
A FAST STRING MATCHING ALGORITHM

1H N Verma, 2Ravendra Singh

1Department of CSE, Sachdeva Institute of Technology, Mathura, India, hnverma@rediffmail.com
2M.Tech(CSE-0104cs09mt16) RKDF IST Bhopal, India, ravendra85@gmail.com

ABSTRACT

The pattern matching is a well known and important task of the pattern discovery process in today’s world
for finding the nucleotide or amino acid sequence patterns in protein sequence databases. Although pattern
matching is commonly used in computer science, its applications cover a wide range, including in editors,
information retrieval. In this paper we propose a new pattern matching algorithm that has an improved
performance compare to the well known algorithms in the literature so far. Our proposed algorithm has
been evolved after the comparatively study of the well known algorithms like Boyer Moore , Horspool and
Raita. When we are talking about the overall performance of the proposed algorithm it has been improved
using the shift provided by the Horspool search bad-character and by defining a fixed order of comparison.
The proposed algorithm has been compared with other well known algorithm.

1. INTRODUCTION

Pattern matching problem has attract a lot of
interest throughout the history of computer
science, pattern matching has been used in
various computer application for several decades
these algorithm are applied in most of the
Operating Systems, Editors, Search Engines on
the internet, retrieval of information and
searching Protein or DNA sequence pattern in
genome and protein sequence databases.

Theoretical studies of different algorithm suggest
various possible means by which those
algorithms are likely to perform but in some
cases they fail to predict the actual performance,
here we demonstrate that better methods can be
devised from theoretical analysis by extensive
experimentation and modification of the existing
algorithm.

Pattern matching can be defined as the text is an
array T[1…n] of length n and that the pattern is
an array p[1…m] of length m<=n. We further
assume that the element of P and T are character
drawn from a finite alphabet ∑. For example, we
may have ∑ = {0, 1}, ∑= {a, b ,……z} etc. The
character arrays P and T are often called strings
of characters. All pattern matching algorithm
scan the text with the help of a window which is
equal to the length of the pattern.

The first process is to align the left ends of the
pattern with the text window and then compared
the corresponding characters of the window and
the pattern. This process is known as an attempt.

After a whole match or a mismatch of the
pattern, the text window is shifted in the forward
direction until the window is positioned at the (n-
m+1) position of the text. This approach is
similar to the brute-force algorithm. In brute-
force algorithm, window is shifted to the right by
one character after an attempt.

For a large character of text the brute-force
algorithm is not efficient to perform this task.
We have several well known algorithms in the
literature so far and these have their own
advantages and limitation based on the method
they use to calculate the shift value(the number
of characters the window should move forward).
The algorithms vary in the order in which
character comparisons are made and the distance
by which the window is shifted on the text after
each attempt.

The efficiency of the algorithm lies in two
phases:
1. The preprocessing phases
2. The searching phase

The preprocessing phase collects the full
information about the pattern and uses this
information in searching phase. In searching
phase, pattern is compared with the sliding
window from right to left or left to right until a
match or mismatched occur. The efficiency of
pattern-matching algorithm is calculated on the
basis of the search phase. The efficiency of the
search is achieved by changing the order in
which the characters are compared at each

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1877

ISSN:2229-6093

mailto:ravendra85@gmail.com

attempt and moving the window on text, hence
calculating the shift value.

2. DESCRIPTION OF WELL KNOWN
ALGORITHM

Naïve string matching algorithm: The naïve
algorithm finds the entire valid shifts by
comparing each character of the pattern to text
character, if the whole pattern is match to the
text than it has a valid shift otherwise in case of
mismatch it shift the pattern by one character and
again compare the each character of the pattern
to the text in this manner it finds entire valid
shift of the pattern in the text.

Horspool Algorithm (Horspool): The
Horspool[2] algorithm that has the shift value of
the right most character of the sliding window.
In pre processing phase the shift value are
computed for all characters. In an attempt, we
compare the pattern from the right to the left
until the pattern match or mismatch occurs. The
right most character in the window is used as the
index to obtain the shift value. In case of
mismatch i.e. character does not occur in the
pattern, the window is shifted by the length of
the pattern. Otherwise the window is shifted
according to the right most character in the
pattern.

