Scholar, Department of Electronics and Communication

AFSET, Faridabad, Haryana, India

E-mail:

rajnibilla@gmail.com

Javed Ashraf

Asst. Prof., Department of Electronics and Communication

AFSET, Faridabad, Haryana, India

E-mail:

jashraf.jmi@gmail.com

Abstract

Parallel programming is about performance, for

otherwise we’d write a sequential program. A problem

is where to find truly parallel hardware that can be

dedicated to the task, One answer is graphical

processing units (GPUs), which can have hundreds of

cores and are found in millions of desktop and laptop

computers. GPU computing with Open CL is a new

approach to computing where hundreds of on-chip

processor cores simultaneously communicate and

cooperate to solve complex computing problems,

transforming the GPU into a massively parallel

processor. The NVIDIA C-compiler for

the GPU provides a complete development environment

that gives developers the tools they need to solve new

problems in computation-intensive applications such as

product design, data analysis, technical computing,

and game physics. In this paper we are going to

analyze the speed of GPU in comparison to CPU.

.

1. Introduction
Microprocessors based on a single central

processing unit (CPU), such as those in the Intel_

Pentium_ family and the AMD_Opteron_family, drove

rapid performance increases and cost reductions in

computer applications for more than two decades.

These microprocessors brought giga (billion) floating-

point operations per second (GFLOPS) to the desktop

and hundreds of GFLOPS to cluster servers. This

relentless drive of performance improvement has

allowed application software to provide more

functionality, have better user interfaces, and generate

more useful results [1].

Traditionally, the vast majority of software

applications are written as sequential programs, as

described by von Neumann [2] in his seminal report.

The execution of these programs can be understood by

a human sequentially stepping through the code. A

sequential program will only run on one of the

processor cores, which will not become significantly

faster than those in use today. Without performance

improvement, application developers will no longer be

able to introduce new features and capabilities into

their software as new microprocessors are introduced,

thus reducing the growth opportunities of the entire

computer industry. Rather, the applications software

that will continue to enjoy performance improvement

with each new generation of microprocessors will be

parallel programs, in which multiple threads of

execution cooperate to complete the work faster. This

new, dramatically escalated incentive for parallel

program development has been referred to as the

concurrency revolution [3]. The practice of parallel

programming is by no means new. The high-

performance computing community has been

developing parallel programs for decades. These

Pooja Sharma et al ,Int.J.Computer Technology & Applications,Vol 3 (4), 1471-1475

IJCTA | July-August 2012
Available online@www.ijcta.com

1471

ISSN:2229-6093

mailto:poojachaturvedi1985@gmail.com
mailto:rajnibilla@gmail.com
mailto:jashraf.jmi@gmail.com

programs run on large-scale, expensive computers.

Only a few elite applications can justify the use of these

expensive computers, thus limiting the practice of

parallel programming to a small number of application

developers. Now that all new microprocessors are

parallel computers, the number of applications that

must be developed as parallel programs has increased

dramatically.

2. GPUs as Parallel Computers
Since 2003, the semiconductor industry has settled on

two main trajectories for designing microprocessor [4].

The multicore trajectory seeks to maintain the

execution speed of sequential programs while moving

into multiple cores. The multicores began as two-core

processors, with the number of cores approximately

doubling with each semiconductor process generation.

A current exemplar is the recent Intel_ Core_i7

microprocessor, which has four processor cores, each

of which is an out-of-order, multiple instruction issue

processor implementing the full x86 instruction set; the

microprocessor supports hyper threading with two

hardware threads and is designed to maximize the

execution speed of sequential programs. In contrast, the

many-core trajectory focuses more on the execution

throughput of parallel applications. The many-cores

began as a large number of much smaller cores, and,

once again, the number of cores doubles with each

generation.

