

USING REMOTE PROCEDURE CALLS IMPLEMENTING DISTRIBUTED ALGORITHM

G. MURALI
 i
 K.ANUSHA

ii
 A. SHIRISHA

iii
 S.SRAVYA

iv

 [i] Assistant Professor, Dept of Computer Science

Engineering, JNTU-Pulivendula, AP, India.

 [ii],[iii],[iv] B.Tech(4-I) Dept of Computer Science

Engineering, JNTU-Pulivendula, AP, India.

ABSTRACT

Remote Procedure Call (RPC) is a powerful primitive used

for communication and synchronization between distributed processes.

RPC poses a problem that it reduces the amount of parallelism,

because of its synchronous nature. This paper shows how simple

processes can be used to find a way of avoiding a difficulty in this

problem. The combination of blocking RPC calls and light-weight

processes provides both simple semantics and efficient exploitation of

parallelism.

We will describe how two important classes of algorithms,

branch and bound can be run in a parallel way using this RPC. The

results of some experiments comparing this algorithms on a single

processor discussed.

1.INTRODUCTION:

 As computing technology advances, by just

increasing the speed of the chips it becomes increasingly difficult and

expensive to make the computers faster. In copper wire, electrical

signals travel at 2/3 the speed of light or about 20 cm/nanosecond, so

very fast computers must be very small, which leads to severe heat

dissipation problems among other things. The clear solution is to

achieve the same computing power as one very fast computer, but at a

fraction of the cost by combining large number of moderately fast

computers.

In distributed systems, organizing multiple processors in

different ways have been proposed. At one end of the spectrum are

tightly-coupled systems with multiple processors on the same bus and

sharing a common memory. At the other end are the loosely-coupled

systems consisting of a number of independent computers, each with

its own operating system and users, exchanging files and mail over a

public data network. In between, are systems consisting of mini or

microcomputers communicating over a fast local network and all

running a single, system-wide operating system. We have used a

system in the latter category as a testbed for the implementation of

some distributed algorithms.

1.1 Distributed System:

 A distributed system consists of different

independent computers that communicate with a computer network. To

achieve common goals computer interacts each other. Distributed

program defined as a computer program that runs in a distributed

system and process of writing such programs is called distributed

programming. To solve computational problems distributed computing

refers to use of distributed system.

Within some geographical area networks where individual

computers were physically distributed is referred as the word

distributed in such as distributed system, distributed programming. The

term distributed are used in wider sense, also referring to independent

processes that execute on the same computer and to pass the message

they intersect each other.

1.1.1 Application:

 For using distributed systems and distributed computing there

are two reasons..To connect several computers first application that

may require to the use of communication network to communicate.

Example for these is data may be produced in one location and may be

used in another location. Second reason to use distributed system is

single computer may be possible in principle, for practical reasons the

use of distributed system is beneficial. Example for this second reason

is, by using a cluster of several low-end computers it may be more

cost-efficient to obtain the desired level of performance. By using a

single high-end computer. Compared to non-distributed system

distributed system is more efficient and reliable to use as there are no

single point of failure. However, it will be easier to expand and

manage than a monolithic uniprocessor system.

Examples of distributed systems and applications of

distributed computing include the following:

Telecommunication networks:

1. Telephone networks and cellular networks.

2. Computer networks such as the Internet.

3. Wireless sensor network.

Network applications:

1. World wide web and peer-to-peer networks.

2. Massively multiplayer online games and virtual reality communities.

3. Distributed databases and distributed database management systems.

1.2 Remote Procedure Call (RPC):

1.2.1 What is RPC:

K Anusha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1742-1746

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1742

ISSN:2229-6093

 For constructing distributed, client-server based applications

RPC is a powerful technique. As calling procedure, the called

procedure need not exist in the same address space, so as it is based on

the extending the notion of conventional, or local procedure calling.

With a network connecting them, the two systems may be on same

system or they may be on the different systems a network connection

connecting them. Programmers may avoid the details of the interface

with the network of distributed applications by using RPC. It allows

the application to use variety of transports and physical and logical

elements of the data communication and application by the transport

independence of RPC isolated the application.

1.2.2 how RPC works:

 An RPC is dry to a function call. Caller waits for a response

to returned from the remote procedure and the calling arguments are

passed to remote procedure when an RPC is made in functional call.

During the flow of activity Figure 1 shows an RPC call between two

networked system .To send the request to server and wait the client

make a procedure call. Until either a reply is received, or it times out

the thread is blocked from processing. The server calls a to send

something fixed that performs the requested service, and sends the

reply to the client when the request arrives .The client program

continues, after the RPC is completed. Network applications are

specially supported by RPC.

Remote Procedure calls is uniquely identified by the triple: 1.program

number , 2.version number ,3.procedure number .The Each of which

has a unique procedure number is related to remote procedure to

identify the program number. To enable multiple versions of an RPC

protocol to be available simultaneously by version numbers. Each

version contains a number of procedures that can be called remotely.

