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Abstract 

To study the effect of magnetic field on 

pulsatile flow of blood in a porous 

channel a numerical model has been 

developed. An approximate solution is 

presented to the problem of pulsatile 

flow of blood in a porous channel in 

presence of transverse magnetic field. 

The blood is assumed to be an 

incompressible non Newtonian fluid. To 

reduce the equation of motion to an 

ordinary differential equation, a 

dimensionless variable is used. 

Numerical results were obtained for 

different values of the magnetic 

parameter, frequency parameter and 

Reynolds number. It is observed that 

when the Hartmann number increases, 

the fluid velocity as well as magnitude as 

well as magnitude of mass flux decrease. 
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1. Introduction 
  

Study of blood flows in the 
vessels of human circulatory system has 

become a matter of scientific research 

for quite long period. Mathematical  

 

 

 

treatment of the problem has been 

subjected to constant changes and 

modifications to account for new 

evidence uncovered through improved 

experimental measurements. The most 

consistent treatment of the problem was 

given by Woomersley[121]. Later his 

analysis was extended by others to 

include the effect of initial stresses, per 

vascular tethering and orthotropic and 

visco-elastic behaviour of the arterial 

wall. A detailed comparison of this 

group if articles was given by Cox[30]. 

Woomersley’s theory and its extensions 

are based on the linearised Navier-

Stockes equations and small elastic 

deformations. Although they are shown 

to be satisfactory in describing certain 

aspects of the flow in small arteries, they 

fail to give an adequate representation of 

the flow field especially in large 

arteries(Ling [61]). Due to the large 

dynamic storage effect of these arteries, 

the non-linear convective acceleration 

terms of the Navier-Stockes equations 

are no longer negligible. Moreover the 

walls of arteries undergo large 

deformations. As a result of this, both 

the geometric and elastic non-linear 

effects come into play. To take these 

factors into account an approximate 
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numerical method has been developed 

by Ling and Atbek [62]. Pulse 

propagation phenomena in arteries are 

caused by the interaction of blood 

includes equations which govern the 

motion the motion of blood and the 

motion of the arterial wall, and also the 

relations (boundary conditions) which 

connect the two motions with each other. 

This set of equations and conditions 

make a formidable boundary value 

problem. 

 Streeter et. Al [105] studied 

pulsatile pressure and flow through 

distensible vessels. The behaviour of 

blood flow through narrow tubes has 

been studied experimentally by 

Bugliarello and Sevilla [14]. Lou [63] 

investigated the problem of blood flow 

in large elastic arteries in the mammalian 

circulatory system. The purpose of his 

investigation is to develop a theory for 

the problem of pulsatile blood flow in 

larger vessels such as the thoratic aorta. 

The theoretical studies of blood flow in 

arteriolar and venular bifurcations are 

studied by Popel et. al. [78]. Srivastava 

and Sexena [106] have investigated the 

effects of sedimentation of small red 

blood cell aggregates on blood flow in 

narrow horizontal tubes. 

 The application of Magneto 

hydrodynamics in physiological flow is 

of growing interest. The flow of blood 

can be controlled by applying 

appropriate magnetic field. Many 

researchers have shown that blood is an 

electrically conducting fluid (Kollin[58], 

Korchevskii and Marochnlk [59], 

Vardanyan [115]). The Lorentz’s force 

will act on the constituent particles of 

blood and this force will oppose the 

motion of blood and thus reduces its 

velocity. This decelerated blood flow 

may help in the treatment of certain 

cardiovascular diseases and in the 

diseases with accelerated blood 

circulation such as hypertension, 

hemorrhages etc. So, it is very essential 

to study the blood flow in presence of 

magnetic field. Many works have been 

done in this field by various 

investigators.   