A current exemplar is the NVIDIA_ GeForce_ GTX

280 graphics processing unit (GPU) with 240 cores,

Figure 1. Enlarging performance gap between
GPUs and CPUs

each of which is a heavily multithreaded, in-order,

single-instruction issue processor that shares its control

and instruction cache with seven other cores. Many-

core processors, especially the GPUs, have led the race

of floating-point performance since 2003. This

phenomenon is illustrated in Figure 1. While the

performance improvement of general-purpose

microprocessors has slowed significantly, the GPUs

have continued to improve relentlessly. As of 2009, the

ratio between many-core GPUs and multicore CPUs for

peak floating-point calculation throughput is about 10

to 1. These are not necessarily achievable application

speeds but are merely the raw speed that the execution

resources can potentially support in these chips: 1

teraflops (1000 gigaflops) versus 100 gigaflops in

2009.

2.1. Differences between CPU and GPU

In Comparison to CPUs, modern GPUs

contain hundreds of arithmetic units, and their

power can be used to accelerate a lot of

compute-intensive applications. The existing

generation of GPU has a flexible architecture,

whereas the architecture of a CPU is bound.

Most of the transistors in CPU are dedicated

for data caching and controlling, in contrary to

GPU where most of transistor power is

dedicated to computing.

Figure 2. CPUs and GPUs have fundamentally
different design philosophies

3. Goals of Parallel Computing
The first goal is to solve a given problem in less time.

An investment firm, for example, may need to run a

financial portfolio sce- nari risk analysis package on

all of its portfolios during after-trading hours. Such

Pooja Sharma et al ,Int.J.Computer Technology & Applications,Vol 3 (4), 1471-1475

IJCTA | July-August 2012
Available online@www.ijcta.com

1472

ISSN:2229-6093

an analysis may require 200 hours on a sequential

computer; however, the portfolio management process

may require that analysis be completed in 4 hours in

order to make timely decisions based on the

information. Using parallel computing may speed up

the analysis and allow it to complete within the

required time window. The second goal of using

parallel computing is to solve bigger problems within a

given amount of time. The third goal of using parallel

computing is to achieve better solutions for a given

problem and a given amount of time.

3.1. Task Decomposition
Task decomposition reduces an algorithm to

functionally independent parts. Tasks may have

dependencies on other tasks e.g. If the input of task B is

dependent on the output of task A, then task B is

dependent on task A.Tasks that don’t have

dependencies (or whose dependencies are completed)

can be executed at any time to achieve parallelism.

Task dependency graphs are used to describe the

relationship between tasks.

3.2. Data Decomposition
For most scientific and engineering applications, data is

decomposed based on the output data. Each output

pixel of an image convolution is obtained by applying a

filter to a region of input pixels. Each output element of

a matrix multiplication is obtained by multiplying a

row by a column of the input matrices. Input data

decomposition is similar, e.g. a histogram is created by

placing each input datum into one of a fixed number of

bins.

4. Simulation Environment
To compare the speed of CPU and GPU, entropy of

various signals has been calculated. AMD ATI Fire Pro

V8800 Graphic Card has been used for Graphic

Processing. The Simulation for the speed

measurements has been done using Open CL language

in Visual Studio using AMD Accelerated Parallel

Processing (APP) SDK V 2.4.

4.1. Open CL
Traditional C and C++ only target traditional CPUs.

The same holds true for Cray’s proprietary Chapel

language and the Cray Assembly Language (CAL).

Nvidia’s CUDA (Compute Unified Device

Architecture) can be used to program Nvidia’s GPUs,

but not CPUs. The answer is OpenCL (Open

Computing Language). OpenCL routines[5] can be

executed on GPUs and CPUs from major

manufacturers like AMD, Nvidia, and Intel, and will

even run on Sony’s PlayStation 3. OpenCL is

nonproprietary—it’s based on a public standard, and

we can freely download all the development tools we

need. When we code routines in OpenCL, we don’t

have to worry about which company designed the

processor or how many cores it contains. Our code will

compile and execute on AMD’s latest Fusion

processors, Intel’s Core processors, Nvidia’s Fermi

processors, and IBM’s Cell Broadband Engine.

OpenCL™ (Open Computing Language)[6] is the first

truly open and royalty-free programming standard for

general-purpose computations on heterogeneous

systems. OpenCL™ allows programmers to preserve

their expensive source code investment and easily

target multi-core CPUs, GPUs, and the new APUs.