 Figure 1.1: Remote Procedure Calling

Mechanism

1.3 Travelling Salesman Problem(TSP):

The travelling salesman problem is an NP-hard problem in

combinatorial optimization studied in operations research and

theoretical computer science. In travelling salesman problem the task

is to find a shortest possible tour that visits each city exactly once by

using given list of cities and their pair wise distances.

 In theory of computational complexity, the decision version of the

travelling salesman problem (the task is to decide whether any tour is

shorter than S, where given a length S) belongs to the class of NP-

complete problems. Thus, it is likely that the worst case running time

for any algorithm for the TSP increases exponentially with the number

of cities.

The traditional lines of attack for the NP-hard problems are the

following:

1. For finding exact solutions devising algorithms (they will

work fast only for small problem sizes).

2. Devising suboptimal algorithms, i.e., algorithms that gives

either seemingly or probably good solutions, but which could not be

proved to be optimal.

3. Finding special cases for the problem for which either

better or exact heuristics are possible.

exact algorithms:

To check which one is cheapest (by using brute force search) and the

most direct solution would be to try all permutations, followed by

combinations. The polynomial factor for running this approach lies

within a time of O(n!), so this solution becomes more impractical even

for only 20 cities. One of the earliest applications of dynamic

programming is the HeldKarp algorithm that solves the problem in

time O(n^2 * 2^n).

The exponential space is required by the dynamic

programming solution. Using inclusion and exclusion, the problem can

be solved in time within a polynomial factor of (2^n) and polynomial

space.

Algorithm:Tree traversal algorithm:

proceduretraverse(node,depth, length);

begin

{node is a node of the search tree. It contains

a list of the cities on the current partial tour.

length is the length of the partial path so far.

depth is the number of levels to be searched

before the rest of the tree should be handed

out to a subcontractor }

if(length<minimum) then

begin{if(length ≥ minimum) skip this node }

if(node is a leaf) then

minimum := length;

else if(depth = 0)then

hand out subtree rooted at node

to a subcontractor;

else

for each child c of node do

traverse(c,depth1,length+dist(node,c));

callrpc()
function

client
program MACHINE B

(SERVER)

execute
request

call
service

Service

executes MACHINE A

(CLIENT)

reply
return

request
completes

program
continues

K Anusha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1742-1746

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1743

ISSN:2229-6093

end

end

1.4 Parallel branch and bound using RPC

For solving large class of combinational optimization problems the

technique which is used is branch-and-bound method. For Travelling

salesman problem, Integer programming, Machine Scheduling

problems and many others are applied by branch and bound method. In

this to find the shortest route for a salesman to visit each of the n cities

in his occupied exactly once it chosen to implement Travelling

Salesman Problem.

To structure the space of possible solutions the branch and

bound method uses a tree. To built the tree it is shown by the

Branching rule. A node of the tree represents a partial tour for the use

of Travelling Salesman Problem. Each node has a branch for every city

that is not on this not complete about it. Figure:1.2 shows a tree for a

4-cities. Here a leaf represents a solution of problem. Example is the

left branch of the figure shows the London-Amsterdam-paris-

washington. To avoid the searching of whole tree the bounding rule is

used. The bounding rule is simple for Travelling Salesman Problem.

Figure 1.2: Tree of 4-city Traveling Salesman Problem for London,

Amsterdam, Paris, and Washington.

The partial tour will never lead to solution better than what is

already know when if the length of a partial tour exceeds the length of

any already known solution. By searching the parts of the tree in

parallel then parallelism will obtained in branch-and-bound algorithm.

A new processor could be allocated to every node of the tree when

there is enough processors were available. Every processor would

select the best partial path from its children and report the result back

to its parent. Branch-and-bound method would require O(N!)

processors for N cities. Most knowingly among available processors

the work has to be divided. In this, each processor starts at the node

given to it and generates the complete partial tree reachable from that

node down to depth levels. This node to a subcontractor for further

evaluation each time the processor generates a node at level depth. The

generation and evaluation of partial tree occur in parallel. How the

Figure 1 is searched is shown by Figure 2, by using the 2-level

processor according to their importance.

 In Figure 1.3, the processor that traverse the root processor

searches for single or one level. By subconductors, it splits off three

subtrees, each of depth two, which is traversed in parallel. The

algorithm is shown in Figure 3.The global variable minimum of the

length of the shortest path is set to the present algorithm which is

given. With a very high value the variable is initialized.

While there are no free subcontractors, a processor only

blocks if it tries to hand out a subtree. With a different initial node and

probably with a different initial depth, each subcontractor executes the

same traversal process. Generally, a subcontractor may split up the

work over even more processors, so a subcontractor may also play the

role of a root processor.