 The pulsatile flow of blood with 

micro-organisms represented by two 

fluid model through vessels of small 

exponential divergence under the effect 

of magnetic filed has been studied by 

Rathod and Gayatri [81]. A similar 

problem on blood flow through a 

uniform pipe with sector of a circle as 

cross section in presence of transverse 

magnetic field has been studied by 

Rathod and Parveen [83]. Pulsatile blood 

flow through closed rectangular channel 

with micro-organisms has also been 

studied by Rathod and Mohesh [84]. 

Exponential representation of blood flow 

governing equation under external 

running pulse magnitude field has been 

studied by Jain, et. Al. [51]. Flow in a 

porous channel is important in 

transpiration cooling and gaseous 

diffusion process (Longwell [64]). 

Pulsatile flow in a porous channel, in 

particular is also important in the 

dialysis of blood in artificial kidney. 

Pulsatile flow in a porous channel has 

been investigated by Wang [116] 

without magnetic field. Pulsatile flow in 

a porous channel considering blood as 

Newtonian fluid investigated by B.C. 

Bhuyan and G.C. Hazarika [8] and 

considering as Non Newtonian fluid by 

Sut D.K. & Hazarika G.C.[107]. 

Actually due to simplification blood can 

be assumed as Newtonian fluid. But 

observing the behaviour of the blood 

anyone can speak blood is a Non 

Newtonian fluid. Here an attempt has 

been made in this analysis to study the 

pulsatile flow of blood in a porous 
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channel in presence of transverse 

magnetic field. Here blood is assumed to 

be an incompressible Non-Newtonian 

fluid. 

2. Mathematical Formulation of the 

Problem 

 

The real blood circulation system 

cannot of three-dimensional elastic tubes 

of varying cross-section and angle of 

bifurcation. For the sake of mathematical 

convenience, we discuss the magnetic 

effect on unsteady flow of blood through 

a two dimensional, non-conducting, 

parallel plate and equally branched 

channel such that one stream of blood 

from trunks is branched into two 

different streams. 

For this analysis,, blood has been 

considered to be Non Newtonian, 

incompressible, homogeneous and 

viscous fluid. The Fahreus Lindquist 

effect is significant and when the vessel 

diameter is less than 1 mm unlike the 

case here. As such the Reynolds number 

does not vary much in the region of any 

one bifurcation. Thus the viscosity of the 

blood is treated as constant.  

The static magnetic field 0B  is 

applied in a direction perpendicular to 

the flow of blood. We make the 

following assumptions for 

electromagnetic interactions: 

(1) The induced magnetic field and 

the electromagnetic field produced by 

the motion  

             of blood are negligible.  

(2) No external electric field is 

applied. 

With the above assumptions, we 

consider a fluid driven by steady laminar 

flow of blood through an axially 

symmetric stenosed artery in presence of 

magnetic field. The axial coordinate and 

velocity are z


 and u


 respectively.  
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between two porous plates at y=0 

and y=h. Here A and B are known 

constants and  is the frequency. On one 
plate some fluid is injected with velocity 

 and it is sucked off at the opposite 

plate with same velocity. Due to 

continuity, the velocity component in the 

y-direction will be identically equal to  
everywhere. Bo is the applied magnetic 

field in y direction.  
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We separate the above into a steady part denoted by tidle ( u~ ) and unsteady part 

denoted by a bar ( u ). 
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The boundary conditions are that both u~  and u  be zero at y=0 and y=h. 
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The unsteady equation (5) can be reduced to an ordinary differential equation by 
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On putting the values of fff  ,,  in (7), equating real and imaginary parts and after a 

few steps of calculation we get the following ordinary differential equations 
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Boundary conditions are 

0,01  uu   at 0  and 1 
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Equations (8) and (9) are solved numerically using shooting method for 
21

,uu  and 

consequently the real part of (1) can be computed. 

 

4. Results and Discussions 

 The problem under investigation 

is dominated mainly by R the cross flow 

Reynolds number, R1, R2, M1 the 

frequency parameter and M the 

Hartmann number. Our interest is to 

study investigate the roll of magnetic 

parameter M on the velocity field.  