Figure 3. Open Cl Programming model

4.2. AMD Accelerated Parallel Processing

(APP) SDK V 2.4
AMD APP technology [7] is a set of advanced

hardware and software technologies that enable AMD

graphics processing cores (GPU), working in concert

with the system’s x86 cores (CPU), to accelerate many

applications beyond just graphics. This enables better

balanced platforms capable of running demanding

computing tasks faster than ever, and sets software

developers on the path to optimize for AMD

Accelerated Processing Units (APUs).

APP technology is a set of advanced hardware &

software technologies enabling AMD GPU, working in

concert with the system’s x86 cores (CPU). It

accelerate many applications beyond just graphics. The

APP SDK is a complete development platform created

by AMD which allow us to quickly and easily develop

applications accelerated by AMD APP technology. The

SDK allows us to develop our applications in a high-

level language, OpenCL™ (Open Computing

Language).

Pooja Sharma et al ,Int.J.Computer Technology & Applications,Vol 3 (4), 1471-1475

IJCTA | July-August 2012
Available online@www.ijcta.com

1473

ISSN:2229-6093

http://www.amd.com/stream

5. Results
Figure 4 and 5 shows the input information for CPU

and GPU respectively. Figure 6 shows the speed up of

GPU over CPU over varying no. of users. It is observed

that as the no. of users increases the GPU speeds up or

in other words that efficiency of GPU increases.

So for larger applications where CPU becomes less

promising, GPU becomes more efficient. GPU is

efficient for large set of input processing and

programmable. It is optimized for throughput. Explicit

management of on- chip memory can be done.

Figure 4. Characteristics of CPU

Figure 5. Characteristics of GPU

Pooja Sharma et al ,Int.J.Computer Technology & Applications,Vol 3 (4), 1471-1475

IJCTA | July-August 2012
Available online@www.ijcta.com

1474

ISSN:2229-6093

Figure 6. Processing speed up of GPU with increasing no. of sources

6. Conclusions

GPU is efficient over CPU when large number of

calculations is to be handled. As the number of sources

to be handled parallel increase, the efficiency of GPU is

clearer over CPU. The GPU is the only parallel

processor that has seen widespread success in many

commercial applications. It allows us to experiment

with 100s of cores today. It can be used to replace

conventional CPUs if its shortcomings like memory

management, debugging problem and inefficient

pointer chasing are taken care of.

References

[1] Mattson, T. G., Sanders, B. A., & Massingill, B. L.,

“Patterns of parallel programming” Upper Saddle

River, NJ: Addison-Wesley, 2004.

[2] Von Neumann J., “First draft of a report on the

EDVAC”, Contract No. W-670-ORD-4926, U.S. Army

Ordnance Department and University of Penn- sylvania

(reproduced in Goldstine H. H. (Ed.), The computer:

From Pascal to von Neumann. Princeton, NJ: Princeton

University Press), 1972.

[3] Sutter, H., & Larus, J., “Software and the concurrency

revolution”, ACM Queue, 3(7), 2005, pp. 54–62.

[4] Hwu, W. W., Keutzer, K., & Mattson, T., “The

concurrency challenge”, IEEE Design and Test of

Computers, July/August, 2008, pp. 312–320, 2008.

[5] Matthew Scarpino, “ Open CL in action how to

accelerate graphics and computations” , Foundation of

Open CL programming, 2011, PP. 1-7.

[6] Benedict R. Gaster, "OpenCL and the AMD APP

SDK", AMD Developer Central, 2011.

 Available online:

http://developer.amd.com/documentation/articles/pages/

OpenCL-and-the-AMD-APP-SDK.aspx.

[7] Aaftab Munshi, “The OpenCL Specification”, Khronos

OpenCL Working Group, Version: 1.0, Document

Revision: 29, 2008. Available Online:

http://www.khronos.org/registry/cl/specs/opencl-

1.0.29.pdf.

Pooja Sharma et al ,Int.J.Computer Technology & Applications,Vol 3 (4), 1471-1475

IJCTA | July-August 2012
Available online@www.ijcta.com

1475

ISSN:2229-6093

http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-AMD-APP-SDK.aspx
http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-AMD-APP-SDK.aspx