Raita Algorithm: In Raita[3] algorithm, first it
compare the last character of the pattern with the
corresponding(i.e. nth character of the text) text
character of the window, if they match, than it
compare with the first character of the pattern
with the left most text character of the window,
if it again match then it compare the middle
character of the pattern with the corresponding
text character of the sliding window. And finally,
it they match than again compare the characters
starting from the second character to second last
character of the pattern. In this case middle
character of the pattern compare again while
comparing from second character to second last
character of the pattern.

Boyer-Moore algorithm (BM): The Boyer
Moore[11] algorithm uses two different tables,
one is Boyer-Moore Bad Character (bmBc) and
another is Boyer-Moore Good Suffix (bmGs), a
bad character table stores the shift value that are
obtained on the occurrence of the character in the
pattern. Another good suffix table contains the
matching shift values for each character of the
pattern.

3. PROPOSED ALGORITHM

This proposed algorithm is evolved after the
comparatively study of the well know algorithms
like Horspool and Raita. This new algorithm
compares the right most character of the pattern
to the text window, if it is matched then the left
most character of the pattern and the sliding
window is compared, if it also matched then the
middle character of the pattern is compared to
the corresponding position of the text window, if
it is matched than it again compare the characters
staring from the second last character (m-1) of
the pattern to second character of the pattern to
the text window[7]. In case of match or
mismatch the skip of the window is achieved by
the Horspool Bad character (Hbc) shift value for
the character that is placed next to the window.
This new algorithm first compare the last
character of the pattern and second the first
character of the pattern with corresponding
characters of the text window, because by doing
this the probability of the finding the pattern in
the text window is increased over the
comparison of the one by one character of the
pattern in the text window[12]. This new
algorithm postpones the comparison of the
neighboring characters. Hence the probability of
an exact match increases between the pattern and
the text window[9].

3.1. PREPROCESSING PHASE

In preprocessing phase, the Horspool Bad
character (Hbc) function is generated for all the
characters in the alphabet set. A Horspool bad
character table is create as the value of Horspool
Bad character (Hbc) for a particular alphabet is
defined as the right most position of that
character in the pattern-1. If the character does
not occur in the pattern , then the value is equal
to m (length of the pattern). The skip values for
each character are stored in the Horspool Bad
Character (Hbc) table and these skip values are
used in the searching phase. In case of mismatch,
the skip value of the right most character that is
stored in the Horspool Bad Character (Hbc) table
is used to shift the pattern in an attempt. This
process is repeated until the match or mismatch
of the pattern occur in the text. When the
alphabet set is large then the character occurring
probability in the pattern is less and this provide
a maximum skip of the window. This proposed
algorithm has Horspool Bad Character (Hbc)
over the Boyer-Moore Bad Character (BmBc)
for the following reasons:

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1878

ISSN:2229-6093

1. When the alphabet size is large and the pattern
length is too small, then Boyer-Moore’s bad-
character technique is not affected.

2. Boyer-Moore algorithm has two different
tables to skip the window, one is Boyer-Moore’s
Bad Character and another is Boyer-Moore’s
good suffix to calculate the skip of the window.
While Horspool’s Bad Character is always have
the values to be ≥1 and so Horspool’s algorithm
works independently.

3.2 SEARCHING PHASE

The proposed algorithm search the pattern in the
window, first it match the right most character of
the pattern to the text window, in case of a match
the left most character of the pattern to the text
window is compared, if these match, then the
middle character of the pattern to the text
window is compared, otherwise in case of
mismatch the pattern is shifted by the shift value
calculated by the Horspool Bad Character (Hbc)
value of the right most character of the pattern.

In case of matched middle character of the
pattern, it compare the second last character of
the pattern (m-1) to second character of the
pattern to the text window. Middle character of
the pattern is compared twice to the
corresponding character of text window. This
procedure is repeated until the shift does not
reach to n-m+1.