 When the frequency parameter 

M1 is small (i.e., M1=1 and M=0, R=0, 

R1=0.1, R2=0.1) the velocity profile is 

almost parabolic (Fig. 1). For large value 

of the frequency M1 (i.e., M1=10 and 

R=0, R1=0.1, R2=0.1), the maxima of the 

velocity is shifted to the boundary layer 

near the wall for M=0, 5 at R=0 (Fig. 2 

& 3) and velocity profiles are almost 

equally distributed over the boundary 

layer region when wt changes from 0
0
 to 

360
0
. 

 Fig. 8 show the velocity profiles 

with effect of magnetic field for various 

values of M1, R, R1, R2 and wt. It is seen 

that the fluid velocity, decreases as the 

magnetic parameter M increases. The 

maxima of the velocity is shifted to the 

boundary layer in the region from  =.5 

to 1 (Fig. 4 & 5) for all values of M 

when R=0 and R=10 at M1=1. 

 From Fig. 5, it is observed that 

the velocity profiles are symmetrically  

 

 

 

distributed over almost from the half of 

the boundary layer for M1=1, R=0, 

R1=0.1, R2=0.1 and wt=45
0
. Here it is 

also observed that the fluid velocity 

decreases with the increase of magnetic 

parameter M. 

 Fig. 9 shows that the fluid 

velocity decreases as the cross flow 

Reynolds number increases at M=.5, 

M1=1, R1=0.1, R2=0.1 and wt=45
0
. 

 For large value of M1 and R (i.e., 

M1=10, R=10), the velocity decreases at 

the beginning and then decreases as the 

Hartmann number increases at wt=450. 

(Fig. 8) When M1=1 and R=10 at M=0, 

the velocity profiles are shifted to near 

the boundary layer in the region from 

 =.5 to 1 (Fig. 10) 

 Here it is seen that the fluid 

velocity is greatly affected due to the 

presence of the magnetic field. When the 

magnetic parameter, the Hartmann 

number increase, the fluid velocity 

decreases. Also the magnitude of mass 

flux is dominated by the magnetic field. 

The mathematical expressions may help 

medical practitioners to control the 

blood flow of a patient whose blood 

pressure is very high by applying certain 

magnetic field. 
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Fig. 2. Instaneous velocity profiles for different values of wt at M1=10, R=0, R1=0.10,  
R2=0.10, M=0 
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Fig. 1. Instantaneous velocity profiles for different values of wt at M=0, M1=1.0, R=0, R=0.10,  
R2=0.10 
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Fig. 3 Comparison of velocity profile for different values of wt at M=5, M1=10, R=0,  
R1=0.10, R2=0.10 
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Fig. 5. Comparison of velocity profile for different Hartmann number at M1=1, R=0,  
R1=0.10, R2=0.10 
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Fig. 4 Comparison of velocity profile for different Hartmann number at M1=1, R=0,  
R1=0.10, R2=0.10 

-0.14 

-0.12 

-0.1 

-0.08 

-0.06 

-0.04 

-0.02 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Eta 

u 

M=0 
M=1 
M=2 
M=3 
M=4 
M=5 

Mitali Sarma et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 2001-2014

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

2011

ISSN:2229-6093



 

 

 

 

Fig. 7. Comparison of velocity profile for different Hartmann number at M1=1, R=0,  
R1=0.10, R2=0.10 
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Fig. 6. Comparison of velocity profiles for different Hartmann number at M1=1, R=10,  
R1=0.10, R2=0.10 
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Fig.9. Comparison of velocity profile for different Reynolds numbers at M=0.5, M1=1,  
R1=0.10, R2=0.10 
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Fig. 8. Comparison of velocity profile for different Hartmann numbers at M1=10, R=10,  
R1=0.10, R2=0.10 
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Fig. 10. Comparison of velocity profiles for different values of wt at R=10, R1=0.10,  
R2=0.10, M=0, M1=1  
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