By using the algorithm described above, the Traveling

Salesman Problem has been implemented under Amoeba. The role of a

subcontractor played by a processor can be viewed as an Amoeba

server. Evaluation of a TSP sub tree is one of the most offering

service. Each server repeatedly, waits for some work, performs the

work, and then returns the result. A processor which plays the role of a

root processor is a client.

By using Remote Procedure Calls the handing out of work is

implemented. As stated before, a problem with RPC is the fact that the

caller is blocked during the call.

Therefore,

Figure 1.3: Example of a distributed tree search

the client cluster is divided into several tasks (see Figure: 1.3). To

performs the tree traversal can be performed by manager task M which

is in processor p running on cluster C . To contain N agent tasks like

A,1 .. A,N the cluster must have N subcontractors. An agent A,j

controls the communication with subcontractor j. Thus it starts the tree

traversal of Figure:1.3, after the manager task Mp receives a subtree T

to evaluate. It tries to find a free agent, say A,j when it finds a subtree

that has to be subcontracted out,

L

A P W

P W R W A P

W P W R P A

L

A P W

P W R W A P

W P W R P A

A P W

K Anusha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1742-1746

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1744

ISSN:2229-6093

Figure 1.4: Process structure of the TSP program

Here, we describe on processor j , the manager Mj starts executing the

process. It returns the result to A,j, when Mj finishes the evaluation of

the subtree. This agent checks whether the current best solution has to

be updated or not, and then this becomes available again for the next

request from M. In the mean time, the manager M continues its tree

traversal and it eagerly tries to find new work to distribute. If the

manager tries to deal out work while all agents are engaged then the

entire client cluster only blocks

This implementation completely utilizes the parallelism

present in the algorithm and it is highly flexible. The implementation

uses depth-first search, but it can be easily adapted to other strategies,

such as best-first or breadth-first.

Conclusions &Results:

We have performed some measurements on the Travelling Salesman

Problem programs.We both performed a sequeltial using single

processsor version and a parallel using multiple processor version.for

simple vision,we use only two level processor according to their

importance.We used in this one processor for the client side and many

six processors for the server side.For Travelling Salesman Problem

,the depth of the subtrees are important parameters.If we use different

processors in client side then the effectiveness will be less or

low.Example fot this is, if it traverses just at one level, then the best

solution in the left most branch of the tree cannot be used as a bound in

its neighbor branch, as these branches are searched

simultaneously.increasing the depth of the root subtree will decrease

this effect, at the cost of more communication between the root

processor and its subcontractors. To achieve high performance, a good

compromise has to be found.

For an 10-city problem we found the optimal search depth of

the client to be three levels. The results for an 10-city problem using

this search depth are shown are below

RESULTS:

 Figure 1.5: Input Data

The above table shows the speedup over the 1-server side. With 1

client and 6 servers a distributed program gets 4 times better result

than sequential program is achieved. Note that with only one server,

there is still some parallelism, as the client can find the next subtree to

hand out, while the server is working on the previous subtree. Our

implementations of Travelling Salesman problem, has been Calmly

manager

agent 1

agent 2

agent n

server 1

server 2

server n

…

…

K Anusha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1742-1746

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1745

ISSN:2229-6093

kept simple at starting, as to gain experience with programming using

RPC and lightweight process we are implementing them.

REFERENCES:

 [1]Birrell, A. D. and Nelson, B. J.,(Feb. 1984)“Implementing Remote

Procedure Calls”, ACM Transactions on Computer Systems, Vol. 2,

No. 1, pp. 39-59.

[2] Tanenbaum, A. S. and Van Renesse, R.,(Dec. 1985)“Distributed

Operating Systems”, Computing Surveys, Vol. 17, No. 4, pp. 419-470.

[3] Mullender, S. J. and Tanenbaum, A. S.,(Aug. 1986)“Design of a

Capability-Based Distributed Operating System”, Computer Journal,

Vol. 29, No. 4, pp. 289-299.

[4] Tanenbaum, A. S. and Mullender, S. J.(July 1981)“An Overview of

the Amoeba Distributed Operating System”, Operating Syst. Rev.,

Vol. 15, No. 3, pp. 51-64.

[5] Nelson, B. J.(May 1981)“Remote Procedure Call”, CMU-CS-81-

119, Carnegie-Mellon University.

[6] The Amoeba Distributed Operating System, Andrew S.

Tanenbaum& Gregory J. Sharp ,VrijeUniversiteit, De Boelelaan

1081a, Amsterdam, The Netherlands.

[7] Bruce Jay Nelson (May 1981). Remote Procedure Call.Xerox Palo

Alto Research Center.PhD thesis.

[8] Remote Procedure Calls (RPC) A tutorial on ONC RPC by Dr

Dave Marshall of Cardiff University.

[9] Tanenbaum, Andrew S. and Gregory J. Sharp. The Amoeba

Distributed Operating system.VrijeUniversiteit, Amsterdam.

K Anusha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1742-1746

IJCTA | NOV-DEC 2011
Available online@www.ijcta.com

1746

ISSN:2229-6093