3.3. C LANGUAGE IMPLEMENTATION

//This function computes the Horspool Bad
Character, Hbc, table and store it in an array L.
//Input is Pattern and the number of elements in
Σ as ALPHABET.
//m is the length of Pattern.

preprocessing()
{

int i;

for(i=0; i<ALPHABETS; i++)
L[i] = m;

for(i=1; i<=m-1; i++)
L[Pattern[i]] = m-i;

}

//The function for matching.
//Input is Pattern and Text string.
//flag is a variable to check whether pattern
occurs in the text or not at all.
//The valid shift values are from 0 to n-m.
/*First the last character of Pattern and Text
Window is compared, in case of a match, the
first character of Pattern and the Text Window is
compared, in case of these two matches, the
mid(if m is even, then lower median) character
of the Pattern and the Text character will be
compared. If it also matches then we compare
second-last to second character of Pattern with
corresponding text window. If all characters
matches then we get a message that Pattern has
been occurred. In case of mismatch at anytime
we compute the shift value as shift +
L[Text[shift+m]].*/

matching()
{

int flag=0;
int shift = 0;

while(shift <= n-m)
{
if(Pattern[m]== Text[shift+m])
{
if(Pattern[1]==Text[shift+1])
{
if(Pattern[m/2] == Text[shift + m/2])
{
i = m-1;
k = 0;
while(i>=2&&Pattern[i]==Text[shift+i])
{

k = k + 1;
i = i - 1;

}
if(k==m-2)
{
printf("\n\n\t Pattern occurs with shift %d", shift);
flag=1;
}
}
}
}
shift = shift + L[Text[shift+m]];
}

if(flag == 0)
printf("\n\n\t Pattern does not found");
else
printf("\n\n\t No more pattern exists");

}

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1879

ISSN:2229-6093

4. WORKING EXAMPLE

To test the proposed algorithm, the following
sequence has been considered for the test run

Text
T=BBARBERBABCDEEAACDEEBBRBSRB
AREERBERBERBARBER

Pattern P = BARBER

Length of pattern m=6 and,

Length of text n=44

4.1. PREPROCESSING PHASE

The Horspool Bad Character table is obtained
with a size ∑[10] that store the character and its
corresponding skip value. The set of alphabets
ALPHABET (∑) we have taken, includes all
capital and small English letters, all digits and
some special characters and punctuation marks.

∑ A B C D E F
..
.

R S
...

Hbc 4 2 6 6 1 6
..
.

3 6
...

4.2. SEARCHING PHASE

In first attempt:
The shift is 0.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

1
BARBER

Here the comparison between the last character
of the pattern and the window is done, and a
mismatch occur so shift value is needed to shift
the pattern, the shift value is calculated from the
Horspool Bad Character table Hbc[E]. Hence the
window is moved by the Horspool Bad
Character shift value of Hbc[E] =1.The new shift
value is shift + 1 i.e. 0 + 1 = 1.

In second attempt:
The shift is 1.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER
 2 7 35 4 1
 BARBER

First, last R of text window is compared with last
R of pattern, then the first character B of text
window is compared with B of pattern, then
middle R of pattern is compared and matched
with 4th character of text. Then finally pattern’s
second last to second characters are compared
and matched with 6th character to 3rd character
of text window respectively.

Pattern occurs with shift 1.
New shift value is calculated as shift + Hbc[R]
i.e. 1 + 3 = 4

Total number of attempt is 2;
Total number of character comparison: 7.

In third attempt:
The shift is 4.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 1
 BARBER

The pattern’s last character is compared with
tenth character of Text. The mismatched
character is B, The new shift value is calculated
as shift + Hbc[B] i.e.4 + 2 = 6.

In fourth attempt:
The shift is 6.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 1
 BARBER

Now pattern’s last character is compared with
Text’s 12th character. A mismatch occurs. The
mismatched character is D. The new shift value
is shift + Hbc[D] i.e. 6 + 6 = 12.

In fifth attempt:
The shift value is 12.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 1
 BARBER

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1880

ISSN:2229-6093

In this attempt, the comparison of the last
character of the pattern and the text window is
carried out and a mismatch occur, the window is
shifted based on the value shift + Hbc[D].The
new shift value is 12 + 6 = 18.

In sixth attempt:
The shift value is 18.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 1
 BARBER

Here Pattern’s last character is compared with
Text’s twenty-fourth character and a mismatch
occurs. So the window is shifted based on the
shift value shift + Hbc[B] i.e. 18 + 2 = 20.

In seventh attempt:
The shift value is 20.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 2 3 4 1
 BARBER

In this attempt, last character of the pattern is
matched with the text window, then the first
character of the pattern is also matched with the
text window, then the middle character* of the
pattern is matched with the text window. Then,
the second last character of the pattern is
compared and a mismatch occurs with the text
window character S, so the window is shifted by
shift + Hbc[R] i.e. 20 + 3 = 23.

In eighth attempt:
The shift value is 23.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 2 3 4 1
 BARBER

Here again, a match occurs with the right most
character of the pattern and the text window,
then the first character of the pattern is also
matched with the text window, and the middle
character of the pattern is matched with the text
window. Next comparison is in between
window’s A and pattern’s E. We get a mismatch
and the mismatched character is A. So the
window is shifted based on the shift value shift +
Hbc[R] i.e. 23 + 3 = 26.
 _
*If length of the Pattern is even then out of two,
the lower median is selected[4].

In ninth attempt:
The shift value is 26.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 2 3
54 1 BAR
BER

Again, a match occurs with the right most
character of the pattern and the text window, the
first character of the pattern is also matched with
the text window, and the middle character of the
pattern is matched with the text window. Then
we compare second-last character of pattern with
31st character of text. It is a match. Then we
compare third-last character of pattern with 30th
character of text. It is a mismatch and
mismatched character is E. The new shift value
is shift + Hbc[R] i.e. 26 + 3 = 29.

In tenth attempt:
The shift value is 29.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER
2 1
BARBER

In this attempt, last character of the pattern is
matched with the last character of text window,
but the first character of the pattern is
mismatched with the first character of text
window, so window is shifted by shift + Hbc[R]
i.e. 29 + 3 = 32.

In eleventh attempt:
The shift value is 32.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER
 2 7 3 54 1
 BARBER

Here again, a match occurs with the right most
character of the pattern and the text window, the
first character of the pattern is also matched with
the text window, and the middle character of the
pattern is matched with the text window. Then
we compare pattern’s 5th, 4th and 3rd characters
with text’s 37th, 36th and 35th characters
respectively and these all are matched. Next
comparison is in between pattern’s 2nd character
and text’s 34th character, which is a mismatch
and the mismatched character is E. So the
window is shifted based on the shift value shift +
Hbc[R] i.e. 32 + 3 = 35.

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1881

ISSN:2229-6093

In twelfth attempt:
The shift value is 35.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 2 3 4 1
 BARBER

Again, a match occurs with the right most
character of the pattern and the right most
character of the text window, the first character
of the pattern is also matched with the first
character of the text window, and the middle
character of the pattern is matched with the
middle character of the text window. Then we
compare second-last character of the pattern with
the 40th character of the text and get a mismatch.
The mismatched character is A. So the window
is shifted based on the shift value shift + Hbc[R]
i.e. 35 + 3 = 38.

In thirteenth attempt:
The shift value is 38.

BBARBERBABCDEEAACDEEBBRBSRBAR
EERBERBERBARBER

 2 7 3 54 1
 BARBER

Here again, a match occurs with the right most
character of the pattern and the right most
character of the text window, the first character
of the pattern is also matched with the first
character of the text window, and the middle
character of the pattern is matched with the
middle character of the text window. Then
second-last to second character of pattern is
compared and matched with the second-last to
second character of text window, thus the whole
pattern is matched with the text window.

Pattern occurs with shift =38.

Now the window is shifted based on the shift
value shift + Hbc[R] i.e. 38 + 3 = 41, which is
more than n-m. We get a message-

No more pattern exists.

5. ANALYSIS

First for loop of preprocessing function iterates
Θ(|Σ|) times and the second for loop iterates Θ (m)
times. Since, generally |Σ| > m, the complexity of
preprocessing is Θ(|Σ|).

In matching function the outer while loop
iterates O(n-m+1) times. Experiments show that
the exact number of iterations is far less than n-
m+1. The inner while loop iterates O(m) times.
Thus the total complexity of the matching phase
is O(m(n-m+1)).

6. CONCLUSION

We have proposed a new algorithm for string
matching, by defining a new order of comparison
between given Pattern and the text Window[1].
We have explained our algorithm by an example.
The example strings are taken such that in which
cases are covered. Our algorithm is checked and
tested on many random strings. The complexity
analysis is also given. Although the given
algorithm is not much better than other existing
algorithms in complexity, but practically its
running time is faster than other existing
algorithms. Hence the proposed algorithm is
efficient and faster as it can be observed from the
given chart and the graph.

Pattern
Length

BM Raita Horspool
VS (our

algorithm)
2 238 207 214 119.435620
4 189 174 175 95.5909075
6 175 165 166 82.4739625
8 166 159 157 75.5494650
10 163 156 154 73.9011125
12 157 153 151 71.0164925
14 154 151 150 70.6044025
16 153 151 149 65.2472575
18 152 151 147 64.8351675
20 151 148 147 62.7747250

Table1: Comparison of our algorithm(VS) with
other well known algorithms[6]

The graph on next page clearly shows the
difference of our algorithm with other known
algorithms. Our algorithm is applicable in many
areas like Biology[5], Computer science,
Medical etc. It also works fine with multiple
pattern matching[8].

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1882

ISSN:2229-6093

Figure 1: Comparison Chart with other well
known algorithms

7. REFERENCES

1. R. Manivannan and S. K. Srivasta, “Semi
automatic method for string matching”,
Information Technology Journal, 2011, 10(1),
195-200.

2. Horspool R. N., “Practical fast searching in
strings”. Software-Practice Experience 1980,
10(6), 501-506.

3. Raita T., “Tuning the Boyer-Moore-Horspool
string-searching algorithm”. Software-Practice
Experience 1992, 22(10), 879-884.

4. Tim Bell, Matt Powell, Amar Mukherjee and
Don Adjeroh, “Searching BWT compressed
text with the Boyer-Moore algorithm and
binary search”. University of Central Florida,
USA, 2001, pp. 1-10.

5. Rahul Thathoo, Ashish Virmani, S. Sai
Lakshmi, N. Balakrishnan and K. Sekar1,
“TVSBS: A fast exact pattern matching
algorithm for biological sequences”. India,
2006, pp. 47-53.

6. S. S. Sheik, Sumit K. Aggarwal, Anindya
Poddar, N. Balakrishnan and K. Sekar, “A fast
pattern matching algorithm”, J. Chem. Inf.
Comput. Sci. 2004, 44, 1251-1256.

7. Olivier Danvy and Henning Korsholm Rohde,
“Obtaining the Boyer-Moore string-matching
algorithm by partial evaluation”. Department
of Computer Science University of Aarhus,
2005, pp. 1-9.

8. Castelo AT, Martins W, Gao GR, “TROLL--
tandem repeat occurrence locator”.
Bioinformatics 2002, 18(4):634-636.

9. Yoginder S Dandass, Shane C Burgess, Mark
Lawrence and Susan M Bridges,
“Accelerating string set matching in FPGA”
Hardware for Bioinformatics Research, BMC
Bioinformatics 2008, 9:197.

10. Mansi R. H., J. Q. Alnihoud, 2010, “An
efficient ASCII-based algorithm for single
pattern matching”, Information Technology
Journal, 2010, 9: 453-459.

11. Boyer R. S., Moore J. S., “A fast string
searching algorithm”. Commun. ACM 1977,
20, 762-772.

12. Domenico Cantone and Simone Faro,
“Forward-fast-search: Another fast variant of
the Boyer-Moore string matching algorithm”.
Dipartimento di Matematica e informatica,
Universita di Catania, Italy, 2003, pp. 10-24.

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20

Pattern Length

BM

Raita

Horspool

VS

A
ve

ra
ge

 T
im

e
in

 1
0-2

 m
Se

co
n

ds

Ravendra Singh et al, Int. J. Comp. Tech. Appl., Vol 2 (6),1877-1883

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1883

ISSN:2229-6093

